六年级奥数考点:流水行船问题

合集下载

人教版六年级下册数学奥数:流水行船问题(课件)(共18张PPT)(2024年)

人教版六年级下册数学奥数:流水行船问题(课件)(共18张PPT)(2024年)
【练习4】
P114
一艘轮船以同样的速度往返于甲、乙两个港口,顺水行驶时,需要7小时:逆水行驶时
,需要10小时。如果水流速度是每小时3.6十米,求甲、乙两个港口之间的距离。
【例5】
有甲、乙两艘船,甲船和漂流物同时由上游A外顺流面下,乙船也同时从下游B处
逆流而上。 4小时后甲船与漂流物相距100千米,12小时后乙船与漂流物相遇,两船的速度
【例题2】 有一条河在降雨之后,每小时水的流速在中间和沿岸不同。中间是每小时59
千米,沿岸是每小时45千米。一艘船逆流而上,从沿岸航行15小时行完570千米的路程,
回来时在中间航行几小时能行完全程。
【思路导航】
船逆水速度:570÷15=38(千米/时)
船的行驶速度:38 +45=83(千米/时)

相同。A、B间的距离是多少千米?
【分析与解答】
漂流物与水同速,甲船的顺水速度是甲船的速度与水速的和,甲船行4小时后与漂流物相距
100千米,即甲船的速度为100÷4=25(千米/时)。乙船12小时后与漂流物相遇,乙船的逆水速
度与漂流物的速度之和等于乙船的速度。
【我来解答】:
船速:100÷4=25(千米/时)
实践与应用
【练习1】
P112
水流速度是每小时15千米。现在有船顺水而行,8小时行320千米。若逆水行320千米
需几小时?
【例2】甲、乙两港相距210千米,一艘船往返于两港之间.船的速度是每小时18千米水流速
度是每小时3千米。求往返一次所需的时间。
【分析与解答】
往返一次所需的时间为顺水时间加上逆水时间。往返两港之间,路程不变。
顺水时间=路程÷顺水速度;逆水时间=路程÷逆水速度。

(完整版)流水行船问题的公式和例题(含答案)

(完整版)流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。

此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。

* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。

水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。

小学奥数-流水行船问题的要点及解题技巧

小学奥数-流水行船问题的要点及解题技巧

小学奥数-流水行船问题的要点及解题技巧1、什么叫流水行船问题船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。

2、流水行船问题中有哪三个基本量?流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.3、流水行船问题中的三个基本量之间有何关系?流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

船在水中的相遇及追及问题都与水速没有关系:相遇:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。

追及:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。

或:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。

小学奥数流水行船问题的要点及解题技巧例题精讲:例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。

六年级《流水行船问题》奥数教案

六年级《流水行船问题》奥数教案

(六年级)备课教员:第9讲流水行船问题一、教学目标: 1. 在实际情境中理解顺水速度、逆水速度、静水速度及水速等数量的含义,掌握各数量间的关系。

2.掌握流水行船问题的解题方法,提高解题能力和思维的灵活性。

3. 初步养成独立思考、自主探究、合作交流的学习方式。

二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法。

三、教学难点:顺水速度、逆水速度、静水速度及水速等数量间的关系。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:这是龙舟比赛中的情景。

如果他们划船的速度一样,一个在顺水中划,一个在逆水中划,哪个会更快一点?生:在顺水中。

师:是的。

相信同学们应该看过。

我们知道池塘里面的水是不流动的,如果把船放在池塘里,船会动吗?生:不会。

师:是的。

这个时候要我们去划,船才会动,这时候船的速度我们称为船在静水中的速度。

也称为船速(划速)。

但如果把一条船放在流水中,那么船是不是就会顺着水流动。

其实这时候船的速度就是水流的速度。

这个时候如果我们再去划动的话,船会行的更快一点,这时候船的速度就等于水流的速度加上船在静水中的速度。

同样的道理,船在逆水中的速度等于什么?生:……师:是的,这类问题也是我们数学路程问题中的一类,今天我们就来学习这方面的知识。

板书:流水行船问题二、探索发现授课(40分)(一)例题一:(13分)一只渔船顺水行30千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?师:同学们先看题目,题目中要我们求什么?生:船在静水中的速度。

师:前面我们推导了一些公式,船在静水中的速度可以怎么求?生:……师:很好,题目中告诉我们船是顺水行驶,那么船在静水中的速度等于什么呢?生:……师:题目中告诉我们渔船顺水行30千米,用了5小时,那么我们可以求出什么?生:……师:是的,根据速度=路程÷时间,我们求出速度,而这个速度是什么速度?生:……师:是的,顺水时的速度求出来了,题目中又告诉我们水流的速度,接下来同学们会做了吗?生:会了。

第十一讲-六年级奥数-流水行船问题

第十一讲-六年级奥数-流水行船问题

第十一讲流水行船问题【知识导航】解答这类题的要素有下列几点: 水速、流速、船速、距离, 解答这类题与和差问题相似。

划速相当于和差问题中的大数, 水速相当于小数, 顺流速相当于和数, 逆流速相当于差速。

顺流船速=船速+水速;逆流船速=船速—水速;船速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=逆流船速+水速×2;逆流船速=顺流船速—水速×2。

例题1: 一条轮船往返于A.B两地之间, 由A地到B地是顺水航行, 由B地到A 地是逆水航行。

已知船在静水中的速度是每小时20千米, 由A地到B地用了6小时, 由B地到A地所用的时间是由A地到B地所用时间的倍, 求水流速度。

答: 水流速度为每小时()千米。

【随堂练习1】水流速度是每小时15千米。

现在有船顺水而行, 8小时行320千米。

若逆水行320千米需几小时答: 若逆水行320千米需()小时。

例题2:有一船行驶于120千米长的河中, 逆行需10小时, 顺行要6小时, 求船速和水速。

答: 船速是每小时行()千米, 水速是每小时行()千米。

【随堂练习2】有只大木船在长江中航行。

逆流而上5小时行5千米, 顺流而下1小时行5千米。

求这只木船每小时划船速度和河水的流速各是多少答: 木船每小时行()千米;河水的流速是每小时行()千米。

例题3:轮船以同一速度往返于两码头之间。

它顺流而下, 行了8小时;逆流而上, 行了10小时。

如果水流速度是每小时3千米, 求两码头之间的距离。

在同一线段图上做下列游动性示意图36-1演示:答: 两码头之间相距()千米。

【随堂练习3】一艘轮船以同样的速度往返于甲、乙两个港口, 它顺流而下行了7小时, 逆流而上行了10小时。

如果水流速度是每小时千米, 求甲、乙两个港口之间的距离。

答: 甲、乙两个港口之间的距离是()千米。

例题4:甲、乙、丙三人沿着湖边散步, 同时从湖边一固定点出发。

奥数专题_流水行船问题(带答案完美排版)#(精选.)

奥数专题_流水行船问题(带答案完美排版)#(精选.)

流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

六年级下小升初典型奥数之流水行船问题

六年级下小升初典型奥数之流水行船问题

六年级下小升初典型奥数之流水行船问题在六年级的奥数学习中,流水行船问题是一个常常让同学们感到有些头疼,但又十分有趣和具有挑战性的知识点。

今天,咱们就一起来深入探讨一下这个问题,把它彻底搞明白!首先,咱们来了解一下什么是流水行船问题。

想象一下,一艘船在平静的水面上行驶,这很好理解,速度就是船本身的速度。

但如果这条河不是静止的,而是有水流在流动,那么船的实际速度就会受到水流的影响。

这就是流水行船问题的核心所在。

在流水行船问题中,有几个关键的概念咱们得清楚。

船在静水中的速度,通常用“船速”来表示。

这个速度就是船在没有水流影响时,自己能行驶的速度。

水流的速度,咱们称为“水速”。

而当船顺着水流行驶时,我们把这时船的速度叫做“顺水速度”。

很容易理解,顺水速度=船速+水速。

因为水流推着船走,船会跑得更快。

相反,当船逆着水流行驶时,船的速度就叫做“逆水速度”。

逆水速度=船速水速。

这是因为水流在阻碍船前进,船就会变慢。

为了更好地理解这些概念,咱们来看几个具体的例子。

假设一艘船在静水中的速度是每小时 20 千米,水流的速度是每小时 5 千米。

那么当船顺水行驶时,它的速度就是 20 + 5 = 25 千米/小时。

当船逆水行驶时,速度就是 20 5 = 15 千米/小时。

接下来,咱们看看流水行船问题中常见的题型和解题方法。

题型一:求船速和水速比如,一艘船顺水行驶 100 千米用了 4 小时,逆水行驶 80 千米用了 5 小时,求船速和水速。

我们先求出顺水速度:100÷4 = 25(千米/小时)逆水速度:80÷5 = 16(千米/小时)然后根据公式:船速=(顺水速度+逆水速度)÷ 2,水速=(顺水速度逆水速度)÷ 2船速=(25 + 16)÷ 2 = 205(千米/小时)水速=(25 16)÷ 2 = 45(千米/小时)题型二:求路程比如,一艘船在静水中的速度是每小时 18 千米,水流速度是每小时 2 千米。

六年级奥数-行程问题(一)流水问题

六年级奥数-行程问题(一)流水问题

行程问题(一)一、考点、热点顺水:行驶速度=静水速度+流水速度逆水:行驶速度=静水速度—流水速度相遇问题:相距距离÷速度和=相遇时间追及问题:相距距离÷速度差=追及时间二、典型例题例1 一只船在静水中每小时行8千米,逆水行4小时航行24千米,求水流速度?例2 一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,这只客船顺水航行140千米需要多少小时?例3 甲乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。

求船在静水的速度?例4 甲河是乙河的支流,甲河水流速度为每小时3千米,乙河水流速度为每小时2千米,一艘船沿乙河逆水航行6小时,行了84千米到达甲河,在甲河还要顺水航行133千米,这艘船一共航行多少小时?例5 一艘客船从A港驶往B港顺水下行,每小时航行28千米,到达B港后,又逆水上行回到A港,逆水上行比顺水下行多用2小时,已知水流速度为每小时4千米,求A、B两港相距多少千米?例6 A、B两船分别从上游的甲港和下游的乙港同时相向而行,6小时相遇,然后相并向下游驶去,A船经3小时到达乙港,B船经4小时回到乙港。

已知甲、乙两港间相距936千米,求AB两船的速度及水速各是多少千米?例7 一艘客轮顺水航行60千米需4小时,逆水航行60千米需5小时,现在客轮从上游甲城到下游乙城,已知两城间的水路长75千米。

开船时一旅客从窗口投出一木板,问船到乙城时,木板离乙城还有多少千米?例8 两只木排,甲木排和漂流物同时从A地到B地前行,乙木排也同时从B地向A地前行,甲木排5小时后与漂流物相距75千米,乙木排15小时后与漂流物相遇,两木排的划速相同,AB两地距离多长?三、习题练习1、AB两码头相距360千米,一艘轮船在其间航行,顺流需18小时,逆流需24小时,求水流速度。

2、甲、乙两港相距200千米,有一艘汽艇顺水行完全程需8小时,这条河的水流速度是每小时2.5千米,求逆水行完全程要多少小时?3、一只小船在静水中每小时航行35千米,逆水航行180千米需6小时,顺水航行这段水路需多少小时?4、光明号客船顺水航行200千米要8小时,逆水航行120千米也要8小时,那么在静水中航行200千米需要多少小时?5、一艘客轮每小时行驶27千米,在大河中顺水航行160千米,每小时水速5千米,需要航行多少小时?6、一艘货轮每小时行驶25千米,大河中水速为5千米,要在大河中逆水航行7小时,能行驶多少千米?7、甲乙两地相距270千米,客轮从甲地顺水以每小时27千米的速度航行到乙地要用9小时,这样水速是每小时多少千米?8、一只船顺水行320千米需用8小时,水流每小时15千米,逆水每小时行多少千米?9、惟惟划船,沿河向上游划去,不巧帽子被风刮走了。

奥数专题流水行船问题带答案完美排版

奥数专题流水行船问题带答案完美排版

流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

最新六年级奥数题及答案《流水行船》.doc

最新六年级奥数题及答案《流水行船》.doc

最新六年级奥数题及答案《流水行船》
最新六年级奥数题及答案《流水行船》
为大家整理了最新六年级奥数题及答案《流水行船》,希望大家阅读愉快。

轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?
答案与解析:
轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+37=24(天)的路程,即木筏从A城漂到B城需24天.
最新六年级奥数题及答案《流水行船》相关内容就为大家介绍到这儿了,希望能帮助到大家。

流水行船题练习及答案(六年级奥数)

流水行船题练习及答案(六年级奥数)

流水行船题练习及答案1、水流速度是每小时4千米。

现在有一艘船逆水在60千米长的河中航行需5小时,顺水航行需几小时?解:60÷5+4=16〔千米/小时〕60÷〔16+4〕=3〔小时〕答:顺水航行需要3小时。

2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?解:15+3=18〔千米/小时〕,18×8=144〔千米〕,15—3=12〔千米/小时〕,144÷12=12〔小时〕。

答:从乙地返回甲地需要12小时。

3、有一艘船行驶于100千米的长河中,逆行需要10小时,顺行需要5小时,求船速和水速。

解:100÷10=10〔千米/小时〕10÷5=20〔千米/小时〕〔10+20〕÷2=15〔千米/小时〕〔20-10〕÷2=5〔千米/小时〕答:船速是每小时15千米,水速是每小时5千米4、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

解:顺水速度:208÷8=26〔千米/小时〕逆水速度:208÷13=16〔千米/小时〕船速:〔26+16〕÷2=21〔千米/小时〕水速:〔26—16〕÷2=5〔千米/小时〕答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

5、一艘轮船每小时行21千米,在长120千米的河中逆流航行要10小时到达,返回需要几小时?解:21-120÷10+21=30〔千米/小时〕120÷30=4〔小时〕答:返回需要4小时。

6、两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。

解:〔352÷11-352÷16〕÷2=5〔千米/小时〕。

六年级奥数——流水行船问题

六年级奥数——流水行船问题

教学课题流水行船问题教学目标能想象这类问题的情景,理解各个量的关系。

教学重点想象这类问题的情景,理解各个量的关系教学难点教学过程顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1、一艘客轮以每小时35千米的速度,在河中逆水航行124千米,水速为每小时4千米。

这艘客轮需要航行多少小时?练习:1、一艘船每小时行25千米,在大运河中顺水航行140千米。

已知水速是每小时3千米,这艘船行完全程需要多少小时?2、甲乙两码头相距140千米,一只船从甲码头顺水驶向乙码头,船在静水中的速度是每小时30千米,水流速度是每小时5千米。

船到达乙码头需几小时?例2、静水中客船速度是每小时25千米,货船速度是每小时15千米,货船先从某港开出顺水航行,3小时后客船同方向开出。

若水流速度为每小时5千米,客船几小时可以追上货船?1、甲乙两船从相距210千米的两港同时出发,相向而行,甲船顺流而下,乙船逆水而上。

已知两船在静水中的速度分别为每小时32千米和每小时38千米,水流速度为每小时8千米,两船出发后几小时相遇?2、静水中,甲船和乙船的速度分别为每小时28千米和每小时36千米,水流速度是每小时3千米,甲船和乙船分别从A港逆水驶向B港。

甲船先行2小时,问乙船在几小时后追上甲船。

例3、一轮船在两码头间航行,顺水航行需3小时,逆水航行要4小时,水流速度是每小时3千米,两码头间有多少千米?练习:1、一轮船在两码头间航行,顺水航行需4小时,逆水航行要5小时,已知水流速度是每小时2千米,求两码头间距离。

2、某船往返甲乙两港之间,顺水需要6小时,逆水需要8小时,求一木筏漂过甲乙两港之间需要多少小时?例4、一艘轮船往返于AB两地之间,由A到B是顺水航行,由B到A是逆水航行。

已知船在静水中的速度是每小时20千米,由A到B用了6小时,由B到A所用的时间是由A到B的时间的1.5倍,求水流速度。

六年级上册数学小升初常考奥数第36讲 流水行船问题

六年级上册数学小升初常考奥数第36讲 流水行船问题

第36讲流水行船问题一、知识要点当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。

当顺风时,借着风力,相对而言用里较少。

在你的生活中是否也遇到过类似的如流水行船问题。

解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。

划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。

划速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=划速+水速;逆流船速=划速—水速;顺流船速=逆流船速+水速×2;逆流船速=逆流船速—水速×2。

二、精讲精练【例题1】一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A 地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A、B两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。

解:设水流速度为每小时x千米,则船由A地到B地行驶的路程为[(20+x)×6]千米,船由B地到A地行驶的路程为[(20—x)×6×1.5]千米。

列方程为(20+x)×6=(20—x)×6×1.5x=4答:水流速度为每小时4千米。

练习1:1、水流速度是每小时15千米。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?2、水流速度每小时5千米。

现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?3、一船从A 地顺流到B 地,航行速度是每小时32千米,水流速度是每小时4千米,212天可以到达。

次船从B 地返回到A 地需多少小时? 答案1、逆水速度:320÷8-15-15=40-15-15=10(千米/小时) 逆水时间:320÷10=32(小时) 答:若逆水行320千米,需要32小时。

(完整版)奥数专题_流水行船问题(带答案完美排版)

(完整版)奥数专题_流水行船问题(带答案完美排版)

流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

小学奥数知识点趣味学习——流水行船问题

小学奥数知识点趣味学习——流水行船问题

小学奥数知识点趣味学习——流水行船问题
流水行船的要点及解题技巧
1、什么叫流水行船问题
船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。

2、流水行船问题中有哪三个基本量?
流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.
这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:
水速=顺水速度-船速,
船速=顺水速度-水速。

由公式(2)可以得到:
水速=船速-逆水速度,
船速=逆水速度+水速。

小学数学6年级培优奥数讲义 第25讲 流水行船问题(含解析)

小学数学6年级培优奥数讲义 第25讲  流水行船问题(含解析)

第25讲流水行船问题学习目标①掌握流水行船的基本概念;②能够准确处理流水行船中相遇和追及的速度关系。

知识梳理一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。

二、参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速-水速。

(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。

三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系。

典例分析考点一:基本的流水行船问题例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

例2、一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用秒.例3、船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。

奥数之复习八行程问题流水行船问题及答案

奥数之复习八行程问题流水行船问题及答案

复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。

从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。

2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。

一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。

结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。

问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。

船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。

问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。

这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。

小升初典型奥数之流水行船问题

小升初典型奥数之流水行船问题

小升初典型奥数之流水行船问题在小升初的奥数学习中,流水行船问题是一个较为常见且重要的知识点。

对于很多同学来说,初次接触这类问题可能会感到有些困惑,但只要掌握了其中的关键要点和解题方法,就会发现其实并没有那么难。

首先,咱们来了解一下什么是流水行船问题。

想象一下,一艘船在河里航行,河水是流动的,这时候船的行驶速度就会受到河水流动速度的影响。

如果船顺着水流的方向行驶,那么水流会帮助船加快速度;如果船逆着水流的方向行驶,水流就会阻碍船的前进,让船的速度变慢。

在流水行船问题中,有几个关键的概念咱们得弄清楚。

第一个是船在静水中的速度,也就是船在没有水流影响时自己本身的速度,咱们通常用“船速”来表示。

第二个是水流的速度,一般称为“水速”。

第三个是船顺流航行的速度,这个速度等于船速加上水速,我们简称为“顺流速度”。

第四个是船逆流航行的速度,它等于船速减去水速,也就是“逆流速度”。

了解了这些基本概念后,咱们来看几个具体的例子。

比如说,有一艘船在静水中的速度是每小时 20 千米,水流的速度是每小时 5 千米。

那么船顺流航行的速度就是 20 + 5 = 25 千米/小时,逆流航行的速度就是 20 5 = 15 千米/小时。

接下来,咱们说说解决流水行船问题的常用公式。

顺流速度=船速+水速逆流速度=船速水速船速=(顺流速度+逆流速度)÷ 2水速=(顺流速度逆流速度)÷ 2有了这些公式,咱们就可以来解决各种具体的问题啦。

比如这样一道题:一艘船从 A 地顺流而下到 B 地,用了 6 小时,已知船在静水中的速度是每小时 25 千米,水流速度是每小时 5 千米。

求 A、B 两地的距离。

这道题中,我们已经知道了顺流速度=船速+水速= 25 + 5 =30 千米/小时,又知道顺流航行的时间是 6 小时,根据距离=速度×时间,A、B 两地的距离就是 30×6 = 180 千米。

再来看一道稍微复杂点的题:一艘船从 A 地到 B 地顺流航行需要 4 小时,从 B 地返回 A 地逆流航行需要 6 小时。

小学生奥数流水行船问题公式及练习题

小学生奥数流水行船问题公式及练习题

【导语】流⽔⾏船问题⼜叫流⽔问题,是指船在江河⾥航⾏时,除了本⾝的前进速度外,还受到流⽔的推送或顶逆,在这种情况下计算船只的航⾏速度、时间和所⾏的路程。

以下是整理的《⼩学⽣奥数流⽔⾏船问题公式及练习题》相关资料,希望帮助到您。

1.⼩学⽣奥数流⽔⾏船问题公式 (1)⼀般公式: 静⽔速度(船速)+⽔流速度(⽔速)=顺⽔速度; 船速-⽔速=逆⽔速度; (顺⽔速度+逆⽔速度)2=船速; (顺⽔速度-逆⽔速度)2=⽔速。

(2)两船相向航⾏的公式: ⼩学⽣数学⾏船问题公式⼤全:甲船顺⽔速度+⼄船逆⽔速度=甲船静⽔速度+⼄船静⽔速度 (3)两船同向航⾏的公式: 后(前)船静⽔速度-前(后)船静⽔速度=两船距离缩⼩(拉⼤)速度。

(求出两船距离缩⼩或拉⼤速度后,再按上⾯有关的公式去解答题⽬)。

2.⼩学⽣奥数流⽔⾏船问题练习题 A、B两船在静⽔中的速度分别为每⼩时20千⽶和每⼩时16千⽶,两船先后从同⼀个港⼝开出,B⽐A早出发4⼩时,若⽔速每⼩时4千⽶,A开出后多少⼩时追上B?(提⽰:考虑顺流与逆流) 解:顺⽔:A的顺⽔速度:20+4=24(千⽶/时) B的顺⽔速度:16+4=20(千⽶/时) B顺⽔⾛4⼩时的路程为:20×4=80(千⽶) 时间:80÷(24-20)=20(⼩时) 逆⽔:A的逆⽔速度:20-4=16(千⽶/时) B的逆⽔速度:16-4=12(千⽶/时)。

B逆⽔⾛4⼩时的路程为:12×4=48(千⽶) 时间:48÷(16-12)=12(⼩时)。

答:A开出后12⼩时追上B。

3.⼩学⽣奥数流⽔⾏船问题练习题 1、两个码头相距432千⽶,轮船顺⽔⾏这段路程需要16⼩时,逆⽔重组⼩时⽐顺⽔少⾏9千⽶,逆⽔⽐顺⽔多⽤⼏⼩时? 2、已知从河中a地到海⼝60千⽶,如船顺流⽽下,4⼩时可到海⼝,已知⽔速为每⼩时6千⽶,船返回已航⾏4⼩时后,因海⽔涨潮,由海向河的⽔速为每⼩时3千⽶,问此船回到原地,还需再航⾏⼏个⼩时? 3、⼀只⼩船,第⼀次顺流航⾏48千⽶,逆流航⾏8千⽶,共⽤10⼩时;第⼆次⽤同样的时间顺流航⾏24千⽶,逆流航⾏14千⽶。

奥数专题流水行船问题带答案完美排版

奥数专题流水行船问题带答案完美排版

奥数专题 _流水行船问题 (带答案完美排版 )流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况 下计算船只的航行速度、时间和所行的路程,叫做流水行船问题 .流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程) 的关系在这里将要反复用到 . 此外,流水行船问题还有以下两个基本公式:顺水速度 =船速+水速,( 1) 逆水速度 =船速-水速 . ( 2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程 . 水速,是指 水在单位时间里流过的路程 . 顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单 位时间里所行的路程 .根据加减法互为逆运算的关系,由公式( l )可以得到: 水速=顺水速度 -船速,船速=顺水速度 -水速. 由公式( 2)可以得到: 水速 =船速 -逆水速度, 船速=逆水速度 +水速. 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两 个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式( 1 )和公式( 2),相加和相减就可 以得到:船速 =(顺水速度 +逆水速度) -2,水速 =(顺水速度 -逆水速度) -2。

例 1 、甲、乙两港间的水路长 208 千米,一只船从甲港开往乙港,顺水 8 小时到达,从乙 港返回甲港,逆水 13 小时到达,求船在静水中的速度和水流速度 . 分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆 水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆 水所行时间求出 .解: 顺水速度: 208-8=26(千米 /小时) 逆水速度: 208-13=16(千米 /小时) 船速:( 26+16) -2=21(千米 /小时) 水速:( 26—16) -2=5 (千米 /小时) 答:船在静水中的速度为每小时 21 千米,水流速度每小时 5 千米.例 2、某船在静水中的速度是每小时 15 千米,它从上游甲地开往下游乙地共花去了 8小时, 水速每小时 3 千米,问从乙地返回甲地需要多少时间? 分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水 速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点:流水行船问题
一、知识要点
当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。

当顺风时,借着风力,相对而言用里较少。

在你的生活中是否也遇到过类似的如流水行船问题。

解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。

划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。

划速=(顺流船速+逆流船速)÷2;
水速=(顺流船速—逆流船速)÷2;
顺流船速=划速+水速;
逆流船速=划速—水速;
顺流船速=逆流船速+水速×2;
逆流船速=逆流船速—水速×2。

二、精讲精练
【例题1】一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A、B两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。

解:设水流速度为每小时x千米,则船由A地到B地行驶的路程为[(20+x)×6]千米,船由B 地到A地行驶的路程为[(20—x)×6×1.5]千米。

列方程为
(20+x)×6=(20—x)×6×1.5
x=4
答:水流速度为每小时4千米。

练习1:
1、水流速度是每小时15千米。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?解:设无水流速度为每小时x千米
(X+15)×8=320 X=25 320÷(25-15)=32(小时)
2、(课后)水流速度每小时5千米。

现在有一船逆水在120千米的河中航行需6小时,顺水航
行需几小时?解:设无水流速度为每小时x千米
(X+5)×6=120 X=15 120÷(15-5)=12(小时)
3、一船从A地顺流到B地,航行速度是每小时32千米,水流速度是每小时4千米,21
2
天可以
到达。

次船从B地返回到A地需多少小时?
21
2
天=60小时(32+4)×60=2160(千米) 2160÷(32-4)=540/7
【例题2】有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。

列式为
逆流速:120÷10=12(千米/时)
顺流速:120÷6=12(千米/时)
船速:(20+12)÷2=16(千米/时)
水速:(20—12)÷2=4(千米/时)
答:船速是每小时行16千米,水速是每小时行4千米。

练习2:
1、有只大木船在长江中航行。

逆流而上5小时行5千米,顺流而下1小时行5千米。

求这只木船每小时划船速度和河水的流速各是多少?
5÷5=1(千米/时) 5÷1=5(千米/时)
船速:(1+5)÷2=3(千米/时)水速:(5—1)÷2=2(千米/时)
2、(课后)有一船完成360千米的水程运输任务。

顺流而下30小时到达,但逆流而上则需60小时。

求河水流速和静水中划行的速度?
360÷30=12(千米/时) 360÷60=6(千米/时)
船速:(12+6)÷2=9(千米/时)水速:(12—6)÷2=3(千米/时)
3、一海轮在海中航行。

顺风每小时行45千米,逆风每小时行31千米。

求这艘海轮每小时的划速和风速各是多少?
船速:(45+31)÷2=38(千米/时)水速:(45—31)÷2=7(千米/时)
2、(课后)一艘渔船顺水每小时行18千米,逆水每小时行15千米。

求船速和水速各是多少?
船速:(18+15)÷2=16.5(千米/时)水速:(18—15)÷2=1.5(千米/时)
【例题3】轮船以同一速度往返于两码头之间。

它顺流而下,行了8小时;逆流而上,行了10小
时。

如果水流速度是每小时3千米,求两码头之间的距离。

在同一线段图上做下列游动性示意图36-1演示:
图36——1逆流顺流
10
A
因为水流速度是每小时3千米,所以顺流比逆流每小时快6千米。

如果怒六时也行8小时,则只能到A 地。

那么A 、B 的距离就是顺流比逆流8小时多行的航程,即6×8=48千米。

而这段航程又正好是逆流2小时所行的。

由此得出逆流时的速度。

列算式为
(3+3)×8÷(10—8)×10=240(千米)
答:两码头之间相距240千米。

练习3:
1、一走轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7小时,逆流而上行了10小时。

如果水流速度是每小时3.6千米,求甲、乙两个港口之间的距离。

(3.6+3.6)×7÷(10—7)×10=168(千米)
3、(课后)沿河有上、下两个市镇,相距85千米。

有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米。

求往返依次所需的时间。

85÷(18.5+1.5)=4.25(小时)
85÷(18.5-1.5)=5(小时)
【例题4】汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?
依据船逆流在176千米的河中所需航行时间是11小时,可以求出逆流的速度。

返回原地是顺流而行,用行驶路程除以顺流速度,可求出返回所需的时间。

逆流速:176÷11=16(千米/时)
所需时间:176÷[30+(30—16)]=4(小时)
答:返回原地需4小时。

练习4:
1、当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。

返回时水流速度是逆流而上的2倍。

需几小时行195千米?
48÷8=6(千米/时) 6+3=9(千米/时)
3×2=6(千米/时) 9+6=15(千米/时)
195÷15=13(小时)
2、已知一船自上游向下游航行,经9小时后,已行673千米,此船每小时的划速是47千米。

求此河的水速是多少?
3、一只小船在河中逆流航行3小时行3千米,顺流航行1小时行3千米。

求这只船每小时的速度和河流的速度各是多少?。

相关文档
最新文档