(完整版)2011年福建省高考数学试卷(文科)及解析

合集下载

2011福建高考考卷文科理科包答案

2011福建高考考卷文科理科包答案

绝密☆启用前2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。

第Ⅱ卷第21题为选考题,其他题为必考题。

满分150分。

注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。

考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

3. 考试结束,考生必须将试题卷和答题卡一并交回。

参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式13V S h =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A.14B.13 C.12 D.235.10⎰(e 2+2x )dx 等于A.1B.e-1C.eD.e+1 6.(1+2x)3的展开式中,x 2的系数等于A.80B.40C.20D.107.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A.1322或B.23或2C.12或2 D.2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一.定不可能....是 A.4和6 B.3和1 C.2和4 D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。

2011年高考全国数学试卷(新课标)-文科(含详解答案)

2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考福建省数学试卷-文科(含详细答案)

2011年高考福建省数学试卷-文科(含详细答案)

2011年普通高等学校招生全国统一考试(福建卷)数学(文科)本试卷第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至3页,第II 卷4至6页。

满分150分。

注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号、姓名是否一致。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

3.考试结束,考生必须将试题卷和答题卡一并交回。

参考公式:样本数据12,,,n x x x …的标准差 s =. 其中x 为样本平均数.柱体体积公式V Sh =其中S 为底面面积,h 为高锥体公式13V Sh =,其中S 为底面面积,h 为高 球的表面积、体积公式24S πR =,343V πR =,其中R 为球的半径.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个项是符合题目要求的。

1.若集合{}1,0,1M =-,{}0,1,2N =,则M N ∩等于( ).A .{}0,1B .{}1,0,1-C .{}0,1,2D .{}1,0,1,2- 【解】{}0,1M N =∩.故选A . 2.i 是虚数单位31i +等于( ).A .iB .i -C .1i +D .1i - 【解】31i 1i +=-.故选D .3.若a ∈R ,则“1a =”是“1a =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件【解】当1a =时,有1a =.所以“1a =”是“1a =”的充分条件,反之,当1a =时,1a =±,所以“1a =”不是“1a =”的必要条件.故选A . 4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

2011年福建高考数学试卷简析

2011年福建高考数学试卷简析

2011年福建高考数学试卷简析福州教育研究院傅晋玖2011年福建省高考数学试卷以《课程标准》为指南,以《考试大纲》、《考试说明》为依据,顺应高考命题改革的方向,系统、全面、科学、有效地考查了基础知识、基本技能、基本思想方法和基本数学应用,同时考查了学生持续发展的数学素养和学习潜能,试卷注重对数学本质理解的考查,注重对空间想像能力、直觉思维能力、数据处理能力、阅读解构能力、应用创新意识和数学素养、学习潜能、逻辑推理、方法迁移的考查,强调层次间的区分,淡化层次内的选拔. 试题立意朴实清新,呈现大度大气,选材随时合境,解法自然普适,卷面合谐流畅,实现了为高校录取新生提供有效支持的选拔功能和指导、促进、深化数学课程改革的功能.一、试题试卷简析1.朴素大气不失功力试卷的命制可谓大胆探索、不落俗套;试题试卷可谓朴素大气、简约清新;命题者可谓有胆有识、不失功力。

全卷较为充分的体现了基础教育、数学基础教育的素质教育观,体现了数学基础教育要回归朴素、大气、简约而又不失学科内含的生动、活泼、丰富、有趣的价值追求。

从选材、组题、呈现方式、解题方式到交汇综合方式均立足基础、强调通法、注重本质,自然大方、贴近学生实际,而又不乏新意,可谓细致细腻,有相当的亲和力。

阅读量、思维量、计算量、均与考生平日所见所思、所做所算相匹配,相当部分试题远低于学生在冲刺、强化训练阶段的难度,几乎所有试题都是以简约、流畅,平和的方式呈现,在“似曾相识”的考试情境中尽情展示自己,有利于稳定考生情绪,发挥考生水平。

试卷在不失学科内含、思想内含和方法内含的同时,想给的给到,要考的考到,不规避、不刻意求新、不人为设障。

让学生强烈的感受到了试题试卷及数学的简约、清新之美。

2.热点重点尽显活力试卷对应用和创新意识等热点内容的考查,注重公平公正的载体和背景,注重位置和内容,且适时适量;在综合的能力和方法上,凸显其所在学科分支蕴含的突出的、典型的与通适的视角、方法、策略。

2011年福建高考数学试题(文科)

2011年福建高考数学试题(文科)

小学毕业总复习:整数基本概念1 整数的意义我们在数物体的时候,用来表示物体个数的数1、2、3、4、5、……,叫做自然数,也叫做正整数。

自然数的个数是无限的。

在自然数的前面加上“-”号,得到的数-1,-2,-3,-4,-5,……叫做负整数。

负整数的个数也是无限的。

一个物体也没有,用0表示。

0也是自然数。

0既不是负整数也不是正整数。

它可以用来表示一个物体也没有。

我们把正整数,0,负整数,统称为整数。

2 计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

3 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

认数-负数题目类型:用正负数和0记数,如温度、方向、收支等数轴记数超过或低于某标准记数比大小例:零上5℃和零下6℃可记为+5℃和-6℃;高出海平面10米和低于海平面8米可记为+10米和-8米;收入200元和支出300元可记为+200元和-300元;前进30米和后退40米可记为+30米和-40米某标准以上为正数,以下则为负数其他使用负数的情况见下负数的相关知识:任何正数前加上负号就变成负数。

负数比零小,正数都比零大。

零既不是正数,也不是负数。

在数轴线上,负数都在0的左侧,没有最大与最小的数,所有的负数都比自然数小。

比零小(<0)的数.用负号(即相当于减号)“-”标记。

如-2,-5.33,-45,-0.6等。

典型题目:1、小明从家向西走250米,记作—250米,那么他从家向东走560米,记作()米。

例题1现在有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6刻度,这时的温度如何表示呢提示:如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们就引入一种新数——负数.参考答案:记作-6℃.说明:我们为了区分零上6℃与零下6℃这一组具有相反意义的量,因而引入了负数的概念.例题2从中国地形图上可以看到,有一座世界最高峰—珠穆朗玛峰,图上标着8844;还有一个吐鲁番盆地,图上标着-155.你能说出它们的高度各是多少吗提示:中国地形图上可以看到,上述两处都标有它们的高度的数,图上标的数表示的高度是相对海平面说的,通常称为海拔高度.8844表示珠穆朗比海平面高8844米,-155表示吐鲁番盆地比海平面低155米.参考答案:珠穆朗玛峰的高度是海拔8844米;吐鲁番盆地的高度是海拔-155米.说明:这个例子也说明了我们为了实际需要引入负数,是为了区分海平面以上与海平面以下高度,它们也表示具有相反意义的量.例题3甲地海拔高度是35米乙地海拔高度是15米,丙地海拔高度是-20米,请问哪个地方最高,哪个地方最低?最高的地方比最低的地方高多少?提示:35米,15米,-20米分别表示什么意义?参考答案:甲地最高,丙地最低,最高的地方比最低的地方高55米。

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011福建数学高考试题及答案

2011福建数学高考试题及答案

2011年普通高等学校夏季招生全国统一考试数学(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题.满分150分.参考公式:样本数据x 1,x 2,…,x n 的标准差])()()[(122221x x x x x x nS n -++-+-=其中x 为样本平均数 柱体体积公式 V =Sh其中S 为底面面积,h 为高 锥体体积公式 13V Sh =其中S 为底面面积,h 为高球的表面积、体积公式 2344,3S R V R ππ==其中R 为球的半径第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈SC .i 3∈SD .2i∈S2.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分又不必要条件3.若tan α=3,则2sin 2cos αα的值等于( ) A .2 B .3 C .4 D .64.如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A .14B .13C .12D .235.1(e 2)xx dx +⎰等于( )A .1B .e -1C .eD .e +16.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10 7.设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A .1322或 B .23或2C .12或2 D .2332或8.已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]9.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( )A .4和6B .3和1C .2和4D .1和210.已知函数f (x )=e x+x .对于曲线y =f (x )上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是( ) A .①③ B .①④ C .②③ D .②④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.运行如图所示的程序,输出的结果是________.12.三棱锥P —ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P —ABC 的体积等于________.13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.14.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.15.设V 是全体平面向量构成的集合.若映射f :V →R 满足: 对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ),则称映射f 具有性质P .现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ; ②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在6x π=处取得最大值,且最大值为a 3,求函数f (x )的解析式.17.已知直线l :y =x +m ,m ∈R .(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--.其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件.假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:X 1 5 6 7 8 P 0.4 a b 0.1且X 1的数学期望EX 1=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”= 产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.20.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°.(1)求证:平面P AB ⊥平面PAD ;(2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由.21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)选修4—2:矩阵与变换 设矩阵00a Mb ⎛⎫=⎪⎝⎭(其中a >0,b >0). ①若a =2,b =3,求矩阵M 的逆矩阵M -1;②若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:1y 4x22=+,求a ,b 的值.(2)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧==ααsin cos 3y x(α为参数).①已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系;②设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. (3)选修4—5:不等式选讲设不等式|2x -1|<1的解集为M . ①求集合M ;②若a ,b ∈M ,试比较ab +1与a +b 的大小.参考答案1.B 2.A 3.D 4.C 5.C 6.B 7. A 8.C 9.D 10.B 11.答案:3 12.答案:3 13.答案:3514.答案:2 15.答案:①③16.解:(1)由q =3,S 3=133得311313a (-)-=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3.因为当x =6π时,f (x )取得最大值,所以sin(2×6π+φ)=1.又0<φ<π,故φ=6π.所以函数f (x )的解析式为f (x )=3sin(2x +6π).17.解法一:(1)依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以020m --×1=-1.解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP |=22200222(-)+(-)=. 故所求圆的方程为(x -2)2+y 2=8.(2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m . 由24y x m x y=--⎧⎨=⎩,得x 2+4x +4m =0,Δ=42-4×4m =16(1-m ).①当m =1,即Δ=0时,直线l ′与抛物线C 相切; ②当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切. 综上,当m =1时,直线l ′与抛物线C 相切;当m ≠1时,直线l ′与抛物线C 不相切.解法二:(1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2.依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则224|20|2m r m r ⎧+=⎪-+⎨=⎪⎩解得222m r =⎧⎪⎨=⎪⎩所以所求圆的方程为(x -2)2+y 2=8. (2)同解法一.18.解:(1)因为x =5时,y =11,所以2a +10=11,a =2.(2)由(1)可知,该商品每日的销售量210(236)x y x +-=-,所以商场每日销售该商品所获得的利润 f (x )=(x -3)[23x -+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x ) 单调递增 极大值42 单调递减由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 19.解:(1)因为EX 1=6,所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由67 3.20.5a b a b +=⎧⎨+=⎩,解得0.30.2a b =⎧⎨=⎩.(2)由已知得,样本的频率分布表如下:X 2 3 4 5 6 7 8 f 0.3 0.2 0.2 0.1 0.1 0.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:X 2 3 4 5 6 7 8 P 0.3 0.2 0.2 0.1 0.1 0.1所以EX 2=3P (X 2=3)+4P (X 2=4)+5P (X 2=5)+6P (X 2=6)+7P (X 2=7)+8P (X 2=8)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1 =4.8.即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.20.解法一:(1)因为P A ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面PAB ⊥平面P AD .(2)以A 为坐标原点,建立空间直角坐标系A —xyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中, DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t ,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t ,0),C (1,3-t ,0),D (0,4-t ,0),CD =(-1,1,0),PD=(0,4-t ,-t ).①设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD ,n ⊥PD ,得040x y t y tz -+=⎧⎨(-)-=⎩取x =t ,得平面PCD 的一个法向量n =(t ,t ,4-t ).又PB=(t ,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=P BP B⋅⋅n n ,即22222241242t tt t t t-=++(-)⋅.解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.②假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m ,0)(其中0≤m ≤4-t ), 则G C =(1,3-t -m ,0),CD =(0,4-t -m ,0),GP=(0,-m ,t ).由G C G D =得12+(3-t -m )2=(4-t -m )2,即t =3-m ;(ⅰ)由C D G P =|得(4-t -m )2=m 2+t 2.(ⅱ)由(ⅰ)(ⅱ)消去t ,化简得 m 2-3m +4=0.(ⅲ)由于方程(ⅲ)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.解法二:(1)同解法一.(2)①以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中, DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t ,0,0),P (0,0,t ). 由AB +AD =4,得AD =4-t ,所以E (0,3-t ,0),C (1,3-t ,0),D (0,4-t ,0),CD =(-1,1,0),PD=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD ,n ⊥PD ,得040x y t y tz -+=⎧⎨(-)-=⎩,取x =t ,得平面PCD 的一个法向量n =(t ,t ,4-t ).又PB=(t ,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=P B P B ⋅⋅ n n ,即22222241242t t t t t t-=++(-)⋅, 解得t =45或t =4(舍去,因为AD =4-t >0).所以AB =45.②假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°. 从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABC 中,GB =22AB AG +=223λλ+(-)=239222λ(-)+>1,这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 21.(1)选修4-2:矩阵与变换解:①设矩阵M 的逆矩阵M -1=1122x y x y ⎛⎫ ⎪⎝⎭,则MM -1=1001⎛⎫⎪⎝⎭. 又M =2003⎛⎫⎪⎝⎭, 所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13.故所求的逆矩阵M -1=102103⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭.②设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′).则00a x x b y y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭,即ax x by y'=⎧⎨'=⎩. 又点P ′(x ′,y ′)在曲线C ′上,所以2214x y ''+=.则222214a xb y +=为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故2241a b ⎧=⎪⎨=⎪⎩又a >0,b >0,所以21a b =⎧⎨=⎩(2)选修4—4:坐标系与参数方程解:①把极坐标系的点P (4,2π)化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. ②因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离是d =|3cos sin 4|2αα-+=2cos(462πα+)+=2cos(α+6π)+22,由此得,当cos(α+6)=-1时,d 取得最小值,且最小值为2.(3)选修4-5:不等式选讲解:①由|2x -1|<1得-1<2x -1<1, 解得0<x <1.所以M ={x |0<x <1}.②由(1)和a ,b ∈M 可知0<a <1,0<b <1. 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +B .。

2011年福建卷文科数学高考试卷(原卷 答案)

2011年福建卷文科数学高考试卷(原卷 答案)

绝密★启用前2011年普通高等学校招生全国统一考试(福建卷)文科数学本试卷共22题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共12小题,每小题5分,满分60分)法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为点Q取自△ABE内部的概率等于()....8.(5分)(2011•福建)已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()....﹣ax﹣2bx+2在x=1处有极值,则ab的最大值等于12112 2..或.2.n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②﹣3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一“类”的充要条件是“a﹣b∈[0]”.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2011•福建)若向量=(1,1),(﹣1,2),则等于_________.14.(4分)(2011•福建)若△ABC的面积为,BC=2,C=60°,则边AB的长度等于_________.15.(4分)(2011•福建)如图,正方体ABCD﹣A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于_________.16.(4分)(2011•福建)商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于_________.三、解答题(共6小题,满分74分)17.(12分)(2011•福建)已知等差数列{a n}中,a1=1,a3=﹣3.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{a n}的前k项和S k=﹣35,求k的值.18.(12分)(2011•福建)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(Ⅰ)求实数b的值;(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.19.(12分)(2011•福建)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.20.(12分)(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且(Ⅰ)求证:CE⊥平面PAD;CE∥AB.(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.21.(12分)(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.22.(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).(I)求实数b的值;(II)求函数f(x)的单调区间;(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.2011年普通高等学校招生全国统一考试(福建卷)文科数学(参考答案)一、选择题(共12小题,每小题5分,满分60分)=40=8P=.=),=tan.a>0,b>0t,==(﹣=1S=ACsinC=AC=是CD的中点,.故答案为.+x﹣1=0,解得0<x<1,.故答案为:=2n,消去=0.15=所以=PA⊥平面ABCD,PA=1所以==2≤θ≤=且故当时,当,([据此可得,若[[ [。

2011年福建高考数学试题(文科)

2011年福建高考数学试题(文科)

2011年普通高等学校招生全国统一考试(福建卷)数学(文科)注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数)2)(1(++i mi 是纯虚数,则m =( )A .1=mB .1-=mC .2=mD .21-=m2.已知命题:p “若b a =,则||||b a =”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是( )A .1个B .2个C .3个D .4个3.要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;② 从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为( )A .①简单随机抽样调查,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,② 分层抽样D .①② 都用分层抽样4.如图,一个几何体的三视图都是边长为1的正方形,那么这个几何体的体积为( ) A .32 B .31 C .32 D .15.关于函数函数=)(x f 1)sin 3(cos cos 2-+x x x ,以下结论正确的是( )A .)(x f 的最小正周期是π,在区间),(12512ππ-是增函数 B .)(x f 的最小正周期是π2,最大值是2 C .)(x f 的最小正周期是π,最大值是3D .)(x f 的最小正周期是π,在区间),(612ππ-是增函数6.某人欲购铅笔和圆珠笔共若干只,已知铅笔1元一只,圆珠笔2元一只.要求铅笔不超 过2只,圆珠笔不超过2只,但铅笔和圆珠笔总数不少于2只,则支出最少和最多的钱数 分别是( )A .2元,6元B .2元,5元C .3元,6元D . 3元,5元 7.已知F 1 、F 2分别是双曲线1by ax 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( ) A .2 B . 3 C . 4D . 58.函数xxx y sin 2sin 3cos 42---=的最大值是( )A .37- B .3- C .37 D . 1第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9—12题)9.已知集合}0|){(≥+-=m y x y x A ,,集合}1|){(22≤+=y x y x B ,.若φ=B A ,则实数m 的取值范围是____________. 10.关于函数⎩⎨⎧≤≤-≤<-=11cos 41)(x x x x x f ,,的流程图如下,现输入区间][b a ,,则输出的区间是____________.11.函数3)12(2--+=x a ax y 在区间[23-,2]上的最大值是3,则实数a =____________.12.设平面上n 个圆周最多把平面分成)(n f 片(平面区域),则=)2(f ____________,=)(n f ____________.(1≥n ,n 是自然数) (二)选做题(13—15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)设曲线C 的参数方程为θθθ(,sin 41c os 4⎩⎨⎧+=+=y a x 是参数,0>a ),若曲线C 与直线0543=-+y x 只有一个交点,则实数a 的值是____________.14.(不等式选讲选做题)设函数2)(--=a x x f ,若不等式)(x f <1的解)4,2()0,2( -∈x ,则实数a =____________.15.(几何证明选讲选做题)如右图,已知PB 是⊙O 的 切线,A 是切点,D 是弧AC 上一点,若︒=∠70BAC , 则_______=∠ADC .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O 处后发现,在南偏西20、5海里外的洋面M 处有一条海盗船,它正以每小时20海里的速度向南偏东40的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出)40sin(+θ的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)NM17.(本小题满分12分)某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润,事件A 为“购买该商品的3位顾客中,至少有1位采用1期付款”. (Ⅰ)求事件A 的概率()P A ; (Ⅱ)求η的分布列及期望E η.18.(本小题满分13分)如图,已知直四棱柱ABCD-1111D C B A 的底面是边长为2、Q1A 1CA∠ADC=120的菱形,Q 是侧棱1DD (1DD >22)延长线上的一点,过点Q 、1A 、1C 作菱形截面Q 1A P 1C 交侧棱1BB 于点P .设截面Q 1A P 1C 的面积为1S ,四面体P C A B 111-的三侧面111C A B ∆、11PC B ∆、P A B 11∆面积的和为2S ,21S S S -=. (Ⅰ)证明:QP AC ⊥;(Ⅱ) 当S 取得最小值时,求cos ∠11QC A 的值.19.(本小题满分14分)在直角坐标平面内,定点 )0,1(-F 、)0,1('F ,动点M,满足条件22||||'=+MF MF .(Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)过点F 的直线交曲线C 交于A,B 两点,求以AB 为直径的圆的方程,并判定这个圆与直线2-=x 的位置关系.20.(本小题满分14分)已知数列}{n a 的前n 项和 ,3,2,1,4232=+⋅-=n a S n n n . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设n T 为数列}4{-n S 的前n 项和,求⋅n T21.(本小题满分14分)理科函数()326f x x x =-的定义域为[]2,t -,设()()2,f m f t n -==,)(x f '是)(x f 的导数.(Ⅰ)求证:n m ≥ ;(Ⅱ)确定t 的范围使函数()f x 在[]2,t -上是单调函数; (Ⅲ)求证:对于任意的2t >-,总存在()02,x t ∈-,满足()'02n m f x t -=+;并确定这样的0x 的个数.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。

2011年高考数学文科试卷(全国1卷)(含答案)(新课标卷卷)

2011年高考数学文科试卷(全国1卷)(含答案)(新课标卷卷)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试..题卷上作答无效........ 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A. (6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =. (7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D =(A ) 2 (B(C (D )1【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴A C⊥平面βA C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力. 【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N∆中,30OMN ︒∠=, ∴12O N O M ==故圆N的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

福建2011数学高考真题

福建2011数学高考真题

福建2011数学高考真题在2011年的福建数学高考中,共有100道选择题和两道解答题。

以下是部分选择题的解题过程和答案。

1. 若α和β是方程x^2 - 2x - 1 = 0的两个根,那么α^2 + β^2的值是多少?解:首先,我们知道根据韦达定理,两个根的和等于-(-2) = 2,两个根的乘积等于1。

所以α^2 + β^2 = (α + β)^2 - 2αβ = 2^2 - 2×1 = 4 - 2 = 2。

2. 若a和b是方程x^2 + 3x + 2 = 0的两个根,那么a^2 + b^2的值是多少?解:同样地,根据韦达定理,两个根的和等于-3,两个根的乘积等于2。

所以a^2 + b^2 = (a + b)^2 - 2ab = (-3)^2 - 2×2 = 9 - 4 = 5。

3. 若a、b、c、d是等差数列的四个连续项,且ab = 3, bc = 5, cd = 7,则这个等差数列的首项是多少?解:由题意可知,差为2,设首项为x,所以a = x,b = x + 2,c =x + 4,d = x + 6。

将ab = 3, bc = 5, cd = 7代入得:x(x + 2) = 3,(x +2)(x + 4) = 5,(x + 4)(x + 6) = 7。

解得x = -1,所以首项为-1。

4. 若把平行四边形的对角线等分,会得到什么图形?解:如果平行四边形的对角线等分,会得到一个由四个三角形组成的菱形。

5. 若已知a^2 + b^2 = 34,c^2 + d^2 = 34,a + b = c + d = 3,则a和b的乘积是多少?解:根据已知条件,a^2 + b^2 = c^2 + d^2 = 34,且a + b = c + d = 3。

则a^2 + 2ab + b^2 = c^2 + 2cd + d^2,化简得ab = cd,所以a和b的乘积是34。

以上是部分2011年福建数学高考的选择题解答,希望对您有帮助。

完整版福建省高考数学试卷文科及解析

完整版福建省高考数学试卷文科及解析

2011 年福建省高考数学试卷(文科)一、选择题(共12 小题,每题 5 分,满分60 分)1、( 2011?福建)若会集M={ ﹣1, 0, 1}, N={0,1, 2},则 M∩N等于()A、 {0, 1}B、 {﹣ 1, 0, 1}C、 {0, 1, 2}D、 {﹣ 1, 0, 1,2}考点:交集及其运算。

专题:计算题。

解析:依照会集M 和 N,由交集的定义可知找出两会集的公共元素,即可获得两会集的交集.解答:解:由会集M={ ﹣ 1, 0, 1}, N={0, 1, 2},获得 M∩N={0 ,1}.应选 A谈论:此题观察了交集的运算,要修业生理解交集即为两会集的公共元素,是一道基础题.2、( 2011?福建) i 是虚数单位1+i 3等于()A、 iB、﹣ iC、 1+iD、 1﹣ i 考点:虚数单位 i 及其性质。

专题:计算题。

解析:由复数单位的定义,我们易得i 2=﹣ 1,代入即可获得1+i3的值.解答:解:∵ i 是虚数单位∴i 2=﹣ 11+i 3=1﹣ i应选 D谈论:此题观察的知识点是虚数单位i 及其性质,属简单题,此中娴熟掌握虚数单位i 的性质 i 2=﹣ 1 是解答本类问题的要点.3、( 2011?福建)若 a∈R,则“ a=1是”“ |a|=1 的”()A、充分而不用要条件B、必需而不充分条件C、充要条件D、既不充分又不用要条件考点:必需条件、充分条件与充要条件的判断;充要条件。

解析:先判断“a=1?”“|a|=1 的”真假,再判断“|a|=1 ”,时“a=1的”真假,从而联合充要条件的定义即可获得答案.解答:解:当“a=1时”,“|a|=1 成”立即“a=1?”“|a|=1 为”真命题但“|a|=1 时”,“a=1不”必定成立即“|a|=1 时”,“a=1为”假命题故“a=1是”“|a|=1 的”充分不用要条件应选 A谈论:此题观察的知识点是充要条件,此中依照绝对值的定义,判断“a=1?”“|a|=1 与”“|a|=1 ”时,“a=1的”真假,是解答此题的要点.4、( 2011?福建)某校选修乒乓球课程的学生中,高一年级有30 名,高二年级有40 名.现用分层抽样的方法在这 70名学生中抽取一个样本,已知在高一年级的学生中抽取了 6 名,则在高二年级的学生中应抽取的人数为()A、 6B、 8C、 10D、 12考点:分层抽样方法。

2011年全国统一高考数学试卷(文科)(新课标)(含解析版)

2011年全国统一高考数学试卷(文科)(新课标)(含解析版)

22.( 10 分)如图, D,E 分别为△ ABC的边 AB,AC 上的点,且不与△ ABC 的顶点重合.已知 AE
第 3 页(共 15 页)
的长为 m, AC的长为 n, AD, AB的长是关于 x 的方程 x2﹣ 14x+mn=0 的两个根. (Ⅰ)证明: C,B,D,E 四点共圆; (Ⅱ)若∠ A=90°,且 m=4, n=6,求 C, B, D, E 所在圆的半径.
A.120
B.720
C.1440
D.5040
6.(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可
能性相同,则这两位同学参加同一个兴趣小组的概率为(

A.
B.
C.
D.
7.(5 分)已知角 θ的顶点与原点重合, 始边与 x 轴的正半轴重合, 终边在直线 y=2x上,则 cos2 θ= ()
【考点】 K4:椭圆的性质. 【专题】 11:计算题. 【分析】 根据椭圆的方程,可得 a、b 的值,结合椭圆的性质,可得 c 的值,有椭圆的离心率公式,
计算可得答案.
【解答】 解:根据椭圆的方程
=1,可得 a=4,b=2 ,
则 c=
=2 ;
第 5 页(共 15 页)
则椭圆的离心率为 e= = , 故选: D. 【点评】 本题考查椭圆的基本性质: a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质
A.18
B.24
C. 36
D. 48
10.( 5 分)在下列区间中,函数 f(x)=ex+4x﹣3 的零点所在的区间为(

A.( , )
B.(﹣ ,0)
C.(0, )

2011年福建高考数学文科试卷(带答案)

2011年福建高考数学文科试卷(带答案)

2011年普通高等学校招生全国统一考试(福建卷)文科数学第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个项是符合题目要求的.1.若集合{}1,0,1M =-,{}0,1,2N =,则M N ∩等于 ( ). A .{}0,1 B .{}1,0,1- C .{}0,1,2 D .{}1,0,1,2- 【测量目标】集合的交集.【考查方式】直接给出集合,用列举法求集合交集. 【参考答案】A【试题解析】{}0,1M N =∩.故选A2.i 是虚数单位31i +等于 ( ). A .i B .i - C .1i + D .1i - 【测量目标】复数代数形式的四则运算. 【考查方式】对给出的复数进行化简. 【参考答案】D【试题解析】31i 1i +=-.故选D3.若a ∈R ,则“1a =”是“1a =”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 【测量目标】充分、必要条件.【考查方式】给出两个命题,判断两个命题的关系. 【参考答案】A【试题解析】当1a =时,有1a =.所以“1a =”是“1a =”的充分条件,(步骤1) 反之,当1a =时,1a =±,所以“1a =”不是“1a =”的必要条件.(步骤2) 故选A .4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 ( ) A .6 B .8 C .10 D .12【测量目标】分层抽样【考查方式】给出总体容量,要求用分层抽样的方法,求出样本容量数 【参考答案】B 【试题解析】640830⨯=.故选B . 5.阅读右图所示的程序框图,运行相应的程序,输出的结果是 ( ). A .3B .11C .38D .123 【测量目标】循环结构程序框图【考查方式】给定程序框图,通过推理判断得出输出的结果. 【参考答案】B【试题解析】运行相应的程序是第一步:212310a =+=<,(步骤1) 第二步:2321110a =+=>,输出11.(步骤2)故选B (第5题图) 6.若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是( ).A .()1,1-B .()2,2-C .()(),22,-∞-+∞∪D .()(),11,-∞-+∞∪ 【测量目标】一元二次方程的根与系数关系【考查方式】给出一元二次方程,利用根与系数关系,求未知系数. 【参考答案】C【试题解析】因为关于x 的方程210x mx ++=有两个不相等的实数根,则2Δ40m =->,(步骤一)解得2m <-或2m >.(步骤二) 故选C. 7.(同理 4)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE △内部的概率等于( ). A .14 B .13 C .12 D .23【测量目标】几何概型 (第7题图)【考查方式】给出图形,利用几何概型求事件的概率. 【参考答案】C【试题解析】因为12ABE ABCD S S =△,则点Q 取自ABE △内部的概率12ABE ABCD S P S ==△,故选C .8.已知函数()2,01,0x x f x x x >⎧=⎨+⎩…,()()10f a f +=,则实数a 的值等于 ( ).A .3-B .1-C .1D .3 【测量目标】分段函数的性质【考查方式】给出分段函数关系式,求满足条件的未知数的值. 【参考答案】A【试题解析】因为()120f =>,则由()()10f a f +=得()2f a =-, 于是12a +=-,3a =-.故选A . 9.若π0,2α⎛⎫∈ ⎪⎝⎭,且21sin cos 24αα+=,则tan α的值等于 ( ). A .2 B.3CD【测量目标】三角函数恒等式变换【考查方式】给出确定取值范围的未知角正弦、余弦关系式,求角的正切值. 【参考答案】D【试题解析】由21sin cos 24αα+=得221sin 12sin 4αα+-=,(步骤1) 所以211sin 4α-=,即21cos 4α=,1cos 2α=±,(步骤2)因为π0,2α⎛⎫∈ ⎪⎝⎭,所以1cos 2α≠-,(步骤3) 于是1cos 2α=,π3α=,所以πtan tan 3α==.(步骤4) 故选D .10.若0,0a b >>,且函数()32422f x x ax bx =--+在1x =处有极值,则ab 的最大值 等于 ( ).A .2B .3C .6D .9 【测量目标】导数的几何意义,导数在不等式计算中的应用.【考查方式】给出含有未知参量的函数关系式,通过给出的已知极值点,求未知参量. 【参考答案】D【试题解析】()21222f x x ax b '=--,(步骤1)因为()f x 在1x =处有极值,则()112220f a b '=--=,于是6a b +=,(步骤2)因为0,0a b >>,292a b ab +⎛⎫= ⎪⎝⎭…,当且仅当3a b ==时,等号成立.(步骤3) 此时()()()()2212666216121f x x x x x x x '=--=--=-+,因此1x =是一个极值点.所以ab 的最大值等于9.(步骤4) 故选D .11.(同理7)设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2PF F F PF =,则曲线Γ的离心率等于 ( ). A .12或32 B .23或2 C .12或2 D .23或32【测量目标】圆锥曲线的性质【考查方式】通过给出圆锥曲线上的点与两个交点之间的线段长度比例关系,求圆锥曲线的离心率.【参考答案】A【试题解析】因为1122::4:3:2P F F F P F =,所以设14PF λ=,123F F λ=,22PF λ=.(步骤1) 若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==.(步骤2)若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A .(步骤3)12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论:① []20111∈; ② []33-∈③ [][][][][]01234=Z ∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”.其中,正确结论的个数为 ( ). A .1 B .2 C .3 D .4 【测量目标】集合的性质,常用逻辑关系用语【考查方式】用描述法给出集合,判断元素与集合之间的关系是否成立. 【参考答案】C【试题解析】[]2011540211=⨯+∈,所以①正确;(步骤1)()[]35123-=⨯-+∉,所以②不正确;(步骤2) [][][][][]01234=Z ∪∪∪∪, ③正确;(步骤3) 若整数,a b 属于同一“类”,则5a m k =+,5b n k =+,0,1,2,3,4k =, 则()[]500a b m n -=-+∈,所以④正确.(步骤4)由以上,①,③,④正确,故选C .第II 卷(非选择题 共90分)注意事项:用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若向量()1,1=a ,()1,2=-b ,则⋅a b 等于_____________. 【测量目标】平面向量数量积运算. 【考查方式】给出两个向量,求它们的乘积. 【参考答案】1【试题解析】()()()1,11,211121⋅=-=⨯-+⨯= a b .14.若ABC △的面积为3,2BC =,60C ∠=︒,则边AB 的长度等于___________. 【测量目标】三角形的边角关系【考查方式】给出三角形的面积大小及一边长、一个角的大小,通过三角形的边角关系求一条未知边的长.【参考答案】2【试题解析】11sin 22222ABC S CA CB C CA =⋅=⨯⨯==△2CA =,(步骤1)又2BC =,60C ∠=︒,所以ABC △是等边三角形,于是2AB =.(步骤2)15.如图,正方体1111ABCD A BC D -中,2AB =,点E 为AD 的中点,点F 在CD 上,若//EF 平面1ABC ,则线段EF 的长度等于_____________. 【测量目标】立体几何空间线线、线面的位置关系及平行判定 【考查方式】给出正方体棱长及线面关系,求线段长度.(第15题图)【试题解析】因为//EF 平面1ABC ,EF ⊂平面ABCD ,且平面1ABC 与平面ABCD 的交线为AC ,所以//EF AC ,(步骤1)又点E 为AD 的中点,所以EF 为ΔDAC 的中位线,所以12EF AC =,(步骤2)因为2AB =,ABCD 为正方形,所以AC =EF =(步骤3)16.商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a ,最高销售限价b (b a >)以及常数x (01x <<)确定实际销售价格()c a x b a =+-,这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得()c a -是()b c -和()b a -的等比中项,据此可得,最佳乐观系数x 的值等于___________. 【测量目标】等比数列的性质.【考查方式】给出关于等比数列知识的实际问题,利用等比数列相关关系解决实际问题.【试题解析】由()c a x b a =+-得c ax b a-=-,(步骤1) 设c a m -=,b a n -=,b c p -=.则p n m =-.(步骤2) 由题设,2m np =,则()2m np n n m ==-,c a mx b a n-==-, 即220m mn n +-=,2210m mn n+-=,(步骤3)于是210x x +-=,12x -=,因为01x <<,所以12x =.(步骤4) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或验算步骤. 17.(本小题满分12分)已知等差数列{}n a 中,11a =,33a =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n a 的前k 项和35k S =-,求k 的值. 【测量目标】等差数列的性质及通项、前n 项和公式.【考查方式】通过给出等差数列两项的值,利用等差数列的性质及公式求通项公式. 【试题解析】(Ⅰ)设等差数列{}n a 的公差d ,则()11n a a n d =+-,(步骤1)由题设,313212a a d d =-=+=+,所以2d =-. ()()11232n a n n =+-⨯-=-.(步骤2) (Ⅱ)因为()()()113223522k k k a a k k S k k ++-===-=-,(步骤3) 所以22350k k --=,解得7k =或5k =-.因为k +∈N ,所以7k =.(步骤4)18.(本小题满分12分)如图,直线:l y x b =+与抛物线2:4C x y =相切于点A .第18题图(Ⅰ)求实数b 的值;(Ⅱ)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程. 【测量目标】抛物线的性质,直线与圆的位置关系【考查方式】给出抛物线方程和含未知量的直线方程,利用直线与抛物线的位置关系,求未知量的值及圆的方程.【试题解析】(Ⅰ)解法1.由24,,x y y x b ⎧=⎨=+⎩得2440x x b --=,(步骤1)因为直线:l y x b =+与抛物线2:4C x y =相切,所以()()2Δ4440b =--⨯-=,解得1b =-.(步骤2)解法2.设切点()00,A x y ,由214y x =得12y x '=,(步骤3) 所以切线l 在点A 处的斜率为012k x =,因为切线l 的斜率为1,则0112k x ==,02x =,(步骤4) 又A 在抛物线上,所以2200112144y x ==⨯=,于是A 的坐标为()2,1A ,(步骤5) 因为A 在直线l 上,所以12b =+,1b =-.(步骤6)(Ⅱ)由(Ⅰ),1b =-,则由24,1,x y y x ⎧=⎨=-⎩解得2,1x y ==,于是A 的坐标为()2,1A ,(步骤7)设以点A 为圆心的圆A 的方程为()()22221x y r -+-=,(步骤8)抛物线2:4C x y =的准线为1y =-,而圆A 与抛物线C 的准线相切.则()112r =--=,(步骤9) 所以圆A 的方程为()()22214x y -+-=.(步骤10)19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(Ⅰ)若所抽取的件日用品中,等级系数为的恰有件,等级系数为5的恰有2件,求,,a b c 的值;(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为123,,x x x ,等级系数为5的2件日用品记为12,y y ,现从这5件日用品12312,,,,x x x y y 中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.【测量目标】简单随机抽样,古典概型【考查方式】利用抽样方法及事件发生的概率,求未知事件的概率.【试题解析】(Ⅰ)由频率分布表得 0.20.451a b c ++++=,即0.35a b c ++=.(步骤1)因为所抽取的20件日用品中,等级系数为4的恰有4件,所以30.1520b ==,(步骤2) 又因为所抽取的20件日用品中,等级系数为5的恰有2件,所以20.120c ==,(步骤3) 于是0.350.150.10.1a =--=. 所以0.1a =,0.15b =,0.1c =.(步骤4)(Ⅱ)从5件日用品12312,,,,x x x y y 中任取两件,所有可能的结果为:{}{}{}{}{}1213111223,,,,,,,,,x x x x x y x y x x ,{}{}{}{}{}2122313212,,,,,,,,,x y x y x y x y y y .所以所有可能的结果共10个.(步骤5)设事件A 表示“从这5件日用品12312,,,,x x x y y 中任取两件,等级系数恰好相等”则A 包含的事件为{}{}{}121323,,,,,x x x x x x ,{}12,y y 共4个,(步骤6)所以所求的概率为()40.410P A ==.(步骤7)20.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,点E 在线段AD 上,且//CE AB .(第20题图)(Ⅰ)求证:CE ⊥平面P AD ;(Ⅱ)若1PA AB ==,3AD =,CD =45CDA ∠=︒,求四棱锥P ABCD -的体积.【测量目标】立体几何中线线、线面垂直判定,四棱锥的体积.【考查方式】给定四棱锥的棱长之间的关系和长度以及线面关系,求线面关系和立方体体积. 【试题解析】因为PA ⊥底面ABCD ,CE ⊂平面ABCD ,所以PA CE ⊥.(步骤1)因为AB AD ⊥,//CE AB ,所以CE AD ⊥.又PA AD A =∩,所以CE ⊥平面P AD .(步骤2) (Ⅱ)由(Ⅰ),CE AD ⊥,在Rt ECD △中,sin sin 451CE CD CDA =⋅∠⋅︒=,cos 451DE CD =⋅︒=,(步骤3)又因为1AB =,则AB CE =,又//CE AB ,AB AD ⊥, 所以四边形ABCE 为矩形.四边形ABCD 为梯形.(步骤4) 因为3AD =,所以2AE AD ED =-=,(步骤5)()()115231222ABCD S BC AD AB =+⋅=⨯+⨯=,(步骤6) 115513326P ABCD ABCD V S PA -=⋅=⨯⨯=.于是四棱锥P ABCD -的体积为56.(步骤7)21.(本小题满分12分)设函数()cos f=+θθθ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点(),P x y ,且0πθ剟.(Ⅰ)若点P的坐标为1,22⎛ ⎝⎭,求()f θ的值;(Ⅱ)若点(),P x y 为平面区域1,:1,1.x y Ωx y +⎧⎪⎨⎪⎩………,上的一个动点,试确定角θ的取值范围,并求函数()f θ的最小值和最大值.【测量目标】两角和的正弦,三角函数的定义域、最值,极坐标方程的变换,线性规划的实际应用.【考查方式】转化极坐标与直角坐标,求函数值;给出变量约束条件,求目标函数在约束条件内的最值.【试题解析】(Ⅰ)因为P的坐标为12⎛ ⎝⎭,则1cos ,2sin θθ⎧=⎪⎪⎨⎪=⎪⎩1) ()1cos 222f =+=+=θθθ.(步骤2)(Ⅱ)作出平面区域1,:1,1.x y Ωx y +⎧⎪⎨⎪⎩………,则Ω为图中的ΔABC 的区域,(步骤3)(第21题Ⅱ图)其中()1,0A ,()1,1B ,()0,1C .因为P Ω∈, 所以π02θ剟.(步骤4) ()πcos 2sin 6f θθθθ⎛⎫=+=+ ⎪⎝⎭,则ππ2π663θ+剟,(步骤5) 所以1πsin 126θ⎛⎫+ ⎪⎝⎭剟,()12f θ剟.(步骤6) 所以当ππ62θ+=,即π3θ=时,()f θ取得最大值,且最大值为2; 当ππ66θ+=,即0θ=时,()f θ取得最小值,且最小值为1.(步骤7)22.(本小题满分14分)已知,a b 为常数,且0a ≠,函数()ln f x ax b ax x =-++,()e 2f =(e=2.71828 是自然对数的底数). (Ⅰ)求实数b 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)当1a =时,是否同时存在实数m 和M (m M <),使得对每一个[],t m M ∈,直线y t =与曲线()y f x =1,e e x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.【测量目标】对数函数的图象与性质,利用导数判断函数的单调区间,利用导数求函数的最值.【考查方式】考查函数的单调区间,数形结合思想的应用.【试题解析】(Ⅰ)由()e e elne 2f a b a =-++=,得2b =;(步骤1)(Ⅱ)由(Ⅰ),()2ln f x ax ax x =-++.定义域为()0,+∞.从而()ln f x a x '=,(步骤2) 因为0a ≠,所以(1) 当0a >时,由()ln 0f x a x '=>得1x >,由()l n 0f x a x '=<得01x <<;(步骤3)(2) 当0a <时,由()ln 0f x a x '=>得01x <<,由()l n 0f x a x '=<得1x >;(步骤4)因而, 当0a >时,()f x 的单调增区间为()1,+∞,单调减区间为()0,1, 当0a <时,()f x 的单调增区间为()0,1,单调减区间为()1,+∞.(步骤5) (Ⅲ)当1a =时,()2ln f x x x x =-++.()ln f x x '=.(步骤6) 令()0f x '=,则1x =.(步骤7)当x 在区间1,e e ⎡⎤⎢⎥⎣⎦内变化时,()f x ',()f x 的变化情况如下表:(步骤8)因为222e -<,所以()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦内值域为[]1,2.(步骤9) 由此可得, 若1,2m M =⎧⎨=⎩,则对每一个[],t m M ∈,直线y t =与曲线()y f x =1,e e x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭都有公共点,并且对每一个()(),,t m M ∈-∞+∞∪,直线y t =与曲线()y f x =1,e ex ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭都没有公共点.(步骤10)综合以上,当1a =时,存在实数1m =和2M =,使得对每一个[],t m M ∈,直线y t =与曲线()y f x =1,e e x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭都有公共点.(步骤11)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年福建省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1、(2011•福建)若集合M={﹣1,0,1},N={0,1,2},则M∩N等于()A、{0,1}B、{﹣1,0,1}C、{0,1,2}D、{﹣1,0,1,2}考点:交集及其运算。

专题:计算题。

分析:根据集合M和N,由交集的定义可知找出两集合的公共元素,即可得到两集合的交集.解答:解:由集合M={﹣1,0,1},N={0,1,2},得到M∩N={0,1}.故选A点评:此题考查了交集的运算,要求学生理解交集即为两集合的公共元素,是一道基础题.2、(2011•福建)i是虚数单位1+i3等于()A、iB、﹣iC、1+iD、1﹣i考点:虚数单位i及其性质。

专题:计算题。

分析:由复数单位的定义,我们易得i2=﹣1,代入即可得到1+i3的值.解答:解:∵i是虚数单位∴i2=﹣11+i3=1﹣i故选D点评:本题考查的知识点是虚数单位i及其性质,属简单题,其中熟练掌握虚数单位i的性质i2=﹣1是解答本类问题的关键.3、(2011•福建)若a∈R,则“a=1”是“|a|=1”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断;充要条件。

分析:先判断“a=1”⇒“|a|=1”的真假,再判断“|a|=1”时,“a=1”的真假,进而结合充要条件的定义即可得到答案.解答:解:当“a=1”时,“|a|=1”成立即“a=1”⇒“|a|=1”为真命题但“|a|=1”时,“a=1”不一定成立即“|a|=1”时,“a=1”为假命题故“a=1”是“|a|=1”的充分不必要条件故选A点评:本题考查的知识点是充要条件,其中根据绝对值的定义,判断“a=1”⇒“|a|=1”与“|a|=1”时,“a=1”的真假,是解答本题的关键.4、(2011•福建)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A、6B、8C、10D、12考点:分层抽样方法。

专题:计算题。

分析:根据高一年级的总人数和抽取的人数,做出每个个体被抽到的概率,利用这个概率乘以高二的学生数,得到高二要抽取的人数.解答:解:∵高一年级有30名,在高一年级的学生中抽取了6名,∴每个个体被抽到的概率是=∵高二年级有40名,∴要抽取40×=8,故选B.点评:本题考查分层抽样,在分层抽样过程中每个个体被抽到的概率相等,这是解题的依据,本题是一个基础题.5、(2011•福建)阅读如图所示的程序框图,运行相应的程序,输出的结果是()A、3B、11C、38D、123考点:程序框图。

专题:图表型。

分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解答:解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.6、(2011•福建)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是()A、(﹣1,1)B、(﹣2,2)C、(﹣∞,﹣2)∪(2,+∞)D、(﹣∞,﹣1)∪(1,+∞)考点:一元二次方程的根的分布与系数的关系。

专题:计算题。

分析:利用题中条件:“关于x的方程x2+mx+1=0有两个不相等的实数根”由韦达定理的出m 的关系式,解不等式即可.解答:解:∵关于x的方程x2+mx+1=0有两个不相等的实数根,∴△>0,即:m2﹣4>0,解得:m∈(﹣∞,﹣2)∪(2,+∞).故选C.点评:本题考查一元二次方程的根的判别式与根的关系,属于基本运算的考查.7、(2011•福建)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()A、B、C、D、考点:几何概型。

专题:常规题型。

分析:利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.解答:解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.点评:本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.8、(2011•福建)已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()A、﹣3B、﹣1C、1D、3考点:指数函数综合题。

专题:计算题。

分析:由分段函数f(x)=,我们易求出f(1)的值,进而将式子f(a)+f(1)=0转化为一个关于a的方程,结合指数的函数的值域,及分段函数的解析式,解方程即可得到实数a的值.解答:解:∵f(x)=∴f(1)=2若f(a)+f(1)=0∴f(a)=﹣2∵2x>0∴x+1=﹣2解得x=﹣3故选A点评:本题考查的知识点是分段函数的函数值,及指数函数的综合应用,其中根据分段函数及指数函数的性质,构造关于a的方程是解答本题的关键.9、(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A、B、C、D、考点:同角三角函数间的基本关系;二倍角的余弦。

专题:计算题。

分析:把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解答:解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10、(2011•福建)若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab 的最大值等于()A、2B、3C、6D、9考点:函数在某点取得极值的条件;基本不等式。

专题:计算题。

分析:求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等.解答:解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等.11、(2011•福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于()A、B、或2 C、 2 D、考点:圆锥曲线的共同特征。

专题:计算题。

分析:根据题意可设出|PF1|,|F1F2|和|PF2|,然后分曲线为椭圆和双曲线两种情况,分别利用定义表示出a和c,则离心率可得.解答:解:依题意设|PF1|=4t,|F1F2|=3t,|PF2|=2t,若曲线为椭圆则2a=|PF1|+|PF2|=6t,c=t则e==,若曲线为双曲线则,2a=4t﹣2t=2t,a=t,c=t∴e==故选A点评:本题主要考查了圆锥曲线的共同特征.关键是利用圆锥曲线的定义来解决.12、(2011•福建)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②﹣3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一“类”的充要条件是“a﹣b∈[0]”.其中,正确结论的个数是()A、1B、2C、3D、4考点:同余的性质(选修3)。

专题:综合题。

分析:根据题中“类”的理解,在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,对于各个结论进行分析:①∵2011÷5=402…1;②∵﹣3÷5=0…2,③整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4];④从正反两个方面考虑即可.解答:解:①∵2011÷5=402…1,∴2011∈[1],故①对;②∵﹣3÷5=0…2,∴对﹣3∉[3];故②错;③∵整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③对;④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a﹣b被5除的余数为0,反之也成立,故“整数a,b属于同一“类”的充要条件是“a﹣b∈[0]”.故④对.∴正确结论的个数是3.故选C.点评:本题主要考查了选修3同余的性质,具有一定的创新,关键是对题中“类”的题解,属于创新题.二、填空题(共4小题,每小题4分,满分16分)13、(2011•福建)若向量=(1,1),(﹣1,2),则等于1.考点:平面向量数量积的运算。

专题:计算题。

分析:根据平面向量数量积的坐标运算公式,把=(1,1),(﹣1,2),代入即可求得结果.解答:解:∵=(1,1),(﹣1,2),∴=1×(﹣1)+1×2=1,故答案为:1.点评:此题是个基础题.考查学生对公式掌握的熟练程度.14、(2011•福建)若△ABC的面积为,BC=2,C=60°,则边AB的长度等于2.考点:解三角形。

专题:计算题。

分析:根据三角形的面积公式表示出三角形ABC的面积,让其等于列出关于AC的方程,求出方程的解即可得到AC的值,然后根据有一个角为60°的等腰三角形为等边三角形,得到△ABC,即可得到三角形的三边相等,即可得到边AB的长度.解答:解:根据三角形的面积公式得:S=BC•ACsinC=×2ACsin60°=AC=,解得AC=2,又BC=2,且C=60°,所以△ABC为等边三角形,则边AB的长度等于2.故答案为:2点评:此题考查学生灵活运用三角形的面积公式化简求值,掌握等边三角形的的判别方法,是一道基础题.15、(2011•福建)如图,正方体ABCD﹣A1B1C1D1中,AB=2.,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.考点:直线与平面平行的性质。

专题:计算题;综合题。

分析:根据已知EF∥平面AB1C和线面平行的性质定理,证明EF∥AC,又点E为AD的中点,点F在CD上,以及三角形中位线定理可知点F是CD的中点,从而求得线段EF的长度.解答:解:∵EF∥平面AB1C,EF⊆平面AC,平面AB1C∩平面AC=AC,∴EF∥AC,又点E为AD的中点,点F在CD上,∴点F是CD的中点,∴EF=.故答案为.点评:此题是个基础题.考查线面平行的性质定理,同时考查学生对基础知识的记忆、理解和熟练应用的能力.16、(2011•福建)商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于.考点:数列的应用。

相关文档
最新文档