基于LBP的人脸识别算法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于LBP的人脸识别算法研究
一、应用背景
随着社会的发展以及技术的进步,人们对快速、高效的自动身份验证的要求日益迫切,生物识别技术在科研领域得到了极大的重视和发展。在人与人的接触中,人脸所包含的视觉信息占据了重要地位,它无疑是区分人与人之间差异的最重要特征之一。相对于指纹、虹膜、掌纹、步态、笔迹、声纹等生物特征,利用人脸来识别具有不可比拟的优势:操作隐蔽,特别适用于安全、监控、和抓逃工作;非接触式采集,无侵犯性,容易接受;方便、快捷、强大的实时追踪能力;符合人类识别习惯,交互性强;应用摄像头即可完成图像采集,设备成本较低。人脸识别属于计算机科研领域的一项热门技术,它是一种基于生物特征的识别技术,利用计算机从图像或图像序列中检测出人脸,并判断其身份。
人脸识别目前主要运用在如下三个方面:
第一,刑侦破案方面。例如,公安部门获得案犯的照片之后,可以利用人脸识别技术在存储罪犯照片的数据库中找出最相像的人,即嫌疑犯。
第二,证件验证方面。如身份证、驾驶执照以及其他很多证件上都有照片,现在这些证件多是人工验证的,如果应用人脸识别技术,这项任务就可以交给机器去完成,从而实现自动化智能管理。
第三,人口控制方面。此应用范围很广,例如可以设在楼宇单位或者私人住宅入口的安全检查,也可以是计算机系统或者情报系统等的入口检查。
世界上很多国家都在积极地开展对人脸识别技术的相关研究,不同的研究机构或研究人员按照不同的划分标准,对人脸识别的研究内容的分类不尽相同。在此处按其所研究得具体技术的范围可以大致将人脸识别分为如下四个方面的内容来进行阐述:
(1)人脸检测,主要的方法有:基于轮廓(或肤色等)信息人脸检测方法,基于Adaboost 算法人脸检测方法,基于支持向量机(SVM)人脸检测方法以及基于神经网络的人脸检测方法等;
(2)人脸特征描述与提取即特征提取,主要方法:基于局部二值模式纹理特征提取方法,基于人脸几何特征的特征提取方法,还有基于主成分特征(PCA)特征提取方法,基于独立元特征的特征提取算法,如Gabor等,还有2D 和3D 形变模型方法等;
(3)人脸特征降维,主要方法:线性降维方法如主成分分析PCA和LDA (Linear Discriminate Analysis) 等发展到非线性降维方法如局部线性嵌入(LLE) 、等距嵌入
(ISOMAP)、拉普拉斯特征映射(LE)、局部切空间调整(LTSA)、基于黎曼法坐标的快速流形学习(FMLBRNC)等;
(4)人脸属性特征分类与人脸识别,主要的技术方法包括:最近邻和K 近邻分类,线性判别方法(LDA),核线性判别方法(K-LDA),支持向量机方法(SVM),人工神经网络法(ANN),隐马尔可夫模型方法(HMM)等;
人脸识别算法的选择深受人脸识别系统具体应用的环境的影响,同时不同的应用场景对人脸识别系统也有着不同的要求,因此不可能存在通用的人脸识别算法,而是需要综合所有的情况选择最适合的人脸识别算法。
二、理论依据
2.1 基于几何特征的人脸识别方法
基于几何特征的人脸识别方法是最早出现的人脸识别方法之一,主要是利用人脸的五官的形状以及器官间的几何位置的关系,如嘴巴、鼻子、眼睛等人脸器官的局部形状特征以及其几何位置关系特征进行识别。几何特征的人脸识别方法主要是采用人脸器官的结构的先验知识来提取以器官形状以及器官间的空间位置关系为基础的特征,构成人脸特征向量,此类方法的实质就是提取出的几何特征向量间的匹配。基于几何特征的人脸识别方法原理比较简单,只是用到人脸器官的形状特征和器官间几何特征,算法思想也容易理解,但是识别效果不理想同时鲁棒性也较差。原因有二:第一,只是简单的采用人脸器官的形状特征和器官间几何特征,人脸图像中保留的信息量过少,根本就不利于后期的人脸识别工作的展开;第二,由于人脸容易受环境因素的影响如光照、物体遮挡、姿态等,大部分情况下是很难进行五官特征的精确分割和提取工作。
2.2 基于统计特征的人脸识别方法
由于人脸图像容易受到环境因素的影响如光照、障碍物遮挡、姿态变化和表情变化等,另外人脸图像中富含丰富的特征信息,如采用像基于几何特征的方法很难去准确的描述人脸图像信息。而近年来比较流行的基于统计特征的人脸识别方法,可以得到不错的识别效果。基于统计特征的人脸识别方法通常是采用某种映射方法将原图像空间中的像素点映射到另一个投影空间中去,而原空间向量称之为空间域向量,被映射到的投影子空间的那个向量被称之为变换域向量,此方法的目的也显而易见,便是寻找一种两个空间域变换的最优表示,可以把这个经过空间域变换后的优化的那个向量称之为特征图像,经过空间域的变换使得每类样本在变换后的分布更加具有规律可循,当然对于进行人脸识别也更加有利。基于统计特
征的人脸识别的方法具有代表性的有主成分分析方法(PCA)、独立分量分析(ICA)以及线性鉴别分析方法(LDA)。
(1)主成分分析方法(PCA )
主成分分析(简称 PCA)是一种常用的基于变量协方差矩阵对信息进行处理、压缩和抽提的有效方法。我们从数学角度来进行定义解释 PCA 算法:假设给定 N 个点,12X=[,,,] ,each D N i x x x x R ∈,然后将这些高维空间(D 维)里的点被映射到低维空间(d 维)后对应的点为12Y [,,,],each D N i y
y y y R =∈,此处d< 映射到d 维空间。 PCA 算法核心思想是通过寻找一组最优的单位正交子空间,而用来表征此单位正交子空间的单位正交向量则称之为 PCA 的主成分,让原样本空间的向量通过主成分的线性组合转换到此正交空间中来,使得新的样本和原样本之间满足 PCA 模型定义的优化标准,比如最小化重构误差、距离保持和最大化方差保留等,而最常用的优化标准是最小化重构误差。PCA 方法最大的优势就是可以将图像的特征进行降维,降维后进行识别,可以大大的加快人脸识别的速度。 PCA 方法的缺点也很明显,它要求人脸图像都是正面人脸,不这样的话,PCA 算法的人脸识别效果就会大不如人意,这也是该算法的最大不足之处。 (2)独立分量分析(ICA ) 独立主元分析法 (Independent Component Analysis ,ICA)主要应用于信号分离技术中,采用 ICA 方法可以得到信号中的二阶和高阶的统计信息,而对于人脸图像来讲,许多重要局部纹理信息包含在高阶统计信息中,所以 ICA 被尝试着用来描述人脸图像中的高阶局部纹理信息。 独立分量分析计算量比较大且计算复杂,因此该算法实时性不足;同时对于独立分量的选择,由于目前还没有一个较好的算法来对其进行选择,一般都是依据经验来选取,这也一定程度上限制了 ICA 算法在人脸识别领域的应用。 (3)线性鉴别分析方法(LDA ) 基于线性鉴别分析的人脸识别方法的基本思想是寻找一个适当的Fisher 函数,使得原样本空间在该Fisher 函数的方向上的投影后的样本空间达到最优,即在投影后达到使得样本的类间离散度最大和类内离散度最小的目的。 LDA 方法的目标是通过在高维特征空间中去寻找最优的低维特征,所选择最优的低维