土坡稳定性计算实例

合集下载

土坡稳定性分析计算

土坡稳定性分析计算

土坡稳定性分析的目的和意义
土坡稳定性分析是工程地质和岩土工程领域的重要研究内容 ,其目的是预测和评估土坡在各种工况下的稳定性,为工程 设计和施工提供科学依据。
通过土坡稳定性分析,可以确定土坡的临界高度、安全系数 等参数,为土坡设计、加固和防护提供技术支持,同时也有 助于提高工程的安全性和经济性。
02土坡稳定性分析与其他学科领域的交叉 融合,如环境工程、地理信息科学等,拓展其应用领 域和应用范围。
THANKS
感谢观看
土坡稳定性分析计算
• 引言 • 土坡稳定性分析的基本原理 • 土坡稳定性分析的常用方法 • 土坡稳定性分析的步骤与流程 • 工程实例与案例分析 • 结论与展望
01
引言
土坡稳定性问题的重要性
01
土坡是自然和工程地质中常见的 一种现象,其稳定性直接关系到 人民生命财产安全和自然环境的 保护。
02
土坡失稳会导致滑坡、泥石流等 地质灾害,给人类社会和自然环 境带来巨大的损失和破坏。
06
结论与展望
土坡稳定性分析的重要性和应用前景
土坡稳定性分析是岩土工程领域的重要研究内容,对于保障工程安全、防止自然灾 害具有重要意义。
随着城市化进程的加速和基础设施建设的不断推进,土坡稳定性分析的应用前景将 更加广阔,涉及的领域也将更加多样化。
土坡稳定性分析可以为工程设计、施工和监测提供科学依据,提高工程的安全性和 可靠性,降低工程风险。
有限元法
总结词
有限元法是一种基于数值分析方法的土 坡稳定性分析方法,通过将土坡划分为 一系列有限元单元,模拟土坡的应力分 布和变形过程,从而确定土坡的稳定性 。
VS
详细描述
该方法考虑了土坡内部的应力分布和变形 过程,能够模拟复杂的滑裂面形状和分布 ,得到更准确的稳定性分析结果。该方法 适用于各种类型的土坡,包括非均质、不 连续、有节理的土坡。

土质边坡破坏模式与稳定性计算公式

土质边坡破坏模式与稳定性计算公式
土质边坡破坏模式与稳定性计算公式
添加副标题
主讲人: ppt制作与资料汇总: 资料收集:
CONTENTS
目 录
1
WORKREVIEW
添加标题
2
添加标题
UNDERWORK
一、土质边坡的结构类型
土质边坡:泛指具有倾斜面的土体,根据土体结构可分为三类:
类型
结构特征
稳定性影响因素
均质土边坡
整个坡体由均质土构成,基本不含节理、裂隙、没有贯通性的结构面
人为因素:人为因素的影响主要考虑施工步骤对边坡稳定性产生的影响,主要是坡形
四、稳定性影响因素分析
直线滑动面法:
01
松散的砂类土边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土:如下图所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将边坡斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计):
1、内在因素 临空条件:
四、稳定性影响因素分析
①、水对土体有软化作用,会使土体的抗剪强度降低,而且还会对结构面起到润滑作用;
2




②、在土体结构面中会形成一定的地下静水压力,随着时间的推移会促使滑面变形而使土体失稳;
③、会产生冻胀现象。所以水文条件也是影响边坡稳定性的重要因素。
④、增加了土体的重度,也就增加了土体的下滑力;
主要是水的作用,因水湿陷,或对边坡浸泡,水下渗使下垫隔水粘土层泥化等
1.崩塌; 2.张裂: 3.湿陷; 4.高或超高边坡可能出现高速滑坡
三、均质土边坡各种破坏模式
均质土边坡各种破坏模式 根据上表,可以看出土质边坡影响稳定性的因素主要是土体强度和水的作用,而产生的破坏形式以滑坡为多,崩塌和坍塌是开挖边坡过程中常见的(该处应该加上坡高、坡角、坡形的影响)

用理正岩土计算边坡稳定性

用理正岩土计算边坡稳定性

运用《理正岩土边坡稳定性分析》作定量计算(整理人:朱冬林,2012-2-21)1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步!2、为什么要用理正岩土边坡稳定性分析?现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。

这时候,就要辅以定量分析计算来提供证据了。

还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。

我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。

如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。

3、是否好用?很好用。

在保宜项目我一天计算几十个断面,既有效又快。

4、断面图能不能直接从CAD图读入?可以。

只需事先转化为dxf即可(用dxfout命令保存)。

对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。

注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。

5、下面结合实例讲解计算过程,保证学一遍就上手。

以土质边坡计算为例(最常用)进入土质边坡稳定性分析程序“复杂土层土坡稳定计算”,确定(是不是很复杂?放心,纸老虎而已)点选“增”,第一次用就选“系统默认例题”,后面重复计算就可以选“前一个例题”(其它的大家试一下就了解了)以前常听说“搜索滑面”强大功能,马上就可以轻松实现了……读入dxf图(上面是CAD中作好的图,现在要删掉大部分内容,只保留地层线、边界)(对于上图中无足轻重的小夹层,也可以有选择地去掉,以简化断面图)把简化后的剖面图dxfout存为“***大桥SZK45-SZK55.dxf”,(注意,图中除直线段外不能有任何其它图元,而且各个区域必须封闭,否则将来软件就读不了)“是”,读入“***大桥SZK45-SZK55.dxf”右键点击上面窗口中找到左边角点的编号(为边坡计算的坡面角点)或者上图中较低位置的转角点都可,看你对可能剪出范围的理解(很难用文字表述,大家多试两次就明白了),右键菜单窗口里面的几个功能都要试一下,很有用的。

第七章 土坡稳定计算

第七章  土坡稳定计算

第七章 土坡稳定计算
第一节 条分法的基本概念
第 i 条土的作用力
条分法中的力和求解条件
未知量:5n-2个
求解条件(方程):共3n个 Wi 如土条极薄

Xi+1
Q
Ei zi Xi
Ei+1 zi+1 Ni
土条底部合力作用点
未知量减少n个
近似认为作用于土条底部中点
Ti

未知量仍多n-2个
第七章 土坡稳定计算
一、瑞典圆弧滑动法基本概念
如经土条底部中点M等势线与地下水面交于N:
若地下水面平行滑裂面 土条很薄
bi li cos i
hwi cili bi ( h1i m h2i w cos2 ) cos itgi i Fs bi ( h1i m h2i ) sin i
第二节
最简单的条分法:瑞典圆弧滑动法
二、最危险滑弧位置的确定 张天宝对土坡最危险滑弧位置变化规律的分析: 坡高和坡比一定时,最危险的滑弧位置的变化规律: ⑴滑弧圆心横坐标X随S的增加而增加 理想砂土:最危险滑面与坡面重合的平面 纯粘性土:最危险滑弧在无限深处 ⑵最危险滑弧圆心位置随s变化的轨迹:
Ni
共n个 1个
未知数合计=2n+3(n-1)+1=5n-2
第七章 土坡稳定计算
第一节 条分法的基本概念
第 i 条土的作用力
条分法中的力和求解条件
未知量:5n-2个 求解条件(方程):。 水平向静力平衡条件: Xi+1 Wi x=0 共n个 Ei+1 Ei 垂直向静力平衡条件: Q zi+1 zi y=0 共n个 Xi 力矩平衡条件: Ti Ni M0 =0 共n个 共3n个 未知数的数目超过了方程的数目 是一个高次超静定问题

土坡稳定性分析计算方法

土坡稳定性分析计算方法

第五章 土压力和土坡稳定(7学时)内容提要1.挡土墙的土压力 2.朗肯土压力理论 3.库仑土压力理论 4.挡土结构设计简介 5. 土坡的稳定性分析能力培养要求1.用朗肯理论计算均质土的主动土压力与被动土压力。

2.用朗肯理论计算常见情况下的主动土压力。

3.用库仑理论计算土的主动与被动土压力。

4.会分析挡土墙的稳定性,简单挡土结构设计。

5.无粘性土坡的稳定分析。

6.用条分法对粘性土土坡进行的稳定分析。

7.会分析土坡失稳的原因,提出合理的措施。

教学形式教师主讲、课堂讨论、学生讲评、提问答疑、习题分析等第一节 挡土墙的土压力教学目标1.掌握三种土压力的概念。

2.掌握静止土压力计算。

教学内容设计及安排 【基本内容】一、挡土墙的位移与土体的状态 土压力的类型土压力(kN/m )⎪⎩⎪⎨⎧→⇒→⇒→⇒如桥墩墙推土被动土压力如一般的重力式挡土墙土推墙主动土压力如地下室侧墙墙不动静止土压力p a E E E 01.静止土压力——挡土墙在土压力作用下不发生任何变形和位移(移动或转动)墙后填土处于弹性平衡状态,作用在挡土墙背的土压力。

2.主动土压力——挡土墙在土压力作用下离开土体向前位移时,土压力随之减少。

当位移至一定数值时,墙后土体达到主动极限平衡状态。

此时,作用在墙背的土压力称为主动土压力。

3.被动土压力——挡土墙在外力作用下推挤土体向后位移时,作用在墙上的土压力随之增加。

当位移至一定数值时,墙后土体达到被动极限平衡状态。

此时,作用在墙上的土压力称为被动土压力。

【讨论】△a<<△p , E a <E 0<<E p二、土压力的计算简化处理——作用在挡土结构物背面上的静止土压力可视为天然土层自重应力的水平分量。

如图所示,在墙后填土体中任意深度z处取一微小单元体,作用于单元体水平面上的应力为γz ,则该点的静止土压力,即侧压力强度为:p 0=K 0γz (kPa ) K 0——土的侧压力系数,即静止土压力系数:静止土压力系数的确定方法⎪⎩⎪⎨⎧'采用经验值—较适合于砂土—-=采用经验公式:—较可靠—测定通过侧限条件下的试验ϕsin 10K由上式可知,静止土压力沿墙高为三角形分布,如图所示,取单位墙长计算,则作用在墙上的静止土压力为(由土压力强度沿墙高积分得到)E 0=0221K h γ(kN/m )——静止土压力分布图面积如图所示土压力作用点——距墙底h/3处(可用静力等效原理求得)静止土压力的应用⎪⎪⎪⎩⎪⎪⎪⎨⎧隧道涵洞侧墙底版连成整体)水闸、船闸边墙(与闸拱座(没有位移)岩基上的挡土墙地下室外墙【讨论】如果墙后有均布荷载q ,怎样求静止土压力?第二节 朗肯土压力理论教学目标掌握朗肯土压力理论的原理与假定,并能计算各种情况下的主动、被动土压力。

复杂土层土坡稳定计算

复杂土层土坡稳定计算

复杂土层土坡稳定计算在我们这片土地上,土坡就像是大自然的调皮捣蛋鬼,时不时就会给我们带来点麻烦。

想想看,晴天的时候那土坡看起来稳稳当当,没啥问题,风吹过来也只是一阵轻轻的抚摸。

然而,一旦下起雨来,土壤就开始变得软绵绵的,简直像是刚出锅的豆腐,摇摇欲坠,生怕一阵风就把它推倒。

说到这,大家肯定想问,土坡的稳定到底是个什么样的事儿呢?咱们得知道,复杂土层里的土坡可不是一个简单的家伙。

它就像一位深藏不露的老玩家,里面的每一层土都有自己的性格。

有人说土层就像人的脾气,有的稳重,有的脆弱,一碰就容易炸。

这可不是开玩笑,土壤的种类、湿度和密度都影响着它的“情绪”。

就像你和朋友出去玩,有的人一见水就开心得像小孩,有的人则会害怕一场暴雨会把他们的计划泡汤。

咱们聊聊这稳定性,嘿,这可是个大问题。

土坡的稳定性就像是平衡木上的杂技表演,一不小心就可能摔得四脚朝天。

为了让土坡不出岔子,工程师们可得拿出真本事,做出一些精准的计算。

想象一下,复杂土层像一盘沙拉,各种蔬菜、酱汁混在一起,想要不翻车,得先把这些食材理顺,别让它们打架。

计算稳定性的时候,有很多因素要考虑。

土的剪切强度就像土坡的“武力值”,它能承受多大的压力而不崩溃。

然后是土层的厚度,这就像是打仗的阵地,越厚的阵地越稳。

坡度也很重要,坡度太陡,就像在斜坡上跑步,随时可能摔倒;而坡度太平,又不容易排水,雨水积起来就成了“土丘湖”,更麻烦。

说到这里,大家一定会想,听起来这事儿挺复杂,那我们能干什么呢?别着急,咱们可以做一些措施来增强土坡的稳定性。

比如,修建一些排水系统,把雨水引走,别让它们在坡上聚集,形成“水库”。

再有,就是加固土坡,像给它穿上“盔甲”,用一些石头、植物等来固定土壤,让它不再轻易松动。

就像盖房子,地基要打得牢,才能不怕风吹雨打。

做好监测也是必不可少的。

这就像给土坡装了个“心率监测器”,随时关注它的状态。

通过一些先进的技术手段,能及时发现土坡的“情绪变化”,确保我们能在第一时间采取行动。

土体稳定性计算书

土体稳定性计算书

关于土体的稳定性计算书A-N1,A-S1,A-S2,B-S2,B-N,C-S户型。

根据地质勘察报告及设计放坡要求,施工中预留1000mm工作面,并按照1:0.75放坡,这样A-N1户型,A-S1户型,A-S2户型,B-S2户型,B-N 户型,C-S户型中B轴-C轴与1轴-7轴间的土需要全部挖出,我单位采用基坑大开挖,分层开挖,首先大开挖至设计最浅标高上留300mm厚土,第二次挖至设计基底标高预留200mm人工清土。

现将放坡及预留工作面之后的土体放稳定性的计算过程阐述一下,一下以A-N1户型为例进行计算。

(下图为A-N1户型基础的一部分)根据地质勘查报告得知本工程的土体为粘质粉土,内摩擦角为18.3。

粘土的稳定性分析,均质粘土发生滑坡时,其滑动面形状大多数为一近似圆弧面的曲面(如下图所示)在进行理论分析采用圆弧面计算,粘性土的稳定性分析的常用方法有条分法和稳定数法。

条分法是一种试算法,其计算方法比较简单合理,在工程中应用广泛,如下为计算书部分:(1.)按比例绘制剖面图:(2.)任意选一点O为圆心,以OA为半径(R)作圆弧ab,ab即为滑圆弧面。

(3.)将滑动面以上土体竖直分成宽度相等的若干土条并编号,编号时可以圆心O的铅垂线为0条,图中向右为正,向左为负。

为使计算方便,可取各分条宽度为b=R/10,则sina1=0.1,sina2=0.2,sinAi=0.1i。

cosa1=根号(1-a2*ai)=0.995,cosa2=0.980,这样可以减少大量的三角函数计算。

(4.)计算作用在ef上的剪切力和抗剪力Si,土条自重Gi和荷载Qi 在滑动面ef上的法向反力Ni和切向反力Ti分别为:Ni=(Gi+Qi)*cosaiTi=(Gi+Qi)*sinai抗剪力Si为:Si=CiTi+(Ci+Qi)* cosai*tanφi(注:φ为摩擦角)(5.)计算安全稳定系数K的值(沿整个滑动面上的抗剪力与剪切力之比)K=S/K=∑[cili+(Gi+Qi)* cosai*tanφi]/ ∑(Gi+Qi)*sinai 简化为:K=∑tanφi/∑tanai<0由于向左边为负值,条形基础放坡及独立基础放坡,以致两边放坡有交叉点,如下简图所示,则向右部分的正值几乎没有,得知K的值小于0且小于1。

粘性土土坡的稳定分析-PPT

粘性土土坡的稳定分析-PPT

大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
太沙基公式
• 基本假定: 1)土条两侧得推力Pi、Pi+1和摩擦力Hi、Hi+1得合
力大小相等、方向相反; 2)且她们得作用线重合。
• 受力分析: 1)土条得重力Wi 2)土条得径向反力Ni 3)侧向反力Ti
太沙基公式
• 抗转动稳定安全系数: 滑动力矩:
影响土坡稳定得因素
• 地震作用:
影响土坡稳定得因素
• 地震惯性力: 水平向地震惯性力为:
Qi K H CziWi
1)KH就是水平向地震系数,为地面水平最大加速 度得统计平均值与重力加速度之比;
2)Cz就是综合影响系数,一般取0、25; 3)Wi就是土条得自重; 4)i就是地震加速度分布系数。 • 一般只考虑水平向地震作用,但设计烈度9度以 上,应同时考虑水平向和垂直向地震作用。
抗剪强度只发挥了一部分,与侧向力相平衡;
Ti
cili Fs
Nitgi
Fs
3)当整个滑动土体处于平衡状态时,各土条对园 心得力矩之和为0,条间推力为内力,将相互抵消。
• 计算简图:
毕肖普公式
毕肖普公式
• 抗转动稳定安全系数:
Fs
cili [(Wi Hi Hi1) cosi (Pi1 Pi ) sini ]tgi
所有土条自重引起得切向力对园心得力矩。
抗滑力矩:
所有土条底部得抗剪强度对园心得力矩。
则抗转动稳定安全系数为抗滑力矩与滑动力矩之
比:
Fs
MR Ms
(cili Wi cositgi ) Wi sin i
毕肖普公式
• 基本假定: 1)考虑土条两侧得推力; 2)当土坡处于稳定状态时,任一土条内滑弧面上得

土坡稳定性计算计算书2

土坡稳定性计算计算书2

土方开挖及土坡稳定性计算书本工程的土质为上层2M为中密回填土,中层为约2M的淤泥质土层,下部为可朔性粘土。

开挖深度为6M,采取分层放坡方式开挖,在底部设600mm宽砖砌排水明沟,积水明排,考虑施工时节的降雨影响,土坡采用水泥砂浆护坡,护坡随开挖进度施工,护坡未施工完成时土坡必须进行遮盖。

开挖时注意市政管网及暗浜对开挖面的影响,充分考虑地下水位高度。

以下是土坡稳定性计算。

本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:条分方法:瑞典条分法;条分块数:50;考虑地下水位影响;基坑外侧水位到坑顶的距离(m):0.000;基坑内侧水位到坑顶的距离(m):6.000;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m)1 3.00 3.00 2.002 3.00 3.00 2.00荷载参数:序号类型面荷载q(kPa) 基坑边线距离b1(m) 宽度b0(m)1 局布 3.00 1 12 满布 3.00 -- --土层参数:二、计算原理:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

基槽边坡稳定性计算

基槽边坡稳定性计算

基槽边坡稳定性计算:本工程其坡面的土质基本为砂砾土的亚园砾土,属无粘性土边坡。

在土坡上的分力有土坡下滑趋势的剪切力T、单元土自重G、阻止土体下滑的抗剪力Tf,而阻止土体下滑的抗剪力Tf则为土方单元体自重在坡面法线方向的分力N引起的摩擦力,即Tf=Ntanα=G×cosβ×tanα。

抗滑力和滑动力的比值为安全系数K=Tf/T= G×cosβ×tanα/Gsinβ= tanα/ tanβ,由此可见从理论上讲当坡角小于土方内摩擦角时(β<α)K>1土坡是稳定的,一般性土坡为保证土坡稳定安全系数取值为K>1.3-1.5,所以查中砂园砾内摩擦角为45度,则tan45=1,tanβ=5.2/10=0.52 K= tanα/ tanβ=1/0.52=1.92>1.3-1.5(安全)结论是安全稳定的。

与3#楼相邻基槽边坡稳定性计算:与三号楼边坡高度为5.55m,三号楼基础宽为13.50m,坡角至坡顶水平距离为3m,三号楼压重为(钢筋80Kg/平米、混凝土0.5×2400=1200Kg/平米,1200+80=1280×14层=17920 Kg/平米)17920 Kg/平米=179.2KN/平米,坡面为砂砾土指标为天然自重γ=19 KN,内摩擦角为38度,粘聚力0Kpa。

1、基坑剖面如图所示。

2、取滑动园弧,下端通过坡角A点,上端通过3#楼基础边缘B 点,加入3#楼共14层自重和一层工作面施工荷载7KN=186.2KN 进行验算此土坡的稳定性,取半径R=21m。

3、取土条宽B=1/10R=2.1m4、土条编号:作园心O点的垂线,垂直线处为0条,依次编号为1-9条。

5、计算AB弧长L:设园心∠AOB=α由sinα/2=AB/2/R=0.517,得α=62.26L=αЛR/180=62.26×3.14×21/180=22.816、3#楼压重179.2KN+施工荷载7KN=186.2KN分布在6个土条上,每个土条为31.2KN。

土坡稳定性验算

土坡稳定性验算

土坡稳定性验算土方边坡如下图所示,土质为粉质黏土,由地质调查报告可得重度为319.6/kN m γ=,粘聚力44c kPa =,内摩擦角17ϕ=。

选用瑞典条分法。

(1)选择滑弧圆心,作出相应的滑动圆弧。

按一定比例画出土坡剖面。

因均质土坡,查表得128β=,237β=,延长两线段交于1O ,作为第一次试算的滑弧圆心,从图上量得其半径8.57R m =。

(2)将滑动土体分成若干土条并编号。

土条宽度b 取等宽为0.2 1.714R m =。

土条编号以滑弧圆心的垂线开始为0,逆滑动方向的土条依次为0、1、2、3……,顺滑动方向的土条依次是-1、-2、-3……。

(3)量出各土条中心高度i h ,并列表计算sin i θ、cos i θ及sin iih θ∑、cos iih θ∑等值。

(4)量出滑动圆弧的中心角90θ=,计算滑弧弧长。

908.5713.46180180L R m ππθ=⨯⨯=⨯⨯=若考虑裂缝,滑弧长度只能算到裂缝为止。

(5)计算安全系数tan cos 4413.4619.6 1.7140.30618.562.77sin 19.6 1.7148.4i ii icL b h K b h γϕθγθ+⨯+⨯⨯⨯===⨯⨯∑∑瑞典法计算表土条编号i hsin i θcos i θsin i i h θcos i i h θ-1 1.03 -0.191 0.982 -0.20 1.01 0 2.87 0 1 0 2.87 1 4.42 0.208 0.978 0.92 4.32 2 5.41 0.407 0.914 2.20 4.94 3 4.41 0.602 0.799 2.65 3.52 4 2.70 0.799 0.602 2.16 1.63 5 0.71 0.927 0.374 0.67 0.27 ∑8.4018.56(6)在EO 延长线上另选滑弧圆心2O 、3O ……,重复上述计算,求出最小安全系数。

边坡稳定性计算书(理正软件计算)

边坡稳定性计算书(理正软件计算)

计算书目录1理正边坡稳定分析成果1.1Ⅰ-Ⅰ剖面------------------------------------------------------------------------1.1.1计算项目:Ⅰ-Ⅰ土坡稳定(工况1-一般气象条件+土体自重)------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.015计算结果: 剩余下滑力 = -0.942(kN)本块下滑力角度 = 328.833(度)[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.000计算结果: 剩余下滑力 = -21.855(kN)本块下滑力角度 = 328.833(度)------------------------------------------------------------------------ 1.1.2计算项目:Ⅰ-Ⅰ土坡稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 0.851计算结果: 剩余下滑力 = 0.478(kN) 本块下滑力角度 = 328.833(度)[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.000计算结果: 剩余下滑力 = 250.877(kN) 本块下滑力角度 = 328.833(度) ------------------------------------------------------------------------ 1.1.3计算项目:Ⅰ-Ⅰ加固土坡稳定(工况1-一般气象条件+土体自重)------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]坡面线段数 12坡面线号水平投影(m) 竖直投影(m) 超载数1 0.381 2.947 02 3.791 0.000 03 3.561 2.049 04 2.136 1.229 05 4.855 2.794 06 3.829 2.203 07 4.060 0.935 08 7.920 2.844 09 3.572 1.995 010 3.813 1.233 011 0.452 0.377 012 5.858 5.284 0[土层信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法不考虑渗透力作用不考虑边坡外侧静水压力[滑面信息]滑面线段数 9 滑面线起始点坐标: (0.000,0.000)滑动面线号水平投影(m) 竖直投影(m) 矢高(m) 粘聚力(kPa) 内摩擦角(度)1 1.941 -1.174 0.000 ---- ----2 3.130 -1.112 0.000 ---- ----3 4.056 -0.190 0.000 ---- ----4 5.735 0.940 0.000 ---- ----5 6.100 2.515 0.000 ---- ----6 8.547 5.978 0.000 ---- ----7 7.060 6.740 0.000 ---- ----8 6.000 6.740 0.000 ---- ----9 6.000 10.570 0.000 ---- ----[筋带信息]采用锚杆锚杆道数: 10筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa)1 3.00 3.60 15.00 25.00 720.00 3.00 0.41 400.002 4.60 3.60 15.00 25.00 720.00 3.00 0.41 400.003 6.20 3.60 15.00 25.00 720.00 3.00 0.41 400.004 7.80 3.60 15.00 25.00 720.00 3.00 0.41 400.005 9.40 3.60 12.00 25.00 720.00 3.00 0.41 400.006 11.00 3.60 12.00 25.00 720.00 3.00 0.41 400.007 12.60 3.60 12.00 25.00 720.00 3.00 0.41 400.008 14.20 3.60 12.00 25.00 720.00 3.00 0.41 400.009 15.80 3.60 12.00 25.00 720.00 3.00 0.41 400.0010 17.40 3.60 12.00 25.00 720.00 3.00 0.41 400.00 [计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.640计算结果: 剩余下滑力 = -6.276(kN) 本块下滑力角度 = 328.833(度)------------------------------------------------------------------------1.1.4计算项目:Ⅰ-Ⅰ加固土坡(仅考虑锚杆)稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]坡面线段数 12坡面线号水平投影(m) 竖直投影(m) 超载数1 0.381 2.947 02 3.791 0.000 03 3.561 2.049 04 2.136 1.229 05 4.855 2.794 06 3.829 2.203 07 4.060 0.935 08 7.920 2.844 09 3.572 1.995 010 3.813 1.233 011 0.452 0.377 012 5.858 5.284 0[土层信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法不考虑渗透力作用不考虑边坡外侧静水压力[滑面信息]滑面线段数 9 滑面线起始点坐标: (0.000,0.000)滑动面线号水平投影(m) 竖直投影(m) 矢高(m) 粘聚力(kPa) 内摩擦角(度)1 1.941 -1.174 0.000 ---- ----2 3.130 -1.112 0.000 ---- ----3 4.056 -0.190 0.000 ---- ----4 5.735 0.940 0.000 ---- ----5 6.100 2.515 0.000 ---- ----6 8.547 5.978 0.000 ---- ----7 7.060 6.740 0.000 ---- ----8 6.000 6.740 0.000 ---- ----9 6.000 10.570 0.000 ---- ----[筋带信息] 采用锚杆锚杆道数: 10筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa)1 3.00 3.60 15.00 25.00 100.00 3.00 0.41 400.002 4.60 3.60 15.00 25.00 100.00 3.00 0.41 400.003 6.20 3.60 15.00 25.00 100.00 3.00 0.41 400.004 7.80 3.60 15.00 25.00 100.00 3.00 0.41 400.005 9.40 3.60 12.00 25.00 100.00 3.00 0.41 400.006 11.00 3.60 12.00 25.00 100.00 3.00 0.41 400.007 12.60 3.60 12.00 25.00 100.00 3.00 0.41 400.008 14.20 3.60 12.00 25.00 100.00 3.00 0.41 400.009 15.80 3.60 12.00 25.00 100.00 3.00 0.41 400.0010 17.40 3.60 12.00 25.00 100.00 3.00 0.41 400.00 [计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.250计算结果: 剩余下滑力 = 38.597(kN) 本块下滑力角度 = 328.833(度))------------------------------------------------------------------------1.1.5抗滑动桩验算------------------------------------------------------------------------原始条件:墙身尺寸:桩总长: 12.000(m)嵌入深度: 6.000(m)截面形状: 圆桩桩径: 0.200(m)桩间距: 0.600(m)嵌入段土层数: 1桩底支承条件: 铰接计算方法: M法土层序号土层厚(m) 重度(kN/m3) M(MN/m4) 1 50.000 25.800 20.000初始弹性系数A: 0.000(MN/m3)初始弹性系数A1: 0.000(MN/m3)桩前滑动土层厚: 6.000(m)桩顶锚索水平刚度: 1.000(MN/m)物理参数:桩混凝土强度等级: C25桩纵筋:I12.6桩纵筋级别: A3桩最大抵抗弯矩:19.22 kNm(安全系数1.25)桩最大抗剪力:561.1 kN(安全系数1.25)坡线与滑坡推力:参数名称参数值推力分布类型矩形桩后剩余下滑力水平分力 45.000(kN/m)桩后剩余抗滑力水平分力 0.000(kN/m)滑坡推力作用情况[桩身所受推力计算]假定荷载矩形分布:桩后: 上部=4.500(kN/m) 下部=4.500(kN/m)桩前: 上部=0.000(kN/m) 下部=0.000(kN/m)桩前分布长度=6.000(m)桩身内力计算计算方法: m 法内侧最大弯矩 = 18.797(kN-m) 距离桩顶 6.720(m)外侧最大弯矩 = 19.281(kN-m) 距离桩顶 2.640(m)最大剪力 = 17.968(kN) 距离桩顶 6.000(m)桩顶位移 = 44(mm)锚索水平拉力 = 14.432(kN)------------------------------------------------------------------------1.1.6计算项目:Ⅰ-Ⅰ加固土坡(锚杆+抗滑桩)稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------Ⅰ-Ⅰ加固土坡稳定性验算注:利用理正边坡稳定分析软件计算时,将抗滑桩所承担的抗滑力以锚杆力的形式施加。

第七章:土坡的稳定性分析

第七章:土坡的稳定性分析

第七章:土坡的稳定性分析关于土坡分析时的几个名词砂性土的土坡稳定分析现有一砂性土土坡,剖面如图所示,其上有一个砂土粒,自重为W ,自重在垂直于坡面方向的分力为G .cos α,沿着坡面方向分力G . sin α,土粒在自重作用下沿坡面下滑,土粒与坡面之间的摩擦力阻止下滑;按力学概念抗滑移力:S=N.tan ϕ=W.cos α.tan ϕ滑移力:T=W.sin α两者的比值为滑移稳定安全系数。

K 稳定安全系数:当 K>1时 稳定 即ϕ>aK<1时 失稳 即ϕ<a K=1时 临界状态 即ϕ=a结论:也就是说,砂性土的土坡稳定与否与坡高H 无关,仅取决于土的内摩擦角ϕ和坡角α的比值。

粘性土土坡稳定分析——------瑞典条分法设有一粘性土土坡,按比例画出土坡剖面如图,任选一点o 为圆心,过坡脚A 作圆弧AC ,设土坡沿AC 弧滑动;将AC 弧上的土体分成n 个宽度相等的小土条。

取出其中的第i 个小土条,进行受力分析,第i 个小土条共受有: 1.土条自重Wi ,方向向下,作用在小土条形心处, 其值等于r*∆V ,其中的r 为第i 个小土条土的容重,∆Vi 为第i 个小土条体积,在该土条宽度内有外荷载Q i 时,还应加上外荷载Q i , 2.左右两个侧面上的作用力H i 、E i 、H i+1和E i+1。

3.滑动面上的力N i 和抗剪强度S i :其中N i = (W i +Q i )*cos i α,S i = N i * tan φi + c i *∆L i c i ~第i 个小土条土的内聚力,ΔL i ~第i 个小土条的弧长,αi ~第i 个小土条中点处切线的水平倾角当土条宽度较小时,可忽略土条侧面上的作用力H i 、E i 、H i+1和E i+1;此时,土条上各力对圆心点O的抗滑力矩Msi 和滑移力矩M i 分别为:Msi = R *S i = R *( N i * tanφi +c i ∆L i ),M i =R* W i *sin i α。

土坡的稳定性-第二节条分法

土坡的稳定性-第二节条分法

Y
dN
dN dW cos a dY cos a dE sin a
O
R
ai
第二节
条分法
dx
z x
B
h x
A
(二)摩根斯坦(Morgenstern)法
dW
Y dY
土条底面切线方向力平衡
E
C
E dE
dT
dy
y x
dT dW sin a Y sin a Y dY sin a E cos a E dE cos a 0
第二节
滑动面的形状
条分法
Slope in cohesionless soil
假定:平面应变问题
Rupture plane
无粘性土:平面
均质粘性土:光滑曲面 (圆柱面/圆弧)
非均质的多层土或含软弱 夹层的土坡: 复合滑动面
第二节
滑动面的位置
条分法
最危险滑动面及土坡稳定安全系数的大小
都是试算找出。
Fs , E,Y 未知
O
R
ai
第二节
条分法
dx
z x
B
h x
A
(二)摩根斯坦(Morgenstern)法
dW
Y dY
土条底面中点力矩平衡
E
C
E dE
dT
dy
y x
dh dE Y E h y dx dx 任意选择的常数 E,Y , h x 未知 令 Y f x E dh dE E h y f x E dx dx
P Fs
1.15 i 1
P i cos ai 0

岩土倾斜土层边坡稳定计算例子

岩土倾斜土层边坡稳定计算例子

岩土倾斜土层边坡稳定计算例子岩土倾斜土层边坡稳定计算例子1. 简介背景描述岩土倾斜土层边坡是指土层倾斜度较大的边坡工程,常见于山区、河谷等地形复杂的地区。

在边坡设计中,稳定性计算是至关重要的步骤,用于评估边坡的稳定性并确定合适的支护结构。

目的本文旨在通过列举一些岩土倾斜土层边坡稳定计算的例子,详细讲解计算过程和相关理论,帮助读者更好地理解和应用这一计算方法。

2. 例子1: 单层土层边坡的稳定性计算土层及边坡参数•土层参数:土层角内摩擦角(φ) = 30°,土层凝聚力(c) = 10 kPa•边坡参数:边坡高度(H) = 10 m,边坡倾角(β) = 45°计算步骤1.根据土层参数和边坡参数,确定土层倾斜角(α):–α = 45° / 2 = °2.计算有效土层倾斜角(α’):–α’ = α - φ = ° - 30° = -° (取零)3.通过倾斜平衡法计算边坡的倾倒力Fs:–Fs = H * γ * sin α’–假设土层的容重(γ) = 20 kN/m³–Fs = 10 m * 20 kN/m³ * sin 0° = 0 kN4.计算抗倾覆力Fp:–通过Fp = c * H * B * tan α’ 计算–假设边坡底宽(B) = 5 m–Fp = 10 kPa * 10 m * 5 m * tan 0° = 0 kN5.判断稳定性:–如果 Fs < Fp,则判断为稳定;否则判断为不稳定。

结果分析在这个例子中,由于边坡高度较小且土层参数较差(内摩擦角小、凝聚力小),通过稳定性计算发现边坡是稳定的。

这意味着在设计过程中,可以不考虑支护结构。

3. 例子2: 多层土层边坡的稳定性计算土层及边坡参数•土层参数:第一层土层角内摩擦角(φ₁) = 30°,第一层土层凝聚力(c₁) = 10 kPa;第二层土层角内摩擦角(φ₂) = 20°,第二层土层凝聚力(c₂) = 5 kPa•边坡参数:边坡高度(H) = 15 m,边坡倾角(β) = 60°计算步骤1.根据土层参数和边坡参数,确定土层倾斜角(α):–α = 60° / 2 = 30°2.计算有效土层倾斜角(α’):–第一层:α’₁ = α - φ₁ = 30° - 30° = 0°–第二层:α’₂ = α - φ₂ = 30° - 20° = 10°3.通过倾斜平衡法计算边坡的倾倒力Fs:–Fs = H * γ * sin α’–假设土层的容重(γ) = 18 kN/m³–Fs = 15 m * 18 kN/m³ * sin 0° = 0 kN4.计算各层的抗倾覆力Fp:–第一层:Fp₁ = c₁ * H * B₁ * tan α’₁–假设第一层边坡底宽(B₁) = 8 m–Fp₁ = 10 kPa * 15 m * 8 m * tan 0° = 0 kN–第二层:Fp₂ = c₂ * H * B₂ * tan α’₂–假设第二层边坡底宽(B₂) = 6 m–Fp₂ = 5 kPa * 15 m * 6 m * tan 10° = kN5.判断稳定性:–如果 Fs < max(Fp₁, Fp₂),则判断为稳定;否则判断为不稳定。

土坡稳定和土压力计算

土坡稳定和土压力计算
向。
被动土压力计算
被动土压力是指土体在挡墙向 外移动时所承受的压力,其大 小与土体的内摩擦角、挡墙的 位移量等因素有关。
被动土压力的计算公式为:Ep = γHpKp,其中Ep为被动土压 力强度,γ为土的容重,Hp为 挡墙高度,Kp为被动土压力系 数。
被动土压力的计算需要考虑土 体的应力状态和挡墙的位移量, 以确定被动土压力的大小和方 向。
地下水作用
地下水的水位、流速和压力等对土压力和边坡稳定性产生影响,特别 是对于含水量高、渗透性强的土质。
边坡稳定性对土压力的影响
1 2
边坡角度
边坡的角度决定了土压力的分布和大小。较陡的 边坡可能导致较大的土压力,从而增加失稳的风 险。
边坡高度
边坡的高度直接影响土压力的大小。较高的边坡 意味着更大的重力作用,进而增加土压力。变化
地下水位的动态变化可能引起土中水 压力的变化,从而影响土压力的大小。
施工方法与填挖方式
施工方法
不同的施工方法对土的扰动程度 不同,从而影响土压力的大小。 例如,采用预压法或夯实法等施 工方法可以减小土压力。
填挖方式
填挖方式的不同也会影响土压力 的大小。例如,采用分层填筑或 碾压的方式可以减小土压力。
有限元法
有限元法是一种数值分析方法,通过 将土坡划分为若干个小的单元,并分 析每个单元的应力应变关系,来计算 土坡的稳定性。
有限元法的精度取决于单元的大小和 形状,因此需要合理选择。
有限元法可以模拟复杂的土坡形状和 地质条件,适用于各种类型的土坡。
有限差分法
有限差分法也是一种数值分析方法,通过将土坡划分为若干个小的差分网格,并分 析每个网格点的位移和应力,来计算土坡的稳定性。
土坡稳定和土压力计算

边坡稳定计算书

边坡稳定计算书

路基边坡稳定性分析本设计计算内容为广西梧州绕城高速公路东段k15+400~k16+800路段中出现的最大填方路段。

该路堤边坡高22m,路基宽26m,需要进行边坡稳定性验算。

1.确定本设计计算的基本参数本段路段路堤边坡的土为粘性土,根据《公路路基设计规范》,取土的容重γ=18.5kN/m³,粘聚力C=20kpa,内摩擦角C=24º,填土的内摩擦系数ƒ=tan24º=0.445。

2.行车荷载当量高度换算高度为:25500.8446(m)5.512.818.5NQhBLλ⨯===⨯⨯h0—行车荷载换算高度;L—前后轮最大轴距,按《公路工程技术标准》(JTG B01-2003)规定对于标准车辆荷载为12.8m;Q—一辆车的重力(标准车辆荷载为550kN);N—并列车辆数,双车道N=2,单车道N=1;γ—路基填料的重度(kN/m3);B—荷载横向分布宽度,表示如下:(N1)m dB Nb=+-+式中:b—后轮轮距,取1.8m;m—相邻两辆车后轮的中心间距,取1.3m;d—轮胎着地宽度,取0.6m。

3. Bishop法求稳定系数K3.1 计算步骤:(1)按4.5H 法确定滑动圆心辅助线。

由表查得β1=26°,β2 =35°及荷载换算为土柱高度h0 =0.8446(m),得G点。

a .由坡脚A 向下引竖线,在竖线上截取高度H=h+h0(h 为边坡高度,h0 为换算土层高)b.自G 点向右引水平线,在水平线上截取4.5H,得E 点。

根据两角分别自坡角和左点作直线相交于F 点,EF 的延长线即为滑动圆心辅助线。

c.连接边坡坡脚A 和顶点B ,求得AB 的斜度i=1/1.5,据此查《路基路面工程》表4-1得β1,β2。

图1(4.5H 法确定圆心)(2)在CAD 上绘出五条不同的位置的滑动曲线 (3)将圆弧范围土体分成若干段。

(4)利用CAD 功能读取滑动曲线每一分段中点与圆心竖曲线之间的偏角αi (圆心竖曲线左侧为负,右侧为正)以及每分段的面积S i 和弧长L i ; (5)计算稳定系数:首先假定两个条件:a,忽略土条间的竖向剪切力X i 及X i+1 作用;b,对滑动面上的切向力T i 的大小做了规定。

绿化土坡造型计算公式

绿化土坡造型计算公式

绿化土坡造型计算公式随着城市化进程的不断推进,土地资源的利用和保护变得尤为重要。

在城市建设中,土坡绿化是一种常见的绿化方式,它不仅可以美化城市环境,还可以起到保护土壤、防止水土流失的作用。

在进行土坡绿化设计时,需要考虑土壤的承载能力、坡度、植被类型等因素,而绿化土坡造型计算公式的使用可以帮助工程师更准确地进行设计和施工。

土坡绿化设计中的关键参数。

在进行土坡绿化设计时,需要考虑以下几个关键参数:1. 土壤的承载能力,土壤的承载能力是指土壤能够承受的最大荷载。

在进行土坡绿化设计时,需要根据土壤的承载能力来确定土坡的坡度和植被类型,以确保土坡的稳定性和植被的生长。

2. 土坡的坡度,土坡的坡度是指土坡表面的倾斜程度。

坡度的大小直接影响土坡的稳定性和植被的生长。

一般来说,坡度越大,土坡的稳定性越差,植被的生长也越困难。

3. 植被类型,不同的植被对土坡的稳定性和水土保持的作用有所不同。

在进行土坡绿化设计时,需要根据土坡的坡度和土壤的承载能力来选择合适的植被类型,以确保土坡的稳定性和水土保持的效果。

绿化土坡造型计算公式。

在进行土坡绿化设计时,可以使用以下的绿化土坡造型计算公式来帮助确定土坡的坡度和植被类型:1. 土壤的承载能力计算公式:土壤的承载能力 = C × B。

其中,C为土壤的承载力系数,B为土壤的基本承载力。

2. 土坡的稳定性计算公式:土坡的稳定性 = W × H / 2。

其中,W为土坡的宽度,H为土坡的高度。

3. 植被的根系长度计算公式:植被的根系长度 = L / 2。

其中,L为植被的生长高度。

通过以上的绿化土坡造型计算公式,可以帮助工程师更准确地确定土坡的坡度和植被类型,以确保土坡的稳定性和水土保持的效果。

土坡绿化设计实例。

以某城市的土坡绿化设计为例,该土坡的宽度为10米,高度为5米,土壤的承载力系数为0.5,植被的生长高度为1米。

根据上述的绿化土坡造型计算公式,可以进行如下的设计计算:1. 土壤的承载能力计算:土壤的承载能力 = 0.5 × 10 = 5(吨/平方米)。

土力学粘性土土坡稳定性全解

土力学粘性土土坡稳定性全解
• 1在施工前要弄清当地的土质情况,不可盲 目开工 • 2在施工的时候要严格按照标准,不可偷工 减料,在这事件中就是由于土的干密度没 有达标才导致了隐患的发生 • 3要仔细考虑土的渗透性问题,如果通过测 算发觉土的渗透系数较大,要预先做好防 渗措施 • 在施工完后,要对项目做定期检查,防患 于未然
4补救措施
• 1)重新运土夯实坝体,使坝体干密度达到 1.5g/cm3; • 2)对左、右坝头填土与接触带进行充填灌 浆防渗处理; • 3)对迎水坡进行土工膜、混凝土面板覆盖 防渗; • 4)对右坝头小山包及溢洪道底板基岩进行 帷幕灌浆处理; • 5)按反滤要求重新堆砌背水坡;
应该吸取的经验教训
杨布法
• 杨布条分法基本可以满足所有的静力平衡 条件,所以是严格方法之一,但其推力线 的假定必须符合条间力的合理性要求(即 条间力不产生拉力和不产生剪切破坏)。 目前国内外有关边坡稳定的电算程序,大 多包含有杨布法
对它们的假定条件的对比
• 整体圆弧滑动稳定分析法,它假设的是刚性滑动 体滑动面上极限平衡 ,条件为软粘土不排水Pn=0 • 瑞典条分法假设的是滑动面为圆弧面,不考虑条 间力,可以减少2n-2个未知数。它的条件为一般 均质土。 • 毕肖普条分法假设的是滑动面为圆弧面,切向条 间力为0,减少n-1个未知数。它的条件为一般均 质土。 • 杨布条分法假设的是滑动面为任意面,法向条间 力和切向条间力之间为某函数关系,减少n-1个未 知数 。它的条件为任意土
土力学质疑
——粘性土土坡稳定分析
粘性土土坡稳定分析方法

常用的粘性土土坡稳定分析方 法可以分为两种:整体圆弧滑动稳 定分析法和条分法
一整体圆弧法
• (一)分析计算方法 • 1.假设条件:
• 均质简单粘性土坡
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土坡稳定性计算书
本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:
条分方法:瑞典条分法;
条分块数:50;
考虑地下水位影响;
基坑外侧水位到坑顶的距离(m):2.000;
基坑内侧水位到坑顶的距离(m):4.500;
放坡参数:
序号放坡高度(m) 放坡宽度(m) 平台宽度(m)
1 2.20 1.20 0.80
2 2.30 1.00 1.00
荷载参数:
序号类型面荷载q(kPa) 基坑边线距离b1(m) 宽度b0(m)
1 局布 3.00 1 1
土层参数:
二、计算原理:
根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:
1、土条自重,
2、作用于土条弧面上的法向反力,
3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

三、计算公式:
F s=∑{c i l i+[(γh1i+γ'h2i)b i+qb i]cosθi tanφi}/∑[(γh1i+γ'h2i)b i+qb i]sinθi
式子中:
F s --土坡稳定安全系数;
c i --土层的粘聚力;
l i--第i条土条的圆弧长度;
γ --土层的计算重度;
θi --第i条土中线处法线与铅直线的夹角;
φi --土层的内摩擦角;
b i --第i条土的宽度;
h i --第i条土的平均高度;
h1i --第i条土水位以上的高度;
h2i --第i条土水位以下的高度;
γ' --第i条土的平均重度的浮重度;
q --第i条土条土上的均布荷载;
其中,根据几何关系,求得h i为:
h i=(r2-[(i-0.5)×b i-l0]2)1/2-[r+l0-(i-0.5)×b i]tanα
式子中:
r --土坡滑动圆弧的半径;
l0 --坡角距圆心垂线与坡角地坪线交点长度;α --土坡与水平面的夹角;
h1i的计算公式
h1i=h w-{(r-h i/cosθi)×cosθi-[rsin(β+α)-H]}
当h1i≥ h i时,取h1i = h i;
当h1i≤0时,取h1i = 0;
h2i的计算公式:
h2i = h i-h1i;
h w --土坡外地下水位深度;
l i的几何关系为:
l i={arccos[((i-1)×b i-l0)/r]-arccos[(i×b i-l0)/r]×2×r×π}/360
θi=90-arccos[((i-0.5)×b i-l0)/r]
四、计算安全系数:
将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:------------------------------------------------------------------------------------
计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)
第1步 1.571 84.935 -351.284 191.238
399.965
示意图如下:
计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)
第2步 2.765 30.495 0.561 6.516 6.541 示意图如下:
--------------------------------------------------------------------------------------
计算结论如下:
第1 步开挖内部整体稳定性安全系数Fs= 1.571>1.30 满足要求! [标高-2.300 m]
第2 步开挖内部整体稳定性安全系数Fs= 2.765>1.30 满足要求! [标高-4.500 m]。

相关文档
最新文档