分子的空间构型 杂化轨道理论
分子的空间结构(第3课时 杂化轨道理论简介)高二化学(人教版2019选择性必修2)
目录
CONTENTS
02 SP、SP2、 SP3三种杂化
02、SP、SP2、SP3三种杂化
sp3杂化
z
y x
z
y x
z 109°28′
y
x
z
y x
sp3杂化:1个s 轨道与3个p 轨道进行的杂化,形成4个sp3 杂化轨道。
每个sp3杂化轨道的形状也为一头大,一头小, 含有 1/4 s 轨道和 3/4 p 轨道的成分每两个轨道间的夹角为109.5°,空间构型为正四面体形
02、SP、SP2、SP3三种杂化
sp3杂化
02、SP、SP2、SP3三种杂化
sp3杂化 CH4分子的形成
C:2s22p2 2s
2p
2p
激发 2s
sp3杂化
sp3
02、SP、SP2、SP3三种杂化
sp2杂化
sp2杂化:1个s 轨道与2个p 轨道进行的杂化, 形成3个sp2 杂化轨道。
每个sp2杂化轨道的形状也为一头大,一头小,含有 1/3 s 轨道和 2/3 p 轨道的成分每两个轨道间的夹角为120°,呈平面三角形
课堂练习
4.下列关于空间构型的说法正确的是AA.CH4
是正四面体形 B.CH4是平面正方形C.CH4 是三角锥形 D.CH4是十字交叉形
课堂练习
C 5.氨分子的空间结构是三角锥形,而甲烷是正四面体形,这是因为A.两种分
子的中心原子杂化类型不同,NH3为sp2杂化,而CH4是sp3杂化B.NH3分子中 氮原子形成3个杂化轨道,CH4分子中碳原子形成4个杂化轨道C.NH3分子中有 一对未成键的孤电子对,它对成键电子的排斥作用较强D.NH3分子中氮元素的 电负性比CH4分子中碳元素的电负性大
空间构型
孤对电子-孤对电子 > 孤对电子-成键电子 > 成键电子-成键电子
b. 在ABn中,若A与B之间通过双键或叁键结合时,则按单键处理。
实验内容
1.根据杂化轨道理论判断分子或者基团的空间构型
种 类 BeCl2 BCl3 [Zn(NH3)4 ]2+, CCl4 NH3 H2O [FeF6]3-
杂 化 类 型 键角
sp
180° 直线
sp2
120° 平面三 角
sp3
109°28 ′ 正四面体
不等性sp3 不等性sp3
107°18 ′ 三角锥 104°30 ′ 角(V)形
sp3d2
90° 正八面体
分子的几何 构型
2.价电子对数与理想几何构型关系
价层电子对数 2 3 平面三角形 4 120° 价层电子对的理想几何排 排 布 型 式 布 :-A-: 直 线 形 角 度 180°
价电子对数=(5+1×4-1)/2=4); 如果是阴离子,价层电子总数应加上阴离子的电荷数,例如,PO43-, 价电子对数=(5+0+3)/2=4。
b. 如果是阳离子,价层电子总数应减去阳离子的电荷数,例如,NH4+,
(3) 价电子对数与理想几何构型关系
理想几何构型: 中心原子的价层电子对全是成键电子对。
空间结构的画法,以a为例
Cl
a
最后,判断空间构型
找出不同类型电子对之间排斥作用数(选90°) (a)(b)(c) 90°孤对电子对—孤对电子对排斥作用数 90°孤对电子对—成键电子对排斥作用数 90°成键电子对—成键电子对排斥作用数 0 6 6 1 3 2 0 4 2
最后,判断空间构型
排斥作用数越多排斥越大,此结构就越不稳定,在上述
杂化轨道理论
杂化轨道理论杂化轨道理论基本介绍核外电子在一般状态下总是处于一种较为稳定的状态,即基态。
而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。
在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个电子亚层中,具有能量较低的电子亚层的一个或多个电子会激发而变为激发态,进入能量较高的电子亚层中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的电子亚层。
此时,这一个与多个原来处于较低能量的电子亚层的电子所具有的能量增加到与原来能量较高的电子亚层中的电子相同。
这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。
概述1931年,Linus Carl Pauling提出轨道杂化理论。
实验事实基础是许多分子的键角不等于原子轨道间夹角。
如氧原子与氢原子组成的水分子H-O-H的键角是104.5o,不等于氧的2py与2pz轨道间的夹角90o。
类似的,NH3分子中H-N-H的键角也不等于90o,实际测得107.3o。
实验测得甲烷分子CH4是四面体结构,H-C-H键角为109.5o。
要点⑴ 在形成分子(主要是化合物)时,同一原子中几个能量相近的不同类型的原子轨道 (一般为同一能级组的原子轨道)可以进行线性组合(杂化),重新分配能量和确定空间方向,组成数目相等的新的一组原子轨道。
⑵杂化轨道成键能力大于原来的原子轨道。
因为杂化轨道的形状变成一头大一头小了,用大的一头与其他原子的轨道重叠,重叠部分显然会增大。
⑶ 形成的杂化轨道之间应尽可能地满足最小排斥原理(化学键间排斥力越小,体系越稳定),为满足最小排斥原理,杂化轨道之间的夹角应达到最大。
⑷ 分子的空间构型主要取决于分子中σ键形成的骨架,杂化轨道形成的键均为σ键,所以,杂化轨道的类型与分子的空间构型相关。
相关概念在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道线性组合成新的原子轨道,这个过程叫做原子轨道的杂化,产生的新轨道叫做杂化轨道。
分子的空间构型(课件PPT)
为平面正三角形。
BF3分子形成
2s
2p
激发 2s
2p
正三角形
B的基态
激发态
F
B
120°
F
F
sp2 杂化态
碳的sp2杂化轨道
sp2 杂 化 : 三 个 夹 角 为 120° 的 平 面 三 角 形 杂 化轨道。
等性sp 杂化
同一原子中 ns-np 杂化成新轨道:一个 s 轨道和一个 p 轨 道杂化组合成两个新的 sp 杂化轨道。
4、教学必须从学习者已有的经验开始。——杜威 5、构成我们学习最大障碍的是已知的东西,而不是未知的东西。——贝尔纳 6、学习要注意到细处,不是粗枝大叶的,这样可以逐步学习摸索,找到客观规律。——徐特立 7、学习文学而懒于记诵是不成的,特别是诗。一个高中文科的学生,与其囫囵吞枣或走马观花地读十部诗集,不如仔仔细细地背诵三百首诗。——朱自清 8、一般青年的任务,尤其是共产主义青年团及其他一切组织的任务,可以用一句话来表示,就是要学习。——列宁 9、学习和研究好比爬梯子,要一步一步地往上爬,企图一脚跨上四五步,平地登天,那就必须会摔跤了。——华罗庚 10、儿童的心灵是敏感的,它是为着接受一切好的东西而敞开的。如果教师诱导儿童学习好榜样,鼓励仿效一切好的行为,那末,儿童身上的所有缺点就会没有痛苦和创伤地不觉得难受地逐渐消失。——苏霍姆林斯基
BeCl2分子形成
2p 2s
2p 2s
激发
直线形 杂化
Be基态
Cl
180
Be Cl
激发态
键合
sp杂化态 直线形
化合态
碳的sp杂化轨道
sp 杂 化 : 夹 角 为 180° 的直线形杂化轨道。
杂化轨道理论
乙烯的sp二杂化图解
苯环的结构
平面正六边形,离域大π键.
一.苯环中的碳均是以sp二杂化成夹角为1200三 个sp2杂化轨道.
2.苯环中六个碳之间形成六个σ键,每个碳与 氢形成1个σ键.
三.苯环中六个碳中未杂化的P轨道彼此形成一 个大π键.
四.形成大π键比一般的π键更稳定,因此苯环 体现特殊的稳定性
三、下列分子中的中心原子杂化轨道的类型相同的是 (B ) A.CO2与SO2 B.CH四与NH3 C.BeCl2与BF3 D.C2H2与
C2H4
(三)杂化轨道只能用于形成σ键或者用来容纳未参 与成键的孤电子对.未参与杂化的P轨道可用于形成π (键四。)一个轨道不管有没有电子,只要符合杂化的条件 就可能参与杂化.
四、杂化轨道形成过程
(一)sp三杂化
2p 激发
2p 杂化
2s
2s
sp3
C原子sp3杂化轨道形成过程
sp三杂化轨道的形成过程
z
z
z
个顶点 ; 未杂化p形成π键. C—H键是s—sp二 σ键,
C—C键是sp2—sp2 σ键, 一个π键
分子中共有五个σ键,一个π键
第 25 页
杂化轨道理论
当堂巩固
二、对SO2与CO2说法正确的是[ D ] A.都是直线形结构 B.中心原子都采取sp杂化轨道 C. S原子和C原子上都没有孤对电子 D. SO2为V形结构, CO2为直线形结构
杂化 类型
参与杂化的原子轨道
种类
数目
杂化 杂化轨 杂化轨道 轨道数 道夹角 空间构型
ns sp
np
1 1
二 一八 0°
直线型
ns sp2
np
一
三 一二 平面三角形
分子的空间构型杂化轨道理论
C原子在形成乙炔分子时发生sp杂化,两个 碳原子以sp杂化轨道与氢原子旳1s轨道结合形成 σ键。各自剩余旳1个sp杂化轨道相互形成1个σ 键,两个碳原子旳未杂化2p轨道分别在Y轴和Z轴 方向重叠形成π键。所以乙炔分子中碳原子间以 叁键相结合。
大π 键
C6H6
sp2杂化
C6H6旳大π键(离域键)
思索
BeCl2分子形成过程
2p 2s
2p 2s 激发
Be基态
180
Cl Be
激发态
Cl
杂化 直线形
键合
sp杂化态 直线形
化合态
三、杂化理论简介
1.概念:在形成份子时,因为原子旳相互影响,若干 个不同类型但能量相近旳原子轨道混合起来,重新组 合成一组新轨道旳过程叫做原子轨道旳杂化,所形成 旳新轨道就称为杂化轨道。
杂化轨道 每个轨道旳成份 轨道间夹角( 键角)
sp
1/2 s,1/2 p
180°
sp2
1/3 s,2/3 p
120°
sp3
1/4 s,3/4p
109°28′
三、杂化理论简介
3.杂化轨道分类:
H2O原子 轨道杂化
单 不电等O子性原,杂子可:化形2:成s22参2p个4 加共杂价有化键2个,旳各原子轨道进行成份上旳 键角应该是90°不,W均h匀y?混合。某个杂化轨道有孤电子对
第二单元 分子构型与物质旳性质
分子旳空间构型(2)
C 2s
2px 2py 2pz
2s
2px
2py
2pz
C原子与H原子结合形成旳分子为何是CH4, 而不是CH2或CH3?CH4分子为何具有正四 面体旳空间构型(键长、键能相同,键角相 同为109°28′)?
4.1.2分子的空间结构(2)-杂化轨道理论-高二化学课件(苏教版2019选择性必修2)
1
3
平面
三角形
V形
0
3
平面
三角形
平面
三角形
0
4
正四
面体形
正四
面体形
SO2
CO32-
NH4
+
VSEPR理想
模型
VSEPR理想
模型名称
分子或离子的
空间结构
分子或离子的空
间结构名称
离子
空间构型
ClO直线形
ClO−
2
V形
ClO−
3
三角锥形
ClO−
4
正四面体形
6.含氮化合物在生产生活中有重要的应用。
(1)NH4NO3 和尿素(H2NCONH2)是重要的化学肥料。
THANKS
二、sp杂化——BeCl2
3.sp杂化:1个s轨道+1个p轨道
s
sp杂化
180℃
思考讨论
请同学们分析sp杂化(sp3杂化、 sp2杂化、 sp杂化)中原子轨道杂化前后的变与不
变,并归纳整理。
轨道数不变
s
p p
p
能量、形状不同
伸展方向不同
成键结合力不同
排斥力大
sp3
能量、形状相同
伸展方向不同
成键结合力相同,且增强
4.根据键线式确定
5.根据等离子体确定
二、等电子体原理
1.等电子体
具有相同价电子数和相同原子数的分子或离子
2.等电子体原理
具有相同的结构特征,性质相近
C
O
N
N
1个σ键和2个π键
原子
总数
CO 2
N2 2
价电
子数
10
2.2.2杂化轨道理论
C原子在形成乙炔分子时发生sp杂化,两个碳 原子以sp杂化轨道与氢原子的1s轨道结合形成σ 键。各自剩余的1个sp杂化轨道相互形成1个σ键, 两个碳原子的未杂化2p轨道分别在Y轴和Z轴方 向重叠形成π键。所以乙炔分子中碳原子间以叁 键相结合。
大π 键
C6H6
sp2杂化
பைடு நூலகம்
试用杂化轨道理论分析乙烯和乙炔分子的 成键情况
C原子在形成乙烯分子时,碳原子的2s轨道与2个 2p轨道发生杂化,形成3个sp2杂化轨道,伸向平面 正三角形的三个顶点。每个C原子的2个sp2杂化轨道 分别与2个H原子的1s轨道形成2个相同的σ键,各自 剩余的1个sp2杂化轨道相互形成一个σ键,各自没有 杂化的l个2p轨道则垂直于杂化轨道所在的平面,彼 此肩并肩重叠形成π键。所以,在乙烯分子中双键由 一个σ键和一个π键构成。
2、杂化的过程:激发—杂化—轨道重叠等过程。
sp杂化轨道的形成过程
180°
z
z
z
z
y
y
y
y
x
x
x
x
sp 杂化:1个s 轨道与1个p 轨道进行的杂化,
形成2个sp杂化轨道。 每个sp杂化轨道的形状为一头大,一头小,成键时利用大的一
头,可以使电子云重叠程度更大,从而形成稳定的化学键。
两个轨道间的夹角为180°,呈直线型
sp
s+p 2
180
sp2
s+(2)p 3
120
sp3
s+(3)p 4
109.5° '
分子空间构型
实例 价层电子 对数
直线形
BeCl 2
2
三角形 四面体 三角锥 V型
BF3 BCl 3
分子的立体构型之杂化轨道理论
杂化轨道理论为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林和斯莱脱(Slater)在电子配对理论的基础上,提出了杂化轨道理论(hybrid orbital theory),丰富和发展了现代价键理论。
1、杂化轨道理论的基本要点原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s、p、d…)的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。
这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。
注意:①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。
②、只有能量相近的轨道才能互相杂化。
常见的有:ns、np 、nd;(n-1)d 、ns、np;③、杂化前后,总能量不变。
但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。
这是由于杂化后轨道的形状发生了变化,电子云分布集中在某一方向上,成键时轨道重叠程度增大,成键能力增强。
④、杂化所形成的杂化轨道的数目等于参加杂化的原子轨道的数目,亦即杂化前后,原子轨道的总数不变。
⑤、杂化轨道的空间构型取决于中心原子的杂化类型。
不同类型的杂化,杂化轨道的空间取向不同,即一定数目和一定类型的原子轨道间杂化所得到的杂化轨道具有确定的空间几何构型,由此形成的共价键和共价分子相应地具有确定的几何构型。
☆什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。
☆什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。
☆为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。
☆杂化的动力:受周围原子的影响。
☆为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。
☆杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。
杂化轨道理论
杂化轨道理论在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。
1基本介绍杂化轨道理论(hybrid orbital theory)是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。
核外电子在一般状态下总是处于一种较为稳定的状态,即基态。
而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。
在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个能级中,具有能量较低的能级的一个或多个电子会激发而变为激发态,进入能量较高的能级中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的能级。
此时,这一个或多个原来处于较低能量的能级的电子所具有的能量增加到与原来能量较高的能级中的电子相同。
这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。
用化学语言讲,杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心电子所用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的电子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的电子轨道——杂化轨道,以满足化学结合的需要。
这一过程称为电子轨道的杂化。
2基本要点只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。
不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。
当然的,有几个原子轨道参加杂化,杂化后就生成几个杂化轨道。
杂化轨道成键时,要满足原子轨道最大重叠原理。
杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。
高考化学一轮复习考点突破:杂化轨道与分子的空间构型(教与学课件)
空间成四面体分布。为了更好地说明这类问题,
Pauling等人以价键理论为基础,提出杂化轨道理
论
三.杂化轨道与分子的空间构型:
2.杂化轨道理论的要点:
其要点为:
1.在形成分子时,中心原子地能级相近地原 子轨道要打乱重组(杂化),形成能级相等的 杂化轨道。
2.n个原子轨道杂化,形成n个杂化轨道。
3.杂化轨道与其它原子成键时,共用电子对 间要采取排斥力最小的位置,以使分子系统的 能量最低,分子最稳定。
三.杂化轨道与分子的空间构型:
3.杂化轨道类型与分子的空间构型与分子的空间构型。 2)sp2杂化:如BF3,θ =1200 ∴ BF3为平面正方形,如下图所示:
三.杂化轨道与分子的空间构型:
3.杂化轨道类型与分子的空间构型与分子的空间构型。 3)sp3杂化: – CH4、CCl4:
cos
1
三.杂化轨道与分子的空间构型: 3.杂化轨道类型与分子的空间构型与分子的
空间构型。
1)sp杂化:
s轨道与p轨道形成sp杂化轨道后,“+”号部分 增大,“—”号减小。当它们与其它原子轨道 重叠成键时,重叠得更多,形成的键更稳定。
分子的立体结构(杂化轨道理论)
01
02
03
04
sp杂化
一个s轨道和一个p轨道杂化 ,形成两个sp杂化轨道,形
状为直线型。
sp2杂化
一个s轨道和两个p轨道杂化 ,形成三个sp2杂化轨道,形
状为平面三角形。
sp3杂化
一个s轨道和三个p轨道杂化 ,形成四个sp3杂化轨道,形
状为正四面体型。
其他杂化类型
如dsp2、d2sp3等,涉及d轨 道的参与,形成更复杂的分子
指导新材料的设计和合成
通过研究杂化轨道理论,可以深入了解 分子中原子间的相互作用和电子排布规 律,从而揭示分子立体结构的本质。
通过调控分子的立体结构,可以设计 和合成具有特定功能的新材料,如催 化剂、药物、光电材料等。
预测和解释分子的性质
基于杂化轨道理论,可以预测和解释 分子的几何构型、键长、键角以及分 子的物理和化学性质。
预测反应活性
通过了解分子的电子云分布和键能,可以预测分子在化学反应中的 活性和选择性。
指导新材料设计
杂化轨道理论为设计具有特定功能和性质的新材料提供了理论指导。
研究成果与不足
成果
杂化轨道理论在解释和预测分子 的立体结构方面取得了显著成果 ,成功应用于多种有机和无机化 合物的结构和性质研究。
不足
对于某些复杂体系,如过渡金属 化合物和生物大分子,杂化轨道 理论的解释力有限,需要进一步 完善和发展。
分子的立体结构杂化轨道理论
contents
目录
• 引言 • 杂化轨道理论基础 • 分子的立体构型与杂化轨道 • 杂化轨道理论与化学键性质 • 杂化轨道理论与化学反应性 • 总结与展望
01 引言
分子的立体结构概述
分子立体结构的定义
第2节 杂化理论和分子空间构型
一、杂化轨道理论 1、SP3杂化
由1个s轨道和3个p轨道混杂并重新组合成4 个能量与形状完全相同的轨道。
14
6
为了四个杂化轨道在空间尽可能远 离,使轨道间的排斥最小,4个杂化 轨道的伸展方向分别指向正四面体的 四个顶点。
四个H原子分别以4个s轨道与C原子上的四 个sp3杂化轨道相互重叠后,就形成了四个性质、 能量和键角都完全相同的S-SP3σ键,形成一个 正四面体构型的分子。
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1320. 12.13Sunday, December 13, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。00:5 0:0500: 50:0500 :5012/ 13/2020 12:50:05 AM
•
3、越是没有本领的就越加自命不凡。 20.12.1 300:50: 0500:5 0Dec-20 13-Dec-20
n 中心原子的价电子数+每个配位原子提供的价电子数 m 2
ⅰ其中,中心原子的价电子数为中心原子的最外层电子数,例如:
B:3,C:4,N:5,O:6,X:7,稀有气体:8
ⅱ配位原子提供电子数的计算方法:
①H、卤素只提供1个共用电子;
② 在形成共价键时,作为配体的氧族可以认为不提供共用电子;
③当氧族原子作为中心原子时,则可以认为提供6电子
大π 键 (离域键) C6H6
思考:1、运用杂化轨道理论解释乙烯、乙炔、苯、 石墨和金刚石中C原子的杂化方式。
石墨的结构图
金刚石的结构图
小结二:含碳物质(有机物、石墨、金刚石等) 中碳原子的杂化方式
4、几种常见分子中心原子杂化类型(NH3、H2O)
N
杂化轨道类型及分子空间立体构型
杂化轨道类型及分子空间立体构型查缺补漏小专题1一、杂化轨道类型与分子构型分子结构与极性1.中心原子的杂化轨道类型与分子的空间构型参与杂化的原子轨道分子构型示例杂化轨道类型SP 一个S轨道,一个P轨道直线形CH三CHCO2BeCL2SP2一个S轨道,两个P轨道平面三角形CH2=CH2BF3\BCL3\CH2OSP3一个S轨道三个P轨道正四面体CH4\CCL4\NH4+三角锥形NH3V形H2S\H2O判断杂化轨道类型的一般方法:(1)看中心原子有没有形成双键或叁键.如果全为单键,则是SP3杂化,如果有一个双键,是SP2杂化,如果有2个双键或一个叁键,是SP杂化.(2)没有填充电子的空轨道,一般不参与杂化,1对孤电子对占据1个杂化轨道.价层电子对互斥理论几种分子或离子的立体构型:分子或离子中心原子的孤电子对数分子或离子的价层电子对数杂化轨道类型键角分子或离子的立体构型名称CO2 0 2 SP 180 直线形SO2 1 3 SP2120 V形BF3 0 3 SP2120 平面三角形CO32-0 3 SP2120 平面三角形CH4 0 4 SP3109.28 正四面体形NH4 + 0 4 SP3109.28 正四面体NH3 1 4 SP3107 三角锥形H2O 2 4 SP3105 V形另:CH3+.中心原子的价层电子对数与分子立体构型有密切的关系.对ABm型化合物,中心原子A的价层电子对数n的计算方法:n=[A的价电子数+m(8-B的价电子数)]/2;主族元素来说,价电子数等于原子的最外层电子数,计算当B为H时将式中的8改成2.高考题中考查方式:1.CO2与SO2分子的立体结构分别是和。
2.在碳酸二甲酯分子中,碳原子采用的杂化方式有,O-C-O的键角约。
3.P的氢化物的分子构型为 .其中原子采取杂化.4. 用价层电子互斥理论推断SnBr2分子中Sn-Br键的键角 120°(填大于或小于或等于),石墨晶体中,每个碳原子通过杂化与周围碳原子成键.5.丙烯腈(H2C=CH-CH三N)分子中碳原子轨道杂化类型是.6.SiF4和SO32-的中心原子杂化类型是 ,ClO3-的空间构型为 .7.甲醛分子的空间构型是C原子的轨道杂化类型是1mol甲醛分子中§键的数目为 .。
分子的空间构型杂化轨道理论
难以给出精确的预测。
杂化轨道理论的发展方向
扩展到非共价分子
发展能够适用于非共价分 子的杂化轨道理论,以更 好地解释金属、离子等分 子的性质。
引入量子力学
将量子力学原理与杂化轨 道理论相结合,以更精确 地描述电子行为和分子性 质。
复杂分子结构研究
深入研究复杂分子结构, 发展更精确的模型和方法, 以解释和预测复杂分子的 性质和行为。
杂化后的轨道称为杂化轨道,它们具有与原始原子轨道不同的形状和取向,可以与其他原子 轨道相互作用形成更稳定的化学键。
杂化轨道理论可以用来预测分子的空间构型和化学键的性质,是现代化学键理论的重要组成 部分。
杂化轨道理论的发展历程
01
1930年代
德国化学家鲍林和美国化学家斯莱特提出了杂化轨道理论的基本概念,
杂化轨道理论在化学反应机理、物质结构和性质预测等方 面具有广泛的应用。通过了解分子的杂化方式,可以预测 分子的性质和反应活性,从而指导化学反应的设计和合成 。
在药物设计和材料科学中,了解分子的杂化方式对于预测 分子的生物活性、稳定性、导电性等性质至关重要。通过 合理设计分子的杂化方式,可以开发出具有特定功能的新 型药物或材料。
3
分子所处的环境
温度、压力、溶剂等环境因素对分子构型有一定 影响。
分子构型与化学反应的关系
01
02
03
反应活性
某些特定的分子构型有利 于化学反应的进行,如碳 正离子的平面构型更易发 生亲电取代反应。
选择性
在某些化学反应中,特定 的分子构型可能导致产物 具有更高的选择性。
反应机理
分子构型影响化学反应的 机理,如环己烯的椅式构 型有利于顺式加成反应的 进行。
分子的空间构型杂化轨道理论
分子的空间构型_杂化轨道理论
3
AB3 三角锥形
等电子体原理
具有相同的通式——ABm,而且价电子总数和原子数目 相等的分子或离子具有相同的结构特征,这个原理称为“等电 子体原理”。这里的“结构特征”的概念既包括分子的立体 结构,又包括化学键的类型,但键角并不一定相等,除非键 角为180或90等特定的角度。
(1)CO2、CNS–、NO2+、N3–具有相同的通式—AX2, 价电子总数16,具有相同的结构—直线型分子,中心原子上 没有孤对电子而取sp杂化轨道,形成直线形s-骨架,键角为 180。
(4)SO42–、PO43–等离子具有AX4的通式,总价电子数 32,中心原子有4个s-键,故取sp3杂化形式,呈正四面体立 体结构;
(5)PO33–、SO32–、ClO3–等离子具有AX3的通式,总 价电子数26,中心原子有4个s-轨道(3个s-键和1对占据s-轨 道的孤对电子),VSEPR理想模型为四面体,(不计孤对电 子的)分子立体结构为三角锥体,中心原子取sp3杂化形式, 没有p-pp键或p-p大键,它们的路易斯结构式里的重键是 d-p大键。
n=1/2[A的价电子数+X提供的价电子数×m
原则:
±离子电荷数
②配体X:H和卤素每个原子各提供一个价电 子, 规定氧与硫不提供价电子;
③正离子应减去电荷数,负离子应加上电荷数。
•确定电子对的空间构型: n=2 直线形 n=3 平面三角形 n=4 正四面体
•确定中心原子的孤对电子对数,推断分子 的空间构型。
平面 三角形
109.5º 正四面体
杂化轨道 数目
2
3
4
思考
BF3分子形成过程
2s
2p
激发 2s
2p
正三角形
2024版史上最易理解杂化轨道理论(图解)
史上最易理解杂化轨道理论(图解)•杂化轨道理论基本概念•s-p杂化轨道•p-p杂化轨道•d-p杂化轨道目•杂化轨道理论与分子构型关系•总结与展望录01杂化轨道理论基本概念原子轨道与杂化轨道原子轨道描述电子在原子核外空间出现概率的分布函数,即电子云形状。
常见的原子轨道有s、p、d、f等。
杂化轨道由同一原子中能量相近的不同类型原子轨道混合起来形成的一组新轨道。
杂化后的轨道具有与原轨道不同的形状、能量和对称性。
sp2杂化由1个ns 和2个np 轨道杂化形成3个sp2杂化轨道,呈平面三角形,如BF3、SO3等分子。
sp 杂化由1个ns 和1个np 轨道杂化形成2个sp 杂化轨道,呈直线型,如CO2、BeCl2等分子。
sp3杂化由1个ns 和3个np 轨道杂化形成4个sp3杂化轨道,呈正四面体型,如CH4、NH3等分子。
d2sp3杂化由1个nd2、1个ns 和3个np 轨道杂化形成6个d2sp3杂化轨道,呈正八面体型,如SF6等分子。
dsp2杂化由1个nd 、1个ns 和2个np 轨道杂化形成4个dsp2杂化轨道,呈平面正方形,如PtCl42-等分子。
杂化类型及特点参与杂化的原子轨道能量应相近,这样有利于电子在杂化后的新轨道中的重新分布和稳定。
能量相近原则最大重叠原则对称性匹配原则原子轨道在杂化过程中应尽可能重叠,以增强成键能力和降低体系能量。
原子轨道在杂化时,其对称性应与分子的对称性相匹配,以确保整个分子的稳定性。
030201杂化轨道形成原因02s-p杂化轨道原子在成键过程中,为了降低能量和增加稳定性,会将能量相近的s轨道和p轨道进行混合。
s-p杂化轨道是由s轨道和p轨道线性组合而成的新轨道,具有特定的形状、方向和能量。
在s-p杂化过程中,原子会重新分配电子云密度,使得杂化轨道更适应于成键。
s-p杂化原理及过程以甲烷(CH4)为例,碳原子的2s和2px, 2py, 2pz轨道进行sp3杂化,形成四个等价的sp3杂化轨道。
杂化轨道理论
杂化轨道理论杂化轨道在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。
目录基本介绍价键理论的论证相关种类几种杂化轨道之后的分子空间形态编辑本段基本介绍分子的空间结构可以通过X射线衍射,电子衍射等实验手段进行测定。
为了解决许多分子构型的理论分析和实验不符的矛盾,更好的解释分子的实际空间构型和稳定性,1931年由鲍林等人在价键理论的基础上提出了杂化轨道理论。
杂化轨道理论就是:在形成分子的过程中,由于原子间的相互影响,若干类型不同而能量相近的原子轨道相互混杂,sp3杂化重新组合成一组能量相等,成分相同的新轨道,这一过程称为杂化。
经过杂化而形成的新轨道叫做杂化轨道,杂化轨道与其他原子轨道重叠时形成σ共价键。
原子在形成分子的过程中,为了使所成化学键强度更大,更有利于体系能量的降低,总趋向于将原来的原子轨道进一步线性组合,以形成新的原子轨道。
编辑本段价键理论的论证价键理论对共价键的本质和特点做了有力的论证,但它把讨论的基础放在共用一对电子形成一个共价键上,在解释许多分子、原子的价键数目及分子空间结构时却遇到了困难。
例如C原子的价电子是2s22p2,按电子排布规律,2个s电子是已配对的,只有2个p电子未成对,而许多含碳化合物中C都呈4价而不是2价,可以设想有1个s电子激发到p轨道去了。
那么1个s轨道和3个p轨道都有不成对电子,可以形成4个共价键,但s和p的成键方向和能量应该是不同的。
而实验证明:CH4分子中,4个C-H共价键是完全等同的,键长为114pm,键角为109°28'。
BCl3,BeCl2,PCl3等许多分子也都有类似的情况。
为了解释这些矛盾,1928年鲍林(Pauling)提出了杂化轨道概念[1],丰富和发展了的价键理论。
他根据量子力学的观点提出:在同一个原子中,能量相近的不同类型的几个原子轨道在成键时,可以互相叠加重组,成为相同数目、能量相等的新轨道,这种新轨道叫杂化轨道。
杂化轨道理论与分子空间构型优质课件
4.氯化亚砜(SOCl2)是一种很重要的化学试剂,可以作为氯化剂和脱水 剂。下列关于氯化亚砜分子的几何构型和中心原子(S)采取杂化方式的说 法正确的是( ) A.三角锥形、sp3 B.V 形、sp2 C.平面三角形、sp2 D.三角锥形、sp2
答案 A
解析 SOCl2 分子中 S 原子的杂化轨道数为 1+3=4,S 原子采取 sp3 杂化, 由于孤对电子占据一个杂化轨道,分子构型为三角锥形。
特别提醒 杂化轨道成键时,需满足化学键间最小排斥原理,键与键间排斥力的大小 决定键的方向,即决定杂化轨道间的夹角,键角越大,化学键之间的排斥 力越小。
[练习与实践]
3.下图是甲醛分子模型的示意图。根据该图和所学的化学键知识回答下列 问题:
(1)甲醛分子中碳原子轨道杂化的方式是________,做出该判断的主要理由 是__________________________。 (2)下列是对甲醛分子中的碳氧键的判断,其中正确的是________(用序号 填空)。
答案 B
解析 原子轨道形成杂化轨道前后,轨道数目不变化,用于形成杂化轨道 的原子轨道的能量相近,并满足最大重叠程度。
2.下列关于杂化轨道说法错误的是( ) A.所有原子轨道都参与杂化 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道用来形成 σ 键或容纳未参与成键的孤电子对 D.杂化轨道中不一定有一个电子
答案 A
解析 参与杂化的原子轨道,其能量不能相差太大,如 1s 与 2s、2p 能量 相差太大不能形成杂化轨道,即只有能量相近的原子轨道才能参与杂化, 并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤 电子对(如 NH3、H2O 的形成)。
图示: (2)sp2 杂化轨道的空间指向 硼原子的 3 个 sp2 杂化轨道指向平面三角形的三个顶点。 (3)共价键的形成 硼原子的 3 个□ 12sp2 杂化轨道分别与 3 个氟原子的□ 132p 轨道重叠,形成 3 个相同的 σ 键。 (4)BF3 分子的空间构型 BF3 分子的空间构型为□ 14平面三角形,键角为□ 15120°。 3.sp 杂化与 BeCl2 分子的空间构型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NH3 H2O
1+3=4 2+2=4
SP3 SP3
三角锥形 V形 形
思考 请用杂化轨道理论分析乙烯和乙炔 分子的成键情况? 分子的成键情况 用杂化轨道理论解释苯分子的成键情况? 用杂化轨道理论解释苯分子的成键情况?
巩固练习
题一:下列分子中的中心原子杂化轨道的 题一: ( B ) 类型相同的是 B.CH4与NH3 . C.BeCl2与BF3 D.C2H2与C2H4 . .
推断分子或离子的空间构型的具体步骤: 推断分子或离子的空间构型的具体步骤: 确定中心原子的价层电子对数, 确定中心原子的价层电子对数, 确定中心原子的价层电子对数 中心原子,X—配位原子 : 配位原子) 以AXm为例 (A—中心原子 中心原子 配位原子 n=1/2[A的价电子数 提供的价电子数×m 的价电子数+X提供的价电子数 的价电子数 提供的价电子数× 负 离子电荷数( ±离子电荷数 正 )] 原则: 原则: 主族序数; ①A的价电子数 =主族序数; 配体X: 配体 :H和卤素每个原子各提供一个价电 规定氧与硫不提供价电子; 子, 规定氧与硫不提供价电子; ③正离子应减去电荷数,负离子应加上电荷数. 正离子应减去电荷数,负离子应加上电荷数.
已知:杂化轨道只用于形成 键或者用来容纳孤电子对 已知:杂化轨道只用于形成σ键或者用来容纳孤电子对 ★杂化轨道数 中心原子孤对电子对数+ 中心原子孤对电子对数+中心原子结合的原子数
结合上述信息完成下表: 结合上述信息完成下表: 代表物 CO2 CH2O CH4 杂化轨道数 杂化轨道类型 分子结构 0+2=2 0+3=3 0+4=4 SP SP2 SP3 直线形 平面三角形 正四面体形
(3)判断共价分子结构的实例 )
例 1 利用价层电子对互斥理论判断下列分子和离子的几何 构型.要求写出价层电子总数,对数,电子对构型和分子构型 . 构型.要求写出价层电子总数,对数, AlCl3 解:总数 对数 电子对构型 6 3 H2 S 8 4 SO32 8 4 NH4 + 8 4 NO2 5 3
等离子具有AX 的通式,总价电子数 (4)SO42–,PO43–等离子具有 4的通式 总价电子数 ) 32,中心原子有4个σ-键,故取 3杂化形式,呈正四面体立 ,中心原子有 个 键 故取sp 杂化形式, 体结构; 体结构; 等离子具有AX 的通式, (5)PO33–,SO32–,ClO3–等离子具有 3的通式,总 ) 价电子数26,中心原子有4个 轨道 轨道(3个 键和 对占据σ 轨 键和1对占据 价电子数 ,中心原子有 个σ-轨道 个σ-键和 对占据σ-轨 道的孤对电子), 理想模型为四面体, 道的孤对电子 ,VSEPR理想模型为四面体,(不计孤对电 理想模型为四面体 不计孤对电 子的)分子立体结构为三角锥体 中心原子取sp 杂化形式, 分子立体结构为三角锥体, 子的 分子立体结构为三角锥体,中心原子取 3杂化形式, 没有p-pπ键或p-p大 没有 π键或 大∏键,它们的路易斯结构式里的重键是 d-p大∏键. 大
三角形
三角形 正四面体 正四面体 正四面体
Cl
分子构型
Cl
S
Cl
S
H
H
Al
H
O
O O
H
N H
N
H
O
O
三角形
V字构型 字构型
三角锥
正四面体 V字形 字形
小结: 小结
代表 物 CO2 中心原子 CH2O 无孤对电子 CH4 中心原子 有孤对电子 H2O NH3 中心原子 结合的原子数 2 3 4 2 3 分子 类型 AB2 空间构型 直线形
(2)CO32–,NO3–,SO3等离子或分子具有相同的通 ) 总价电子数24,有相同的结构—平面三角形分子 平面三角形分子,中 式—AX3,总价电子数 ,有相同的结构 平面三角形分子 中 总价电子数 心原子上没有孤对电子而取sp 杂化轨道形成分子的σ 骨架 骨架. 心原子上没有孤对电子而取 2杂化轨道形成分子的σ-骨架. 等离子或分子, (3)SO2,O3,NO2–等离子或分子,AX2,18e,中心 , 原子取sp 杂化形式,VSEPR理想模型为平面三角形 理想模型为平面三角形, 原子取sp2杂化形式,VSEPR理想模型为平面三角形,中心 原子上有1对孤对电子 处于分子平面上 分子立体结构为V 原子上有 对孤对电子(处于分子平面上 ,分子立体结构为 对孤对电子 处于分子平面上), 或角型, 型(或角型,折线型 . 或角型 折线型)
1.杂化轨道理论简介 杂化轨道理论简介
2s 2p 激发 2s
为了解决这一矛盾,鲍林提出了杂化轨道理论, 为了解决这一矛盾,鲍林提出了杂化轨道理论,
2p 正四面体形
C的基态 的基态
激发态
sp3 杂化态
H
109°28' °
C H H 在同一个原子中能量相近 能量相近的不同类型的几个原子 在同一个原子中能量相近的不同类型的几个原子 轨道( 同等数目的 轨道(S,P…)可以相互叠加而组成同等数目的 )可以相互叠加而组成同等数目 能量完全相等的杂化原子轨道 的杂化原子轨道—杂化轨道理论 能量完全相等的杂化原子轨道 杂化轨道理论 H
S轨道和p轨道杂化轨道类型 轨道和p
sp2 杂化 sp 杂化 杂化轨道夹角 杂化轨道 空间取向 杂化轨道 数目 180 直线 120 平面 三角形 3
sp3 杂化 109.5 正四面体
2
4
思考
BF3分子形成过程
2s 2p 激发 2s 2p 正三角形
B的基态 的基态 F B F
激发态
sp2 杂化态
3,指出中心原子可能采用的杂化轨道类型, 指出中心原子可能采用的杂化轨道类型, 并预测分子的几何构型. 并预测分子的几何构型. (1)PCl3 (2)BCl3 (3)CS2
�
BeH 2 n=
1 2 (2+2)=2 1 (3+3)=3 2 1 (4+4)=4 2
直线形 平面三角形 四面体
BF3
n=
CH 4 n=
②孤对电子≠0 :分子的空间构型不同于电 孤对电子 子对的空间构型. 子对的空间构型. 电子对的 分子的 例 孤对 空间构型 n 空间构型 电子 1 平面三角形 V形 3 SnCl2 形 4 1 2 四面体 四面体 三角锥 V形 形 NH3 H2O
120° °
F
思考
BeCl2分子形成过程
2s 2p 激发 Be基态 基态 激发态 2s 2p 杂化 直线形
sp杂化态 杂化态 直线形
180° °
Cl
Be
Cl
键合 化合态
思考题:根据以下事实总结: 思考题:根据以下事实总结:如何判断一 个化合物的中心原子的杂化类型? 个化合物的中心原子的杂化类型?
AB3 平面三角形 AB4 AB2 AB3 正四面体 V形 三角锥形
等电子体原理
具有相同的通式——ABm,而且价电子总数和原子数目 具有相同的通式 相等的分子或离子具有相同的结构特征,这个原理称为" 相等的分子或离子具有相同的结构特征 这个原理称为"等电 这个原理称为 子体原理" 这里的"结构特征" 子体原理".这里的"结构特征"的概念既包括分子的立体 结构,又包括化学键的类型,但键角并不一定相等, 结构,又包括化学键的类型,但键角并不一定相等,除非键 角为180°或90°等特定的角度. ° 角为 °等特定的角度. 具有相同的通式—AX2, (1)CO2,CNS–,NO2+,N3–具有相同的通式 ) 价电子总数16,具有相同的结构—直线型分子,中心原子上 价电子总数 ,具有相同的结构 直线型分子, 直线型分子 没有孤对电子而取sp杂化轨道,形成直线形σ 骨架 骨架, 没有孤对电子而取 杂化轨道,形成直线形σ-骨架,键角为 杂化轨道 180°. °
1,下列分子中的中心原子杂化轨道的类 型相同的是 ( B ) A.CO2与SO2 B.CH4与NH3 C.BeCl2与BF3 D.C2H2与C2H4
说法正确的是( 2,对SO2与CO2说法正确的是( D ) A.都是直线形结构 A.都是直线形结构 B.中心原子都采取sp杂化轨道 中心原子都采取sp B.中心原子都采取sp杂化轨道 C.S原子和 原子和C C.S原子和C原子上都没有孤对电子 形结构, D.SO2为V形结构, CO2为直线形结构
专题四 分子空间结构与物质性质 第一单元 分子构型与物质的性质
分子的空间构型
C
2s
2px
2py
2pz
2s
2px
2py
2pz
C原子与H原子结合形成的分子为什么是 原子与H 而不是CH CH4,而不是CH2或CH3?CH4分子为什么具有 正四面体的空间构型(键长,键能相同, 正四面体的空间构型(键长,键能相同, 键角相同为109 28′)? 109° 键角相同为109°28′)?
确定电子对的空间构型: 确定电子对的空间构型: 确定电子对的空间构型 n=2 n=3 n=4 直线形 平面三角形 正四面体
确定中心原子的孤对电子对数,推断分子 确定中心原子的孤对电子对数, 确定中心原子的孤对电子对数 的空间构型. 的空间构型. 孤对电子=0:分子的空间构型 分子的空间构型=电子对的空间构型 ① 孤对电子 分子的空间构型 电子对的空间构型 例如: 例如: