2020—2021学年人教版 八年级数学下册 第17章 勾股定理 同步课时训练(含答案)

合集下载

2020-2021学年人教版数学八年级下册17.1-勾股定理 课时练习

2020-2021学年人教版数学八年级下册17.1-勾股定理  课时练习

2020-2021学年人教版数学八年级下册17.1-勾股定理课时练习一、选择题1.下列说法正确的是()A. 若a、b、c是△ABC的三边,则a2+b2=c2B. 若a、b、c是Rt△ABC的三边,则a2+b2=c2C. 若a、b、c是Rt△ABC的三边,∠A=90∘,则a2+b2=c2D. 若a、b、c是Rt△ABC的三边,∠C=90∘,则a2+b2=c22.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A. a2+b2=c2B. b2+c2=a2C. a2+c2=b2D. c2−a2=b23.已知直角三角形的两边长分别为3cm和5cm,则第三边长为()A. 4B. √34C. 4或√34D. 74.△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A. 14B. 4C. 14或4D. 以上都不对5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 806.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是△ABC的高,则BD的长为()√13A. 1013√13B. 913√13C. 813√13D. 7137.如图所示,在△ABC中,AB=AC=5,BC=8,CD是AB边上的高,则线段AD的长度为()A. 125B. 245C. 135D. 758.如图,等边△OAB的边长为2,则点B的坐标为()A. (1,1)B. (1,√3)C. (√3,1)D. (√3,√3)9.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四、则弦五”的记载。

如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A. 90B. 100C. 110D. 12110.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x−y=2,③2xy+4=49,④x+y=9.其中说法正确的结论有()A. 1个B. 2个C. 3个二、填空题11.若一直角三角形两边长分别为12和5,则第三边长为_______.12.如图是一个三级台阶,它的每一级的长、宽、高分别为24dm,3dm,3dm,点A和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是dm.13.如图,在平面直角坐标系中,点A,B的坐标分别为(2,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,点C的坐标为.14.如图,在△ABC中,AB=√41,BC=8,AC=5,则△ABC的面积为.15.如图,把长方形纸片ABCD折叠,使其对角顶点A与C重合.若长方形的长BC为8,宽AB为4.则折痕EF的长度为.16.如图,以Rt△ABC的三边为直径分别向外作三个半圆S1,S2,S3.若S2=32π,S3=18π,则斜边上半圆的面积S1=.三、计算题17.已知直角三角形的三边长分别为a,b,c,其中两边a,b满足√a+2b−7+(3a−2b+5)2=0,求第三边长c的值.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=12,BC=5,求BD的长.19.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长20.如图所示,∠C=90°,AM=CM,MP⊥AB于点P,求证:BP2=AP2+BC2。

2021-2022学年人教版八年级数学下册《第17章勾股定理》解答题优生辅导训练(附答案)

2021-2022学年人教版八年级数学下册《第17章勾股定理》解答题优生辅导训练(附答案)

2021-2022学年人教版八年级数学下册《第17章勾股定理》解答题优生辅导训练(附答案)1.某游乐场部分平面图如图所示,点C、E、A在同一直线上,点D、E、B在同一直线上,DB⊥AB.测得A处与E处的距离为80m,C处与E处的距离为40m,∠C=90°,∠BAE =30°.(1)请求出旋转木马E处到出口B处的距离;(2)请求出海洋球D处到出口B处的距离;(3)判断入口A到出口B处的距离与海洋球D到过山车C处的距离是否相等?若相等,请证明;若不相等,请说明理由.2.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8.(1)求△ABD的面积.(2)求BC的长(结果保留根号).3.伊通河,是长春平原上的千年古流,是松花江的二级支流,它发源于吉林省伊通县境内哈达岭山脉青顶山北麓,如图,在伊通河笔直的河流一侧有一旅游地C,河边有两个景点A、B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个景点H(A、H、B三点在同一直线上),并新修一条路CH,测得BC=5千米,CH=4千米,BH=3千米.(1)判断△BCH的形状,并说明理由;(2)求原路线AC的长.4.如图,在Rt△ABC中,∠B=90°,AB=3,BC=6,AC的中垂线DE交AC于点D,交BC于点E.延长DE交AB的延长线于点F,连接CF.(1)求出CD的长;(2)求出CF的长.5.若直角三角形的三边的长都是正整数,则三边的长为“勾股数”.构造勾股数,就是要寻找3个正整数,使它们满足“其中两个数的平方和(或平方差)等于第三个数的平方”,即满足以下关系:(ㅤㅤ)2+(ㅤㅤ)2=(ㅤㅤ)2;①或(ㅤㅤ)2﹣(ㅤㅤ)2=(ㅤㅤ)2;②要满足以上①、②的关系,可以从乘法公式入手,我们知道:(x+y)2﹣(x﹣y)2=4xy.③如果等式③的右边也能写成“(ㅤㅤ)2”的形式,那么它就符合②的关系.因此,只要设x=m2,y=n2,③式就可化成:(m2+n2)2﹣(m2﹣n2)2=(2mn)2.于是,当m,n为任意正整数,且m>n时,“m2+n2,m2﹣n2和2mn”就是勾股数,根据勾股数的这种关系式,就可以找出勾股数.(1)当m=2,n=1时,该组勾股数是;(2)若一组勾股数中最大的数与最小的数的和为72,且m﹣n=1,求m,n的值;(3)若一组勾股数中最大的数是2p2+6p+5(p是任意正整数),则另外两个数分别为,(分别用含p的代数式表示).6.如图,斜靠墙上的一根竹竿AB长为13m,端点B离墙角的水平距离BC长为5m.(1)若A端沿垂直于地面的方向AC下移1m,则B端将沿CB方向移动多少米?(2)若A端下移的距离等于B端沿CB方向移动的距离,求下移的距离.(3)在竹竿滑动的过程中,△ABC面积有最值(填“大”或“小”)为(两个空直接写出答案不需要解答过程).7.如图,点A是网红打卡地诗博园,市民可在云龙湖边的游客观光车站B或C处乘车前往,且AB=BC,因市政建设,点C到点A段现暂时封闭施工,为方便出行,在湖边的H处修建了一临时车站(点H在线段BC上),由H处亦可直达A处,若AC=1km,AH=0.8km,CH=0.6km.(1)判断△ACH的形状,并说明理由;(2)求路线AB的长.8.如图,某港口A位于东西海岸线上,甲乙两船同时离开港口,各自沿一固定方向航行,甲船每小时航行45海里,乙船每小时航行60海里,它们离开港口1.2小时后分别位于点B、C处,且相距90海里.若甲船沿南偏西25度方向航行,问乙船沿哪个方向航行?9.如图,△ABC中,AC=b,BC=a,CD⊥AB于D.(1)若a=b=13,AB=10,求CD的长;(2)若∠ACB=90°,CD=4,求AD×DB的值;(3)若CD2=AD×DB,判断△ABC的形状,并说明理由.10.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=cm,AB边上的高为cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.11.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?12.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC 的距离分别为h1、h2.(1)请你结合图形来证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是.求点M的坐标.13.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD =3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?14.课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律4=,12=,24=…,于是他很快表示了第二数为,则用含a的代数式表示第三个数为;(3)用所学知识加以说明.15.数学实验室:制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c 为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.探索研究:(1)小明将“弦图”中的2个三角形进行了旋转,得到图3,请利用图3证明勾股定理;数学思考:(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).16.在如图所示的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形;(2)请你在图2中画一条以格点为端点,长度为的线段;(3)请你在图3中画一个以格点为顶点,为直角边的直角三角形.17.如图是俱乐部新打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形ADCG和长方形DEFC均为木质平台的横截面,点G在AB上,点C在GF上,点D在AE上,经过现场测量得知:CD=1米,AD=15米.(1)小敏猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度;(2)为加强游戏安全性,俱乐部打算再焊接一段钢索BF,经测量DE=3米,请你求出要焊接的钢索BF的长.(结果不必化简成最简二次根式)18.如图,地面上放着一个小凳子(AB与地面平行),点A到墙面(墙面与地面垂直)的距离为40cm.在图①中,一木杆的一端与墙角O重合,另一端靠在点A处,OA=50cm.(1)求小凳子的高度;(2)在图②中另一木杆的一端与点B重合,另一端靠在墙上的点C处.若OC=90cm,木杆BC比凳宽AB长60cm,求小凳子宽AB和木杆BC的长度.19.如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连接BE、DE,DE的延长线交AB于F,已知DE=AB,∠CAD=45°.(1)求证:DF⊥AB;(2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.20.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.参考答案1.解:(1)在Rt△ABE中,∵∠BAE=30°,∴BE=(m),∴旋转木马E处到出口B处的距离为40m;(2)∵∠BAE=30°,∠CED=∠AEB,∠C=∠ABE=90°∴∠D=∠BAE=30°,∴DE=2CE=80(m),∴DE+BE=80+40=120(m),∴海洋球D处到出口B处的距离为:120m;(3)在Rt△CDE与Rt△ABE中,由勾股定理得:AB==40(m),CD==40(m),∴AB=CD,∴入口A到出口B处的距离与海洋球D到过山车C处的距离相等.2.解:在△ABD中,AB=5,BD=3,AD=4,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,∴S△ABD=AD•BD=×4×3=6;(2)由(1)可知,∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∴DC2=AC2﹣AD2=82﹣42=48,∴DC=4,∴BC=BD+DC=3+4.3.解:(1)△BCH是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB﹣BH=(x﹣3)千米,在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x﹣3)2+42解这个方程,得x=,答:原来的路线AC的长为千米.4.解:(1)在Rt△ABC中,∠B=90°,AB=3,BC=6,则AC===3,∵DE是AC的中垂线,∴CD=AC=;(2)∵DF是AC的中垂线,∴F A=FC,∵AB=3,∴FB=F A﹣3=CF﹣3,在Rt△FBC中,CF2=BC2+FB2,即CF2=62+(CF﹣3)2,解得:CF=.5.解:(1)当m=2,n=1时,m2+n2=5,m2﹣n2=3,2mn=4,∴该组勾股数是3,4,5,故答案为:3,4,5;(2)∵(m2+n2)﹣(m2﹣n2)=2n2>0,∴m2+n2>m2﹣n2,∵m2+n2﹣2mn=(m﹣n)2>0,∴m2+n2>2mn,∴最大的数为m2+n2,①当m2﹣n2最小时,(m2+n2)+(m2﹣n2)=2m2=72,解得m=6或m=﹣6(舍去),又∵m﹣n=1,∴n=5;②当2mn最小时,(m2+n2)+2mn=(m+n)2=72,解得m+n=(舍去),综上所述,m=6,n=5;(3)2p2+6p+5=(p2+2p+1)+(p2+4p+4)=(p+1)2+(p+2)2,令m=p+2,n=p+1,则m2﹣n2=(p+2)2﹣(p+1)2=2p+3,2mn=2(p+2)(p+1)=2p2+6p+4,∴另外两个数分别为2p+3,2p2+6p+4,故答案为:2p+3,2p2+6p+4.6.解:(1)由题意可知△ABC是直角三角形,∵BC=5米,AB=13米,∴由勾股定理得:AC==12(米),∴A1C=AC﹣AA1=12﹣1=11(米),∴B1C==4(米),∴BB1=B1C﹣BC=(4﹣5)(米),答:B端将沿CB方向移动(4﹣5)米.(2)设AA1=BB1=x米,则A1C=(12﹣x)米,CB1=(5+x)米,由勾股定理得:A1C2+CB12=A1B12,即(12﹣x)2+(5+x)2=132,解得:x=7,即AA1=7米.答:下移的距离为7米.(3)以A1B1为底,过C作A1B1的垂线CD,D为垂足,在竹竿下滑过程中,当CD为△A1CB1的中线时,△A1CB1的面积最大,最大值=×13×=平方米.故答案为:大,.7.解:(1)△ACH是直角三角形,理由如下:∵AC=1km,AH=0.8km,CH=0.6km,∴AC2=AH2+CH2,∴△ACH是直角三角形;解:(2)∵△ACH是直角三角形,∴AH⊥BC,设AB=BC=xkm,则BH=BC﹣HC=(x﹣0.6)km,由勾股定理得:AB2=AH2+BH2,即x2=0.82+(x﹣0.6)2,解得:x=,∴AB=km.8.解:由题意可得:AB=45×1.2=54(海里),AC=60×1.2=72(海里),BC=90海里,则AB2+AC2=BC2,故△ABC是直角三角形,∠BAC=90°,∵甲船沿南偏西25度方向航行,∴乙船沿南偏东65方向航行.9.解:(1)∵AC=BC,CD⊥AB,∴AD=BD=5,在Rt△ADC中,CD==12.(2在Rt△ACD中,由勾股定理得,AC2﹣AD2=CD2=16①,在Rt△BCD中,由勾股定理得,BC2﹣BD2=CD2=16②,联立①和②得:AC2+BC2﹣(AD2+BD2)=32,∵AC2+BC2=AB2,AD2+BD2=(AD+BD)2﹣2AD•BD,∴AB2﹣AB2+2AD•BD=32,∴2AD•BD=32,∴AD•BD=16;(3)∵CD2=AD•DB,∴AC2﹣AD2=AD•BD,BC2﹣BD2=AD•BD,∴AC2﹣AD2+BC2﹣BD2=2AD•BD,∴AC2+BC2=AD2+BD2+2AD•BD,∴AC2+BC2=(AD+BD)2,即AC2+BC2=AB2,∴△ABC是直角三角形.10.解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.11.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).12.(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S△ABC=S△ABM+S△AMC,S△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,又∵S△ABC=×AC×BD=×AC×h,AB=AC,∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A(﹣4,0),B(0,3)同理求得C(1,0).AB==5,AC=5,所以AB=AC,即△ABC为等腰三角形.①当点M在BC边上时,由h1+h2=h得:+M y=OB,M y=3﹣=,把它代入y=﹣3x+3中求得:M x=,所以此时M(,).②当点M在CB延长线上时,由h1﹣h2=h得:M y﹣=OB,M y=3+=,把它代入y=﹣3x+3中求得:M x=﹣,所以此时M(﹣,).③当点M在BC的延长线上时,h1=<h,不存在;综上所述:点M的坐标为M(,)或(﹣,).13.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若P A=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.14.解:(1)∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案为:60,61;(2)第一个数用字母a(a为奇数,且a≥3)表示,第二数为,则用含a的代数式表示第三个数为,故答案为:;(3)∵a2+()2=,()2=,∴a2+()2=()2又∵a为奇数,且a≥3,∴由a,,三个数组成的数是勾股数.15.解:(1)如图3所示∵图形的面积表示为a2+b2+2×ab=a2+b2+ab,图形的面积也可表示为c2+2×ab=c2+ab;∴a2+b2+ab=c2+ab,∴a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.(2))如图4所示:∵大正方形的面积表示为(a+b)2;大正方形的面积也可表示为c2+4×ab∴(a+b)2=c2+4×ab,a2+b2+2ab=c2+2ab,∴a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方.16.解:(1)如图1所示;(2)如图2所示;(3)如图3所示.17.解:(1)不正确,理由如下:由题意得:AG=CD=1米,GC=AD=15米,设BG=x米,则BC=(26﹣1﹣x)米,在Rt△BGC中,由勾股定理得:BG2+CG2=CB2,即x2+152=(26﹣1﹣x)2,解得:x=8,∴BG=8米,∴AB=BG+GA=9(米),∴小敏的猜想不正确,立柱AB段的正确长度长为9米.(2)由题意得:CF=DE=3米,∴GF=GC+CF=18(米),在Rt△BGF中,由勾股定理得:BF===(米).18.解:(1)过A作AM垂直于墙面,垂足M,根据题意可得,AM=40cm,在Rt△AOM中,OM===30,即凳子的高度为30cm.(2)延长BA交墙面于点N,可得∠BNC=90°,设AB=xcm,则CB=x+60,BN=x+40,CN=90﹣30=60,在Rt△BCN中,BN2+CN2=BC2,即(40+x)2+602=(60+x)2,解得x=40,则BC=60+40=100(cm).19.解:(1)∵AC⊥BD,∠CAD=45°,∴AC=DC,∠ACB=∠DCE=90°,在Rt△ABC与Rt△DEC中,,∴Rt△ABC≌Rt△DEC(HL),∴∠BAC=∠EDC,∵∠EDC+∠CED=90°,∠CED=∠AEF,∴∠AEF+∠BAC=90°,∴∠AFE=90°,∴DF⊥AB.(2)∵S△BCE+S△ACD=S△ABD﹣S△ABE,∴a2+b2=•c•DF﹣•c•EF=•c•(DF﹣EF)=•c•DE=c2,∴a2+b2=c2.20.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.。

2020-2021学年八年级数学人教版下册17.1.1勾股定理教案

2020-2021学年八年级数学人教版下册17.1.1勾股定理教案

课题:17.1勾股定理【教学目标】知识与技能了解勾股定理的发现过程 ,掌握勾股定理的内容 ,会用面积法证明勾股定理,培养在实际生活中发现问题总结规律的意识和能力 .过程与方法通过创设情境 ,导入新课 ,引导学生探索勾股定理 ,并应用它解决问题 ,运用了观察、演示、实验、操作等方法学习新知 .情感态度与价值观通过介绍我国古代在研究勾股定理方面取得的伟大成就 ,激发学生热爱祖国与热爱祖国悠久文化的思想感情 ,培养他们的民族自豪感 ,在探索问题的过程中 ,培养学生的合作交流意识和探索精神 .【教学重点】探究和证明勾股定理【教学难点】用拼图的方法来证明勾股定理【教学方法】引导发现教学法和合作探究教学法【教学手段】多媒体直观教具【教学过程】教学环节教学活动设计意图创设情境引入新课教师用投影出示第24界国际数学家大会会徽 ,通过观察会徽图案 ,提出问题 ..介绍赵爽弦图是为了让学生感受我国古代在勾股定理方面取得的伟大成就 ,激发学生的数学激情和爱国情感 .教学环节教学活动设计意图引导学生探究新知活动1:这一环节我选择了教材的图片 ,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面 ,其中含有直角三角形三边的数量关系 ,创设感知情境 ,提出问题: (1 )现在也请同学们观察 ,看看三个正方形A,B,C的面积有什么关系 ?学生活动:学生观察分析 ,通过数等腰直角三角形的个数得出结论:小正方形A,B的面积之和等于大正方形C的面积 .接着提出问题 (2 )能否由这三个正方形A,B,C面积间的关系得到由这三个正方形围成的等腰直角三角形三边之间的关系 ?学生活动:学生由正方形的面积等于边长的平方 ,得出:等腰直角三角形两直角边的平方和等于斜边的平方 .从最|特殊的直角三角形入手 ,通过观察正方形面积关系得到三边关系 ,对等腰直角三角形边长关系进行初步的一般化 .A BC引导学生探究新知教学环节2、学生动手操作 ,在感受图形变化的同时 ,用 "数〞描述图形的面积 ,进而数形结合地得出直角三角形的三边关系.小组代表在黑板上用模具展示拼图结果 ,师生共同应用代数法转化等式 ,证明猜测.abbaaba bcccccccb-acba3、学生归纳总结直角三角形三边关系 ,结合图形语言 ,从文字语言和符号语言两方面描述勾股定理 ,进而培养学生数学语言的表达能力总结定理:如果直角三角形的两直角边长分别是a、b ,斜边长是c ,那么a2 +b2 =c2教学流程通过拼图活动 ,调动学生思维的积极性 ,为学生提供从事数学活动的时机 ,开展学生的形象思维 ,使学生对定理的理解更加深刻 ,体会数学中数形结合的思想 .设计意图初步应用稳固新知加深对勾股定理的运用理解 .教学环节教学过程设计意图归通过小结纳小结反思提高 (1 )勾股定理的内容是什么 ?(2 )勾股定理的证明方法是什么 ?(3 )谈谈你学习勾股定理的感受 ?为学生创造交流的空间 ,引导学生培养学生从面积的角度理解勾股定理 ,使学生进一步明确掌握教学目标 ,使知识形成体系 .布置作业拓展新知1.课本24页习题2. 收集勾股定理证明方法的资料 ,以小报或PPT的形式与同学们交流.设计有层次的作业 ,既能稳固知识 ,又能使学有余力的学生获得最|正确开展 .板书设计17.1勾股定理1.拼图作品展示2.直角三角形两直角边的平方和等于斜边的平方.投影幕教学环节教学流程设计意图。

2023年人教版八年级下册数学第十七章勾股定理第3课时勾股定理(3)

2023年人教版八年级下册数学第十七章勾股定理第3课时勾股定理(3)

·数学
10.(人教8下P29)已知一个三角形工件尺寸(单位:mm)如图, 求高l的长(结果保留根号).
解:过点A作AD⊥BC于点D,则AD=l, ∵AB=AC=88 mm,BC=64 mm, ∴AD是BC的垂直平分线,
∴BD=12BC=32 mm. 在Rt△ABD中,AD= AB2-BD2= 882-322= 8 105(mm), 即高l的长为8 105 mm.
AC=4,则AB= BC2+AC2= 32+42 =5, ∴S阴影部分=AB2-12BC·AC=52-12×3×4=19.
·数学 5.【例1】(人教8下P27)如图,在数轴上作出表示 13的点. 解:如图,点A即为表示 13的点.
答案图 小结:利用勾股定理画出数轴上的无理数点.
·数学 9.(人教8下P27、北师8上P39)如图,在数轴上作出表示 17 的点. 解
解:过A点作AD⊥BC于点D, 由题意知∠ABD=90°-60°=30°,∠ACD=45°, ∴AB=2AD,CD=AD,由勾股定理得BD= 3AD, ∵BC=2.4 km=2 400 m,∴ 3AD+AD=2 400, 解得AD=1 200( 3-1)≈876>800, 故该公路不会穿过纪念园.
·数学
2.(跨学科融合)如图,为防控新冠疫情,学校大门入口的正 上方A处装有测温仪,测温仪离地面的距离AB=2.3米,当 人体进入感应范围内时,测温仪就会自动测温.当身高为1.7 米的学生CD正对门缓慢走到离门0.8米处时(即BC=DE=0.8 米),测温仪自动显示体温,此时人头顶到测温仪的距离AD 为 1 米.
答案图
·数学 6.【例2】(人教8下P28)已知带孔的长方形零件尺寸(单位: mm)如图,求两孔中心的距离.
解:根据题意得AC=51-21=30(mm), BC=61-21=40(mm), 所以AB= AC2+BC2= 302+402= 50(mm), 即两孔中心的距离是50 mm.

2020—2021年人教版版八年级数学下册17.1 第1课时 勾股定理教案(精品教学案) (2).doc

2020—2021年人教版版八年级数学下册17.1 第1课时 勾股定理教案(精品教学案) (2).doc

第十七章 勾股定理17.1 勾股定理第1课时 勾股定理【学习目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理; 2.培养在实际生活中发现问题总结规律的意识和能力. 学习重点:勾股定理的内容及证明. 学习难点:勾股定理的证明. 学习过程一、自学导航(课前预习)1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边: 2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S 正方形=_______________=____________________方法二;已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对ABbbb边为a、b、c。

求证:a2+b2=c2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=______________右边S=_______________左边和右边面积相等,即化简可得。

二、合作交流(小组互助)思考:(1)观察图1-1。

A的面积是__________个单位面积;B的面积是__________个单位面积;C的面积是__________个单位面积。

(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a、b,斜边为c,那么_______________________________________________________________________________________。

(三)展示提升(质疑点拨)1.在Rt △ABC 中,90C ∠=︒ , (1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________.2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c +=B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则222a b c +=D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25 C .斜边长为5 D .三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。

人教版八年级数学下册同步训练课件 勾股定理的证明

人教版八年级数学下册同步训练课件 勾股定理的证明
第十七章ห้องสมุดไป่ตู้勾股定理
第10课时 勾股定理的证明
1.勾股定理的证明方法有很多,可以用测量计 算,可以用代数式变形,还可以用几何证明.
2.勾股定理的验证,可通过运用图形的割、移、 补、拼,表示出图形的面积来验证勾股定理(面积相 等法).通过几个全等的直角三角形拼成常见图形, 然后利用整个图形的面积等于小块图形面积的和列 方程,从而推导出勾股定理.
知识点一 勾股定理的证明
例 1 如图是由四个全等的直角三角形拼成的 图形,请结合图形利用面积证明勾股定理.
证明:由题图可知,大正方形的面积可以表示 成(a+b)2 或12ab×4+c2,
所以(a+b)2=12ab×4+c2, 整理,得 a2+b2=c2.
变式 1 请利用如图验证勾股定理.
证明:由题图可知,梯形的面积可以表示成12(a +b)(a+b)=12(a+b)2,
解:由题意知,a2+b2=25,2ab=16. 则(a-b)2=a2+b2-2ab=25-16=9, 所以 a-b=3(负值已舍),即小正方形的边长为 3.
变式 2 如图的“赵爽弦图”是由 4 个全等的直 角三角形拼成的图形.若大正方形的面积是 13,小 正方形的面积是 1,设直角三角形的较长直角边长为 a,较短直角边长为 b,求 a+b 的值.
生无一锥土,常有四海心。
角形和一个小正方形构 自信是成功的第一秘诀
成功往往偏向于有准备的人
成的大正方形.若直角三角
不要志气高大,倒要俯就卑微的人。不要自以为聪明。
志,气之帅也。
形的斜边和较短的直角边长分别为 石看纹理山看脉,人看志气树看材。
志不真则心不热,心不热则功不贤。
5

3,则小正方
自信是成功的第一秘诀

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。

人教版八年级数学下册第十七章第一节 第1课时 勾股定理

人教版八年级数学下册第十七章第一节 第1课时 勾股定理

B
解:(1) 据勾股定理得
c a2 b2 52 52 50 5 2. C
A
(2) 据勾股定理得
b c2 a2 22 12 3.
【变式题1】在 Rt△ABC 中, ∠C = 90°. (1) 若 a∶b = 1∶2 ,c = 5,求 a ; (2) 若 b = 15,∠A = 30°,求 a,c. 解:(1) 设 a = x,b = 2x,根据勾股定理建立方程得 x2 + (2x)2 = 52,解得 x 5, ∴ a 5 . (2) ∵A 30°,b 15,∴c 2a . 因此设 a = x,c = 2x,根据勾股定理建立方程得 (2x)2 - x2 = 152,解得 x 5 3 . ∴ a 5 3 ,c 10 3 .
1 4
BC2.
勾股定理
内容 注意
在Rt△ABC 中,∠C = 90°,a,
b 为直角边,c 为斜边,则有 a2 + b2 = c2.
在直角三角形中
看清哪个角是直角
已知两边没有指明是直角边 还是斜边时一定要分类讨论
D
根据三角形面积公式,
3
∴ ∴
1 2
AC×BC
12
CD = 5 .
=
1 2
AB×CD.
C
4
B
归纳 由直角三角形的面积求法可知直角三角形两直角
边的积等于斜边与斜边上高的积,它常与勾股定理联
合使用.
练一练
求下列图中未知数 x、y 的值:
81 x
144
解:由勾股定理可得 81 + 144 = x2,
解得 x = 15.
勾股定理有着悠久的历史:古巴比伦人和古代中国人 看出了这个关系,古希腊的毕达哥拉斯学派首先证明 了这关系,下面让我们一起来通过视频来了解吧:

2020—2021学年人教版数学八年级下册17.1探索勾股定理教案

2020—2021学年人教版数学八年级下册17.1探索勾股定理教案

探索勾股定理一、教学目标知识与能力目标:1.经历探索发现勾股定理并验证勾股定理的过程,进一步发展学生的推理能力;2.理解并掌握勾股定理,会初步运用勾股定理解决一些简单的数学问题和实际问题.过程与方法目标:1.让学生经历“探索—发现—验证—应用”的学习过程,并体会“特殊—一般—特殊”的数学思想方法;2.通过一系列数学学习活动让学生体验数学学习过程中的乐趣.情感与态度目标:1.在探究的过程中,进一步丰富学生的数学活动经验,增强合作交流的意识,并让学生体验到成就感,从而提高对数学学习的兴趣;2.通过了解勾股定理的历史和我国古代辉煌的数学成就,激发学生的爱国热情,激励学生发奋学习.二、教法和学法教学方法:引导—探究—讨论发现法.学习方法:自主探究与合作交流相结合.三、教学重难点教学重点:探索发现并验证勾股定理.教学难点:1.探究活动二中正方形C的面积计算;2.通过拼图验证勾股定理.四、教学媒体准备教学媒体:多媒体课件.学具准备:方格纸、(各组准备)4个全等的直角三角形和3个正方形硬纸板.五、教学过程教学环节教学流程教学内容及教师活动学生活动设计说明与设计意图(一)创设情景引入新课投影显示2002年在北京召开的世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,今天我们就来一同探索勾股定理.(板书课题)观察、欣赏会标.紧扣课题,自然引入,同时渗透爱国主义教育.(二)探索发现勾股定理探究活动一:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:教师提问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.(板书)由此,我们自然产生联想:一般的直角三角形是否也具有该性质呢?探究活动二:(1)观察下面两幅图:学生独立观察图形,分析思考其中隐藏的规律.学生举手发言,表述自己的发现结果,其他同学作补充.从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.从特殊到一般是数学思维的自然联想.探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现ABCCBA创设情景引出课题探究活动一得结论1观察归纳展开联想探究活动二勾股定理的证法很多,目前世界上可以查到的方法有500余种,下面介绍我国古代两种证法:1、公元3世纪我国汉代数学家赵爽在为《周髀算经》作注时给出的“弦图”(就是前面的图3):你能进一步体会2002年世界数学家大会会标的设计用意了吗?2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图”:(运用几何画板动态演示移补拼接过程)观察“弦图”和“青朱出入图”,体会我国古代数学家的巧妙证法.通过介绍我国古代关于“勾股定理”的证法,让学生了解“移、补、拼、接”这种研究几何问题的方法.同时让学生了解我国古代数学的辉煌成就,认识勾股定理的历史地位和文化价值,激发学生的爱国热情,激励学生发奋学习.(四) 勾股定理的应用课堂反馈:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了. 你同意他的想法吗?你能解释这是为什么吗?3、古代问题:在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形. 在水池独立完成并口答1题.讨论交流,完成2题.独立思考的基础上,与同伴交流完成3题.这里设计的3道题目难度各异,可让不同层次的学生都得到训练.第1题是勾股定理的直接运用,意在巩固基础知识.第2、3题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识. 运用数学知识解决实际问题是数学教学的重要内容.第3题需要列方程来解决,意cb a青入青出青入青出朱入朱出青方朱方?225100x1517介绍我国古代证法应用与反馈。

17.1第1课时勾股定理及验证

17.1第1课时勾股定理及验证

图 17-1-13
第1课时 勾股定理及验证
解:证明:连接 DB,过点 B 作 DE 边上的高 BF,则 BF=b-a. 1 1 ∵S 五边形 ACBED=S 梯形 ACBE+S△AED= (a+b)b+ ab, 2 2 1 1 2 1 又∵S 五边形 ACBED=S△ACB+S△ADB+S△BED= ab+ c + a(b-a), 2 2 2 1 1 1 1 2 1 ∴ (a+b)b+ ab= ab+ c + a(b-a), 2 2 2 2 2 ∴a2+b2=c2.
第1课时 勾股定理及验证
C拓广探究创新练
15.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其 中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角 三角形如图 17-1-12 或图 17-1-13 摆放时, 都可以用“面积法” 来证明.下面是小聪利用图 17-1-12 证明勾股定理的过程: 将两个全等的直角三角形按图 17-1-12 所示的方式摆放,其中 ∠DAB=90° ,求证:a +b =c .
第1课时 勾股定理及验证
14.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的 一种新的证明方法. 如图 17-1-11 所示, 火柴盒的一个侧面 ABCD 倒下到四边形 AB′C′D′的位置,连接 CC′,AC′,AC,设 AB=a, BC=b,AC=c,请利用四边形 BCC′D′的面积验证勾股定理: a2 +b =c .
图17-1-7
第1课时 勾股定理及验证
10.[2018· 凉山州] 如图 17-1-8,数轴上点 A 对应的数为 2, AB⊥OA 于点 A,且 AB=1,以 O 为圆心,OB 长为半径作弧, 交数轴于点 C,则 OC 的长为( D ) A.3 B. 2 C. 3 D. 5

人教版数学八年级下册 第17章 勾股定理 单元练习题 含答案解析

人教版数学八年级下册 第17章 勾股定理 单元练习题  含答案解析

人教版数学八年级下册第17章勾股定理单元练习题一.选择题(共10小题)1.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,能判断△ABC是直角三角形的是()A.a=2,b=3,c=4 B.a:b:c=C.∠A+∠B=2∠C D.∠A=2∠B=3∠C2.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对3.下列是勾股数的有()①3,4,5 ②5、12、13 ③9,40,41④13、14、15 ⑤⑥11、60、61A.6组B.5组C.4组D.3组4.若等腰三角形的腰长为13,底边长为10,则底边上的高为()A.6 B.7 C.9 D.125.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C.D.106.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5 C.6 D.47.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3 B.C.D.18.在平面直角坐标系中,O是坐标原点,点A(3,2),点P(m,0)(m<6),若△POA是等腰三角形,则m可取的值最多有()A.2个B.3个C.4个D.5个9.如图,以数轴的单位长度线段为边作一个正方形,以1为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.1 B.﹣1 C.1﹣D.10.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C.D.4或二.填空题(共9小题)11.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要元钱.12.如图,三角形ABC中,∠ACB=90°,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC的最小值是.13.如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30°角,那么这棵树折断之前的高度是米.14.一个无盖的圆柱形杯子的展开图如图所示,现将一根长18cm的吸管放在杯子中,则吸管露在杯子外面的部分至少有cm.15.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.16.如图,△ABC中,AC=5,BC=12,AB=13,以AB为直径的半圆过点C,再分别以BC、AC为直径向上作三个半圆,则阴影部分面积为.17.如图,已知四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=13,DA=12,则四边形ABCD的面积等于.18.如图,在Rt△ABC中,∠ACB=90°,AB=7.5cm,AC=4.5cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为.19.如图,AB=AC,则数轴上点C所表示的数为.三.解答题(共6小题)20.如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.21.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.23.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?24.如图:Rt△ABC斜边BC的中垂线交AB边于点E,若AC=3,BC=5,求AE的长.25.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、22+32≠42,不符合勾股定理的逆定理,不能够判断△ABC是直角三角形,不符合题意;B、()2+()2=()2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;C、∠A+∠B=2∠C,此时∠C=60°,不能够判断△ABC是直角三角形,不符合题意;D、∠A=2∠B=3∠C,那么∠A=()°、∠B=()°、∠C=()°,△ABC不是直角三角形,不符合题意.故选:B.2.【解答】解:∵正方形小方格边长为1,∴BC==5,AC==,AB==,在△ABC中,∵AB2+AC2=5+20=25,BC2=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.故选:A.3.【解答】解:①32+42=52,是勾股数;②52+122=132,是勾股数;③92+402=412,是勾股数;④132+142≠152,不是勾股数;⑤不是正整数,不是勾股数;⑥112+602=612,是勾股数;故是勾股数的有4组.故选:C.4.【解答】解:如图:AB=AC=13,BC=10.△ABC中,AB=AC,AD⊥BC;∴BD=DC=BC=5;Rt△ABD中,AB=13,BD=5;由勾股定理,得:AD===12.故选:D.5.【解答】解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选:C.6.【解答】解:由勾股定理得:AB==5;故选:B.7.【解答】解:点A的坐标为(2,﹣1)到原点O的距离:OA==.故选:C.8.【解答】解:由勾股定理得:OA==,如图所示:OA=OP有2个、AP=OA有1个(不符合题意舍去)、AP=OP有1个,一共2+1=3(个).则m可取的值最多有3个.故选:B.9.【解答】解:∵正方形的边长为1,∴BC==,∴AC=,即|A﹣1|=,故点A表示1﹣.故选:C.10.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.二.填空题(共9小题)11.【解答】解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.12.【解答】解:作CP⊥AB于P,由垂线段最短可知,此时PC最小,由勾股定理得,AB===5,S△ABC=×AC×BC=×AB×PC,即×3×4=×5×PC,解得,PC=,故答案为:.13.【解答】解:∵一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30°角,如图,可知:∠ACB=90°,AC=2米,∠ABC=30°,∴AB=2AC=4米,∴折断前高度为2+4=6(米).故答案为6.14.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:18﹣15=3(cm).故答案为:3.15.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故答案是:3.16.【解答】解:∵52+122=169=132,∴△ABC是直角三角形,S阴影=π()2+π()2﹣[π()2﹣×5×12]=30.故答案为:30.17.【解答】解:连接AC,∵∠ABC=90°,AB=3,BC=4,∴AC===5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD=×3×4+×5×12=36.故答案为:36.18.【解答】解:在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t==3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP=AP时,如图3,AP=BP=2tcm,CP=(6﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,所以4t2=4.52+(6﹣2t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=.故答案为:3.75或6或.19.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为:﹣1.三.解答题(共6小题)20.【解答】解:在△ABD中,∵AB=13,BD=5,AD=12,∴BD2+AD2=52+122=169,AB2=132=169,∴BD2+AD2=AB2∴∠ADB=∠ADC=90°,在Rt△ACD中,由勾股定理得,∴BC=BD+CD=5+9=14.21.【解答】解:(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.22.【解答】解:(1)连接AC,∵∠B=90°,∴AC2=BA2+BC2=400+225=625,∵DA2+CD2=242+72=625,∴AC2=DA2+DC2,∴△ADC是直角三角形,即∠D是直角;(2)∵S四边形ABCD=S△ABC+S△ADC,∴S四边形ABCD=AB•BC+AD•CD=×20×15+×24×7=234.23.【解答】解:(1)∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE===15,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.24.【解答】解:连接CE,由勾股定理得,AB===4,∵DE是BC的中垂线,∴EC=EB=4﹣AE,由勾股定理得,AC2+AE2=EC2,即32+AE2=(4﹣AE)2,解得,AE=.25.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。

_2020-2021学年人教版八年级数学下册一课一练——17.1勾股定理

_2020-2021学年人教版八年级数学下册一课一练——17.1勾股定理

17.1勾股定理基础过关一. 单选题1.下列结论中,正确的有( )①△ABC 的三边长分别为a ,b ,c ,若b 2+c 2=a 2,则△ABC 是直角三角形;②在Rt △ABC 中,已知两边长分别为6和8,则第三边的长为10;③在△ABC 中,若∠A :∠B :∠C =1:5:6,则△ABC 是直角三角形;④若三角形的三边长之比为1:2A .3个B .2个C .1个D .0个2.在一个直角三角形中,如果一条直角边长是3,另一条直角边长是4,那么斜边长是( )A .5BC .5D .不确定3.如图是由4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为48,小正方形面积为6,若用x ,y 表示直角三角形的两直角边长(x>y ),则()2x y +的值为( )A .60B .79C .84D .904.在平面直角坐标系中,已知点A (1,3)和点B (3,1),点C 、D 分别是x 轴,y 轴上的动点,则四边形ABCD 的周长最小值为( )A .B .C .D .5.如图,已知ABCD 是长方形纸片,3CD =,在CD 上存在一点E ,沿直线AE 将 △AED 折叠,D 恰好落在BC 边上的点F 处,且6AFB S =△,则△AED 的面积是( ).A .253B .256C .43D .236.如图,已知图中所有的四边形都是正方形,所有的三角形都是直角三角形.若其中每个直角三角形的最长边与最短边的长度之比均为k ,正方形A ,B ,C ,D 的面积分别为S 1,S 2,S 3,S 4,且S 1>S 2,S 3>S 4,则下列结论正确的是( )A .S 1•S 4=k 2S 2B .S 1+S 4=S 22C .S 1•S 4=S 22D .S 1+S 4=kS 27.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为5m ,梯子的顶端B 到地面的距离为12m ,现将梯子的底端A 向外移动到A ',使梯子的底端A '到墙根O 的距离等于6m ,同时梯子的顶端B 下降至B ',那么BB '( )A .小于1mB .大于1mC .等于1mD .小于或等于1m二. 填空题 8.已知,如图,在ABC ∆中,90106C AB AC CD ∠=︒==,,,是AB 上的中线,如果将BCD ∆沿CD 翻折后,点B 的对应点'B ,那么'BB 的长为__________.9.小明想知道学校旗杆的高, 他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为__________m .10.《九章算术》中有一道题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”大致意思是:有一根长为10尺的竹子,中间折断后竹梢触底,如图,离开根部为3尺(3BC =),那么折断后的竹子(AB )的高度为___________.11.在Rt △ABC 中,90,8cm,4cm C BC AC ∠=︒==,在射线BC 上一动点D ,从点B 出发,以1厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为_____________秒.12.如图所示,李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了____米.三.解答题13.“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过40千米/时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方18米的C 处,过了2秒后到达B 处(BC ⊥AC ),测得小汽车与车速检测仪间的距离AB 为30米,请问这辆小汽车是否超速?若超速,则超速了多少?14.如图,在平面直角坐标系中,点A (4,0),点B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 的坐标.15.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22﹣1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32﹣1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n (n ≥2,且n 为整数),根据上述规律,请直接写出这组勾股数组.中考真题16.(2019湖南邵阳·中考)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是____.17.(2020黑龙江绥化·中考)在Rt △ABC 中,90C ∠=︒,若2,8AB AC BC -==,则AB 的长是________.能力提高18.如图,在△ABC 中,∠ABC =45°,AB =AC =8,BC >6,点E ,F 分别在BC ,AC 边上,且AF =CE ,则AE +BF 的最小值为_____.。

人教版八年级数学下勾股定理专项训练含答案

人教版八年级数学下勾股定理专项训练含答案

第17章勾股定理专项训练专训1.巧用勾股定理求最短路径的长名师点金:求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C 走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.(第1题)2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B。

设AB=80 km,BC=20 km,∠ABC=120°。

请你帮助小明解决以下问题:(1)求A,C之间的距离.(参考数据错误!≈4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)(第2题)用平移法求平面中最短问题3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()A.13 cm B.40 cm C.130 cm D.169 cm(第3题)(第4题)4.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF =2,则AF的长是________.用对称法求平面中最短问题5.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.(第5题)6.高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN 的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.(第6题)用展开法求立体图形中最短问题类型1圆柱中的最短问题(第7题)7.如图,已知圆柱体底面圆的半径为错误!,高为2,AB,CD分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是________(结果保留根号).类型2圆锥中的最短问题8.已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?(4)SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.(第8题)类型3正方体中的最短问题9.如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处.1(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.(第9题)类型4长方体中的最短问题10.如图,长方体盒子的长、宽、高分别是12 cm,8 cm,30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.(第10题)专训2。

17.1勾股定理课时训练2022-2023学年人教版八年级下册数学

17.1勾股定理课时训练2022-2023学年人教版八年级下册数学

勾股定理一、选择题1.一同学从A 地沿北偏西60°方向走了100m到达B 地,又从B 地向正南方向走了200m到C 地,此时该同学距离A 地( )A .50mB .100mC .150mD .1003m2.把直角三角形的两直角边同时扩大为原来的3倍,则斜边扩大为( )倍;A 、3;B 、6;C 、3;D 、9;3.直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为( )A .6B .8C .1380 D .1360 二、填空题4.△ABC 中, a 、b 、c 分别为∠A 、∠B 、∠C 的对边,∠C =90°, ①若a =7,b =24, 则c =______;②若b =8,c =17, 则a =______;③若a =9,c =41, 则b =______.5.在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

6.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。

7.13=9+4,即()213=()29+﹝ ﹞2;若以 和 为直角三角形的两直角边长,则斜边长为13。

同理以 和 (均填正整数)为直角三角形的两直角边长,则斜边长为17。

8.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.9.在直角三角形ABC 中,AC=4,BC=3,在斜边AB 上任取一点M ,则AM 小于AC 的概率为__________;三、解答题10.已知直角三角形的斜边长为37,一条直角边为2,求另一条直角边长.11.在数轴上作出表示20的点12.△ABC 中,∠C=900;①a=8,b=6,求c 的长;②c=34,a :b=8:15,求a ,b 两边的长;③b=6,c 比a 大2,求c 边长;④已知a=5cm,b=12cm,求c 边上的高;13.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3,求线段AB 的长。

勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)

勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)

勾股定理应用的常见类型
1.已知直角三角形的任意两边求第三边;
2.已知直角三角形的任意一边确定另两边的关系;
3.证明包含有平方(算术平方根)关系的几何问题;
4.求解几何体表面上的最短路径问题;
5.构造方程(或方程组)计算有关线段长度,解决生产、
生活中的实际问题.
课堂练习
1.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯
三角形的面积公式可求BD,再利用
勾股定理便可求CD.
北东
A
C
D
Q
课堂练习
P
解:∵AC10,BC8,AB6,
B
∴AC2AB2BC2
北东
A
即△ABC是直角三角形,
C
D
Q
1
1
而S△ABC BC AB AC BD
2
2
24
解得:BD .
5
2
24

在Rt△BCD中,CD = BC 2 BD 2 82 6.4
路线最短?
B
A
B
A
方案①
B
A
方案②
方案③
针对练习
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?
你画对了吗?
B
A
B
A
B
∵两点之间线段最短,
∴方案③的路线最短.
A
针对练习
(3)蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是
多少?
解:在Rt△ABC中,
C
B
AC=12 cm,BC=18÷2=9(cm).
在Rt△A′DB中,由勾股定理得

八年级数学下册 17.1.2 勾股定理教案 新人教版(2021学年)

八年级数学下册 17.1.2 勾股定理教案 新人教版(2021学年)

八年级数学下册17.1.2 勾股定理教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册17.1.2 勾股定理教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册17.1.2 勾股定理教案(新版)新人教版的全部内容。

17。

1。

2勾股定理一、教学目标1、会用勾股定理进行简单的计算。

2、树立数形结合的思想、分类讨论思想.3。

培养良好的思维意识,发展数学理念,体会勾股定理的应用价值。

二、课时安排:1课时三、教学重点:勾股定理的简单计算。

四、教学难点:勾股定理的灵活运用,并利用它们的特征解决问题。

五、教学过程(一)导入新课复习勾股定理的文字叙述;勾股定理的符号语言及变形.学习勾股定理重在应用.(二)讲授新课一、合作探究(9分钟),要求各小组组长组织成员进行先自主学习再合作探究、讨论。

【探究一】:一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?思考:①薄木板怎样好通过? ;②在长方形ABCD中, 是斜着能通过的最大长度;③薄模板能否通过,关键是比较与的大小.解:在Rt△ABC中,根据勾股定理AC2=( )2+( )2=2+ 2= .因此AC= ≈.因为AC(填“>"、“<”、或“=")木板的宽2。

2m,所以木板从门框内通过.(填:“能:或“不能:)二、合作、交流、展示:1.运用勾股定理解决实际问题的思路:实际问题数学问题2.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?3.小东拿着一根长竹竿进一个宽3米的城门,他先横着拿进不去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端正好顶着城门的对角,问竿长几米?(三)重难点精讲如图,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版 八年级数学下册 第17章 勾股定理 同
步课时训练
一、选择题
1. 下列说法正确的是( )
A. 若a b c ,,
是ABC ∆的三边,则222a b c += B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=
C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=
D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=
2. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是
( )
A. 7,24,25
B. 312,412,512
C. 3,4,5
D. 4,712,812
3. 三角形的三边长为22()2a b c ab +=+,则这个三角形是( )
A. 等边三角形
B. 钝角三角形
C. 直角三角形
D. 锐角三角形.
4. 如图所示,在ABC ∆中,三边a b c ,,
的大小关系是( )
A. a b c <<
B. c a b <<
C. c b a <<
D. b a c <<
5. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )
A .600米 B. 800米 C. 1000米 D. 不能确定
6. 若ABC ∆的三边a 、b 、c ,满足222()()0a b a b c -+-= ,则ABC ∆是( ).
A .等腰三角形
B .直角三角形
C .等腰三角形或直角三角形
D .等腰直角三角形
7. 如图,在由单位正方形组成的网格图中标有AB , CD , EF , GH 四条线段,其中能构成一个直角三角形三边的线段是( )
A .CD ,EF ,GH
B .AB ,EF ,GH
C .AB ,C
D ,GH D .AB ,CD ,EF
F H
G E
D B
C A
8. 如图所示,底边BC 为23,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为(
)
A . 2+2 3
B . 2+ 3
C . 4
D . 3 3
二、填空题
9. 如图,在Rt △ABC 中,
E 是斜边AB 的中点,若∠A =40°,则∠BCE =________.
10. 如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8.分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F.过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则CD 的长是________.
11. 已知直角三角形两边x ,y 的长满足224560x y y --+=,则第三边长为______________.
12. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.
“路”
4m
3m
13. 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)
6
8
14. 若ABC ∆的三边a b c ,,
满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为
15. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池AEDF ,已知剩余的两直角三角形(阴影部分)的斜边长分别为20cm 和30cm ,
则剩余的两个直角三角形(阴影部分)的面积和...
为 2cm .
三、解答题
16. 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC
沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?
E D C
B A
17. 已知:如图,在ABC ∆中,CD 是AB 边上的高,且2CD AD BD =⋅.求证:ABC ∆是直角三角形.
C
D B A。

相关文档
最新文档