基于matlab的floyd算法+matlab计算最短路径
matlab的floyd算法
matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。
它是以发明者之一、罗伯特·弗洛伊德的名字命名的。
这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。
算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。
特别地,当i=j时,dist(i,j)=0。
为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。
则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。
算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。
具体来说,设S={1, 2, ⋯, k},其中k是整数。
Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。
最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。
Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。
这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。
算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。
最小费用最大流问题matlab程序
下面的最小费用最大流算法采用的是“基于Floyd最短路算法的Ford和Fulkerson迭加算法”,其基本思路为:把各条弧上单位流量的费用看成某种长度,用Floyd求最短路的方法确定一条自V1至Vn的最短路;再将这条最短路作为可扩充路,用求解最大流问题的方法将其上的流量增至最大可能值;而这条最短路上的流量增加后,其上各条弧的单位流量的费用要重新确定,如此多次迭代,最终得到最小费用最大流。
本源码由GreenSim团队原创,转载请注明function [f,MinCost,MaxFlow]=MinimumCostFlow(a,c,V,s,t)%%MinimumCostFlow.m% 最小费用最大流算法通用Matlab函数%% 基于Floyd最短路算法的Ford和Fulkerson迭加算法% GreenSim团队原创作品,转载请注明%% 输入参数列表% a 单位流量的费用矩阵% c 链路容量矩阵% V 最大流的预设值,可为无穷大% s 源节点% t 目的节点%% 输出参数列表% f 链路流量矩阵% MinCost 最小费用% MaxFlow 最大流量%% 第一步:初始化N=size(a,1);%节点数目f=zeros(N,N);%流量矩阵,初始时为零流MaxFlow=sum(f(s,:));%最大流量,初始时也为零flag=zeros(N,N);%真实的前向边应该被记住for i=1:Nfor j=1:Nif i~=j&&c(i,j)~=0flag(i,j)=1;%前向边标记flag(j,i)=-1;%反向边标记endif a(i,j)==infa(i,j)=BV;w(i,j)=BV;%为提高程序的稳健性,以一个有限大数取代无穷大endendendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在elseRE=0;end%% 第二步:迭代过程while RE==1&&MaxFlow<=V%停止条件为达到最大流的预设值或者没有从s到t的最短路%以下为更新网络结构MinCost1=sum(sum(f.*a));MaxFlow1=sum(f(s,:));f1=f;TS=length(R)-1;%路径经过的跳数LY=zeros(1,TS);%流量裕度for i=1:TSLY(i)=c(R(i),R(i+1));endmaxLY=min(LY);%流量裕度的最小值,也即最大能够增加的流量for i=1:TSu=R(i);v=R(i+1);if flag(u,v)==1&&maxLY<c(u,v)%当这条边为前向边且是非饱和边时f(u,v)=f(u,v)+maxLY;%记录流量值w(u,v)=a(u,v);%更新权重值c(v,u)=c(v,u)+maxLY;%反向链路的流量裕度更新elseif flag(u,v)==1&&maxLY==c(u,v)%当这条边为前向边且是饱和边时 w(u,v)=BV;%更新权重值c(u,v)=c(u,v)-maxLY;%更新流量裕度值w(v,u)=-a(u,v);%反向链路权重更新elseif flag(u,v)==-1&&maxLY<c(u,v)%当这条边为反向边且是非饱和边时 w(v,u)=a(v,u);c(v,u)=c(v,u)+maxLY;w(u,v)=-a(v,u);elseif flag(u,v)==-1&&maxLY==c(u,v)%当这条边为反向边且是饱和边时 w(v,u)=a(v,u);c(u,v)=c(u,v)-maxLY;w(u,v)=BV;elseendendMaxFlow2=sum(f(s,:));MinCost2=sum(sum(f.*a));if MaxFlow2<=VMaxFlow=MaxFlow2;MinCost=MinCost2;[L,R]=FLOYD(w,s,t);elsef=f1+prop*(f-f1);MaxFlow=V;MinCost=MinCost1+prop*(MinCost2-MinCost1);returnendif L(end)<BVRE=1;%如果路径长度小于大数,说明路径存在elseRE=0;endendfunction [L,R]=FLOYD(w,s,t)n=size(w,1);D=w;path=zeros(n,n);%以下是标准floyd算法for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendL=zeros(0,0);R=s;while 1if s==tL=fliplr(L);L=[0,L];returnendL=[L,D(s,t)];R=[R,path(s,t)];s=path(s,t);end(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的支持)。
Dijkstra、Floyd算法Matlab_Lingo实现
Dijkstra算法Matlab实现。
%求一个点到其他各点的最短路径function [min,path]=dijkstra(w,start,terminal)%W是邻接矩阵%start是起始点Array %terminal是终止点%min是最短路径长度%path是最短路径n=size(w,1);label(start)=0;f(start)=start;for i=1:nif i~=startlabel(i)=inf;endends(1)=start;u=start;while length(s)<nfor i=1:nins=0;forif i==s(j)ins=1;endendif ins==0v=i;if label(v)>(label(u)+w(u,v))label(v)=(label(u)+w(u,v));f(v)=u;endendendv1=0;k=inf;for i=1:nins=0;for j=1:length(s)if i==s(j)ins=1;endend-if ins==0v=i;if k>label(v)k=label(v);v1=v;endendends(length(s)+1)=v1;u=v1;endmin=label(terminal);path(1)=terminal;i=1;while path(i)~=startpath(i+1)=f(path(i));i=i+1 ;endpath(i)=start;L=length(path);path=path(L:-1:1);Floyd算法:matlab程序:%floyd算法,function [D,path,min1,path1]=floyd(a,start,terminal)%a是邻接矩阵%start是起始点%terminal是终止点%D是最小权值表D=a;n=size(D,1);path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;endendendfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)-D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendendif nargin==3min1=D(start,terminal);m(1)=start;i=1;path1=[ ];while path(m(i),terminal)~=terminalk=i+1;m(k)=path(m(i),terminal);i=i+1;endm(i+1)=terminal;path1=m;end1 6 5 5 5 66 2 3 4 4 65 2 3 4 5 45 2 3 4 5 61 4 3 4 5 11 2 4 4 1 6Floyd算法:Lingo程序:!用LINGO11.0编写的FLOYD算法如下;model:sets:nodes/c1..c6/;link(nodes,nodes):w,path; !path标志最短路径上走过的顶点;endsetsdata:path=0;w=0;@text(mydata1.txt)=@writefor(nodes(i):@writefor(nodes(j):-@format(w(i,j),' 10.0f')),@newline(1));@text(mydata1.txt)=@write(@newline(1));@text(mydata1.txt)=@writefor(nodes(i):@writefor(nodes(j):@format(path(i,j),' 10.0f')),@newline(1));enddatacalc:w(1,2)=50;w(1,4)=40;w(1,5)=25;w(1,6)=10;w(2,3)=15;w(2,4)=20;w(2,6)=25;w(3,4)=10;w(3,5)=20;w(4,5)=10;w(4,6)=25;w(5,6)=55;@for(link(i,j):w(i,j)=w(i,j)+w(j,i));@for(link(i,j) |i#ne#j:w(i,j)=@if(w(i,j)#eq#0,10000,w(i,j)));@for(nodes(k):@for(nodes(i):@for(nodes(j):tm=@smin(w(i,j),w(i,k)+w(k,j));path(i,j)=@if(w(i,j)#gt# tm,k,path(i,j));w(i,j)=tm)));endcalcend无向图的最短路问题Lingomodel:sets:cities/1..5/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=41;w(1,3)=59;w(1,4)=189;w(1,5)=81;w(2,3)=27;w(2,4)=238;w(2,5)=94;w(3,4)=212;w(3,5)=89;w(4,5)=171;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j)));endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;-@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));endLingo编的sets:dian/a b1 b2 c1 c2 c3 d/:;link(dian,dian)/a,b1 a,b2 b1,c1 b1,c2 b1,c3 b2,c1 b2,c2 b2,c3 c1,d c2,d c3,d/:x,w;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatamin=@sum(link:w*x);@for(link:@bin(x));n=@size(dian);@sum(link(i,j)|i#eq#1:x(i,j))=1;@sum(link(j,i)|i#eq#n:x(j,i))=1;@for(dian(k)|k#ne#1#and#k#ne#n:@sum(link(i,k):x(i,k))=@sum(link(k,i):x(k,i)));- sets:dian/1..5/:level; !level(i)表示点i的水平,用来防止生产圈;link(dian,dian):d,x;endsetsdata:d=0 41 59 189 8141 0 27 238 9459 27 0 212 89189 238 212 0 17181 94 89 171 0;enddatan=@size(dian);min=@sum(link(i,j)|i#ne#j:d(i,j)*x(i,j));@sum(dian(j)|j#gt#1:x(1,j))>1;@for(dian(i)|i#gt#1:@sum(dian(j)|j#ne#i:x(j,i))=1);@for(dian(i)|i#gt#1:@for(dian(j)|j#ne#i#and#j#gt#1:level(j)>level(i)+x(i,j)-(n-2)*(1-x(i,j))+(n-3)*x(j, i)));@for(dian(i)|i#gt#1:level(i)<n-1-(n-2)*x(1,i));@for(dian(i)|i#gt#1:@bnd(1,level(i),100000));@for(link:@bin(x));。
matlab弗洛伊德算法求出最短距离
最短路径Floyd算法
Floyd算法是一种用于解决最短路径问题的动态规划算法,其时间复杂度为O(n^3 )。
Floyd算法可以求出任意两点之间的最短路径,并且可以处理负权边(但不能处理负权环)。
算法思想
Floyd算法的基本思想是:对于图中的每一对顶点i和j,看看是否存在一个顶点k,使得从i 到k 再到j 比已知的路径更短。
如果是更短的,就修改当前路径为更短的那个路径。
算法步骤
1.初始化:将图中任意两点之间的最短路径长度初始化为它们之间的权值,如果两点之间没有直接的边,则权值为∞。
2.对于每一个中间节点k,依次考察所有的节点对(i,j),如果从i到j经过节点k比原来的路径更短,则更新最短路径长度。
3.最后得到的矩阵即为任意两点之间的最短路径长度。
Matlab代码
function [D,P] = floyd(W)
% W为邻接矩阵
% D为最短距离矩阵
% P为最短路径矩阵
n = size(W,1);
for k=1:n
for i=1:n
for j=1:n
if W(i,k)+W(k,j)<W(i,j)
W(i,j)=W(i,k)+W(k,j);
P(i,j)=k;
end
end
end
end。
实验三:使用matlab求解最小费用最大流算问题
北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。
求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。
为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。
为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
1.最小费用流算法的框图描述。
图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。
matlab、lingo程序代码1-最短距离
例9 某公司在六个城市c1, c2, …c6 中有分公司,从ici到cj的直接航程票价记在下述矩阵的(I,j)位置上。
(∞表示无直接航路),请帮助该公司设计一张城市c1到其它城市间的票价最便宜的路线图。
clc,cleara=zeros(6);a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20;a(4,5)=10;a(4,6)=25;a(5,6)=55;a=a+a';a(find(a==0))=inf;pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));d(1:length(a))=inf;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));endd, index1, index2编写LINGO 程序如下:model:sets:cities/A,B1,B2,C1,C2,C3,D/;roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatan=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i)));@sum(roads(i,j)|i #eq#1:x(i,j))=1;@sum(roads(i,j)|j #eq#n:x(i,j))=1;endmodel:sets:cities/1..11/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=2;w(1,3)=8;w(1,4)=1;w(2,3)=6;w(2,5)=1;w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2;w(4,7)=9;w(5,6)=3;w(5,8)=2;w(5,9)=9;w(6,7)=4;w(6,9)=6;w(7,9)=3;w(7,10)=1;w(8,9)=7;w(8,11)=9;w(9,10)=1;w(9,11)=2;w(10,11)=4;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));end例12 用Floyd算法求解例9。
MATLAB实验报告,遗传算法解最短路径以及函数最小值问题讲解
硕士生考查课程考试试卷考试科目:MATLAB教程考生姓名:考生学号:学院:专业:考生成绩:任课老师(签名)考试日期:20 年月日午时至时《MATLAB 教程》试题:A 、利用MATLAB 设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。
要求设计遗传算法对该问题求解。
ad ehkB 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。
C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。
以上四题任选一题进行实验,并写出实验报告。
选择题目: A 一、问题分析(10分)141011如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为:0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。
最短路径问题matlab求解详尽版
最短路径问题m a t l a b求解详尽版Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】MATLAB 求最短路径利用graphshortestpath 可以求最短路径,具体用法参考MATLAB帮助Examples:S=[1 1 2 2 3 3 4 4 4 4 5 6 6 7 8]; %起始节点向量E=[2 3 5 4 4 6 5 7 8 6 7 8 9 9 9]; %终止节点向量W=[1 2 12 6 3 4 4 15 7 2 7 7 15 3 10]; %边权值向量,有向图,G(9,9)=0; 9个节点G=sparse(S,E,W); %关联矩阵的稀疏矩阵表示G(9,9)=0;P=biograph(G,[],'ShowWeights','on');%建立有向图对象PH=view(P);%显示各个路径权值[Dist,Path]=graphshortestpath(G,1,9,'Method','Dijkstra') %求节点1到节点9的最短路径set(Path),'Color',[1 ]);%以下三条语句用红色修饰最短路径edges=getedgesbynodeid(H,get(Path),'ID'));set(edges,'LineColor',[1 0 0]);set(edges,'LineWidth',;%以下是运行结果,节点1到节点9的最短路径为19Dist =19Path =1 3 4 5 7 9利用graphallshortestpaths可以求出所有最短路径Dists=graphallshortestpaths(G) %求所有最短路径Dists =0 1 2 5 9 6 16 12 19Inf 0 Inf 6 10 8 17 13 20Inf Inf 0 3 7 4 14 10 17Inf Inf Inf 0 4 2 11 7 14Inf Inf Inf Inf 0 Inf 7 Inf 10Inf Inf Inf Inf Inf 0 Inf 7 15Inf Inf Inf Inf Inf Inf 0 Inf 3Inf Inf Inf Inf Inf Inf Inf 0 10Inf Inf Inf Inf Inf Inf Inf Inf 0。
基于Floyd算法的交通调度系统最短路径仿真与设计
第 9期
杜
领 :基 于 F l o y d算 法 的 交 通 调 度 系 统 最 短 路 径 仿 真 与 设 计
9 5
对 同一 种信 息 w 比较 可供量 S( 各 信 息库 可供 量之 和 )与总调 度量 Q( 各单 位 申请量 之和 )的大 小 , 如
果 总可 供量 大 于等 于总 调度 量 ,即 S≥ Q
摘 要 :通 过 对 交 通 调 度 系 统 信 息 分 调 需 求 分 析 ,构 建 交 互 型 F l o y d算 法 模 型 .基 于 F l o y d 算 法设 计 交 通 调 度 系 统 最 短 路 径 ,并通 过仿 真设 计 和 测 试 运 行 该 程 序 , 程 序 运行 良好 . 关 键 词: F l o y d算 法 ;交 通 调 度 系 统 ;最 短 路径 ; 仿 真
①
收 稿 日期 :2 O 1 3 —0 6 —1 5 基 金 项 目 : 四J I I 省 科 技 支 撑 计 划 项 目( 2 0 1 1 Z O O 0 2 7 ) .
作 者 简 介 :杜
领( 1 9 7 0一 ) , 男 ,四川 阆中 人 , 讲 师 ,主 要 从 事 计 算 机 应 用 技 术 研 究
其中 K 表示 第 i 个 信 息 库 ;S ( i ,J )和 R( i , J )表 示 该 信 息 库 中 w 的现 有 信 息 量 和 最 低 储 备 量 ;
S(
.
)一 R( i ,
.
) 表 示 w, 的信 息 可供量 .
1 . 3 信 息分 调方 案制 定
交通调 度 系统信 息分 调方 案利 用分 调模 型来 完 成 ,该分 调模 型 通 过一 系 列公 式 来 实现 .总 的交 通调 度 系统 信息 分调 方案 就是 各种 分调 方案 的汇 总.我们 考虑 某一 个交 通 调度 系统 信息 w 的分调 情况 .
数学建模--运输问题
运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
Floyd算法求解最短路径问题(完整程序代码)
引言在图论中经常会遇到这样的问题,在一个有向图里求出任意两个节点之间的最短距离。
当节点之间的权值是正值的时候,我们可以采用Dijkstra算法,用贪心策略加于解决。
但当节点之间的权值有负数的时候,Dijkstra就行不通了,这里介绍另外一种算法—Floyd最短路径算法。
对于任意图,选择存储结构存储图并实现FLOYD算法求解最短路经。
将问题分解,分解为两方面。
一是对于任意图的存储问题,第二个是实现FLOYD算法求解最短路经。
首先对于图的创建选择合适的存储结构进行存储,对于合适的存储结构可以简化程序。
本实验采用邻接矩阵存储。
然后是实现FLOYD算法求解最短路经,在FLOYD算法中路径的长度即是图中两定点间边的权值,FLOYD算法要求输出任意两个顶点间的最短路径,而且经过的顶点也要输出。
考虑到问题的特殊性,采用一个二维数组和一个三维数组进行存储。
二维数组存储最短路径,三维数组存储路径经过的顶点,在进行适当的算法后对这两个数组进行输出即可。
通过问题的分解,逐个解决,事先所要求的程序。
最短路径算法问题是计算机科学、运筹学、地理信息系统和交通诱导、导航系统等领域研究的一个热点。
传统的最短路径算法主要有Floyd算法和Dijkstra算法。
Floyd算法用于计算所有结点之间的最短路径。
Dijkstra算法则用于计算一个结点到其他所有结点的最短路径。
Dijkstra算法是已经证明的能得出最短路径的最优解,但它的效率是一个很大的问题。
对于具有n个结点的一个图,计算一个结点到图中其余结点最短路径的算法时间复杂度为O(n2)。
对于一座大中型城市,地理结点数目可能达到几万个到几十万个,计算最短路径的时间开销将是非常巨大的。
本文根据吴一民老师的建议,分析当前存在的各种求最短路径的算法,提出一种新的基于层次图的最短路径算法,即将一个平面图划分若干子图,子图抽象为一个高层图。
最短路径的计算首先在高层图中进行,缩小了最短路径的查找范围,降低了最短路径计算的时间开销。
网络计划流程图运用MATLAB确定关键线路的方法
运用Floyd 算法及MATLAB 编程确定网络计划图关键线路的方法古雨鑫(西南科技大学四川绵阳 621000)摘要:关键线路的确定对工程有着重要的意义,同时也是目前常用的一种工程项目进度控制的计划方法,本文通过运用Floyd 算法,以及MATLAB 编程对矩阵的处理能力,本文给出了两种确定关键线路的方法,可以简单方便的确定网络图中的关键线路。
关键词:MATLAB ,网络流程图,Floyd 算法,关键线路 1 基本理论1.1基本概念工程中一项工作从开始到完成需要的时间和资源,在网络图中一般用箭线表示,箭尾表示工作的开始,而箭头表示工作的结束,工作的代号(或名称)一般写在箭线的上方,工作的所需要消耗的时间(资源)一般写在箭线的下方,除此以外,还有不消耗资源和时间的虚工作(一般用虚线表示,只与工作有逻辑关系),紧接着前一项的工作称为紧前工作,紧接着后一项的工作称为紧后工作。
节点指紧前工作和紧后工作的交点,并附有数码(工程中箭头的数码必须大于箭尾的数码)。
关键线路指的是工程中从起始节点到最后节点的所要经过的最长线路。
1.2 确定关键线路的意义现代工程的特点是规模巨大,对时间,资源,资源都有严格的要求,而关键线路更是直接决定工程的总工期,对工程的控制起到了重要的作用,找出关键线路在工程中有着重要的实际意义,对工程的控制有着决定的影响。
2 确定工程项目的MATLAB 算法方法2.1采用Floyd 算法对关键线路的确定Floyd 算法的基本思想是递推产生一个矩阵序列1k ,,,,n A A A ,其中矩阵k A 的第i 行第j 列元素k (,)A i j 表示是从顶点i V 到顶点j V 的路径上所经过的顶点序号不大于k 的最短路径计算时用的迭代公式111(,)min((,),(,),(,)),K k k k A i j A i j A i k A k j ---=K 是迭代次数,,,1,2,,i k j n = 。
基于MATLAB的最短路径算法分析
基于MATLAB的最短路径算法分析周志进(贵阳学院贵州贵阳550005)摘要:随着社会快速发展,人们生活水平提高,很多需求都在向着最优化、最快捷、最高效的方向延伸,而最短路径算法则是图论研究中的典型问题。
该文简要概述MATLAB软件,分析基于MATLAB的4种用于解决最短路径问题的算法,并研究基于MATLAB的最短路径算法的实际应用状况,以期对最短路径算法的应用提供一定借鉴意义。
关键词:MATLAB最优路径Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法中图分类号:TP301.6文献标识码:A文章编号:1672-3791(2022)08(a)-0217-03最短路径算法就是用于计算一个节点到其他节点的最短路径问题,一般是指确定起点的最短路径问题,求起始节点到某一终点的最短路径问题,也常用于已知起点和终点,求解两节点之间的最短路径。
1MATLAB程序概述MATLAB是由美国MathWorks公司出品的数学软件,MATLAB意为矩阵工程,将用于一维、二维与三维数值积分的函数进行了统一,并经过基本数学和内插函数的辅助,提供数值分析、矩阵计算等诸多功能,为应用数学、工程设计和数值计算提供全方位的解决方案,很大程度上摆脱了传统程序设计语言的编辑模式。
其高效的数值及符号计算功能,可以帮助用户快速处理繁杂的数学运算问题,具备的图形处理功能可以实现计算结果和编程的可视化。
MATLAB本身是一个高级的矩阵语言,包括诸多算法、控制语句、函数等面向基本对象或问题的应用程序[1]。
比如:在最短路径计算中可以利用矩阵运算和线性方程组的求解或是数据的统计分析来优化相关问题。
2基于MATLAB的4种最短路径算法2.1Dijkstra算法Dijkstra(迪杰斯特拉)算法是最经典的单源最短路径算法,也就是用于计算一个节点到其他所有节点最短路径的算法。
Dijkstra算法采用贪心算法策略,每次遍历与起点距离最近且未访问过的节点,直至扩展到终点。
算法12--最短路径--弗洛伊德(Floyd)算法
D(2) [i][j] = min{D(1) [i][j], D(1) [i][2]+D(1) [2][j]}
6
0123
V2 8 V3
8
0 1 1920 43 0
3
4 52
ADA(((-32101)))==
8
11021 0 98 2 3 45 0 687
1 2
9
V0
V1
8
8
90 110 6 0 3
12
5.算法实现
• 图用邻接矩阵存储 • edge[ ][ ]存放最短路径长度 • path[i][j]是从Vi到Vj的最短路径上Vj前一顶点序号
void floyd ( ){
for ( int i = 0; i < n; i++ ) //矩阵dist与path初始化
for ( int j = 0; j < n; j++ ) { //置A(-1)
例题:
6 A4 3 11
C
初始:
0 6
4 0
11 2
3 0 B
路径: BA CA
AB AC BC
2 0 4 11
加入A: 6 0 2 37 0
AB AC
路径: BA
BC
CA CAB
04 6 加入B: 6 0 2
37 0
AB ABC
路径: BA
BC
CA CAB
04 6 加入C: 5 0 2
37 0
AB ABC
8
0092 3 45 0 687
1 2
9
V0
V1
8
8
0160 3
1
以D(0)为基础,以V1为中间顶点,求从Vi,到Vj的最短
matlab 最短路径
matlab 最短路径
Matlab最短路径算法是一种经典的图论算法,主要用于在给定的图中找到两个节点之间的最短路径。
在Matlab中,可以使用Dijkstra算法或Floyd算法来实现最短路径的计算。
Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。
它从起点开始,依次加入离该点最近的邻居节点,并更新最短路径,直到所有节点都被加入。
Dijkstra算法的时间复杂度为O(n^2),适用于稠密图。
Floyd算法是一种动态规划算法,用于求解所有点对之间的最短路径。
它通过中间节点的枚举,逐步更新路径长度,直到所有点对的最短路径都被求解出来。
Floyd算法的时间复杂度为O(n^3),适用于稀疏图。
在Matlab中,可以使用built-in函数graph和shortestpath 来实现最短路径的计算。
代码示例:
% 创建图
G = graph([1 2 3 4 4 5 6],[2 3 4 5 6 6 1]);
% 使用Dijkstra算法求解最短路径
[dist,path,pred] = shortestpath(G,1,5);
% 输出结果
disp(dist);
disp(path);
disp(pred);
% 使用Floyd算法求解最短路径
dist = floyd(G);
% 输出结果
disp(dist);
以上就是Matlab最短路径算法的简要介绍和代码示例。
在实际应用中,需要根据具体问题选择合适的算法,并注意算法的时间复杂度和空间复杂度,以及图的特征。
数学建模 银行最优建造问题(matlab源程序)
银行最优建造问题1问题重述现准备在7个居民点v1,v2,…,v7中设置一银行.问设在哪个点,最合理?要建2个银行呢?2问题分析最合理的标准是7个村子到银行的最短路径总和最短。
即7个点到银行点的最短路的总和最小。
由此分析:此问题的基础是图论中最短路径问题。
此问题是全局最短路径问题。
故建设一个银行时,采用Floyed算法。
先建立此无向图的邻接矩阵(权矩阵),使用Floyed算法生成最短路径矩阵。
比较生成矩阵每列的和,取最小值。
即可找出建造一个银行时的最佳建造点。
建造两个银行时,仍以Floyed算法为基础,求出最短路径矩阵。
采用枚举法,一循环的方式比较建设在1、2点,1、3点,1、4点。
等的最短路径的大小。
以对称矩阵的形式输出最短路径的值。
3符号说明1、w无向图的权矩阵2、u用Floyed算法求出的最短路径矩阵3、d最短路径矩阵各列的和组成的向量4、d-min最短路径的长度5、rowcol最短路径和最小的标号,即建造一个银行时的建造点6、tu枚举法比较求得的最小路径矩阵7、td tu各列的和经转换所得的对称矩阵8、td-min建设两个银行时最短路径的总长9、[row,col]矩阵最小值所在位置的行号,列号。
即建设两个银行时的最佳居民点Matlab程序及注释在Floyed.m文件中。
4问题求解使用matlab求解:源程序如下:w=[03inf inf inf inf inf302inf182.5infinf2062inf infinf inf603inf infinf182604infinf2.5inf inf401.5inf inf inf inf inf1.50]n=length(w);u=w;m=1;while m<=nfor i=1:nfor j=1:nu(i,j)=min(u(i,j),u(i,m)+u(m,j));endendm=m+1;endufor i=1:nd(i)=0;for j=1:nd(i)=u(i,j)+d(i);endenddd_min=min(d(:))rowcol=find(d==d_min)tu=zeros(n^2,n);for m=1:n^2for j=1:ntu(m,j)=min(u(m-n*(ceil(m/n)-1),j),u(ceil(m/n),j));endendtutdd=linspace(0,0,n^2);for i=1:n^2tdd(i)=0;for j=1:ntdd(i)=tu(i,j)+tdd(i);endendtd=zeros(n,n);for i=1:nfor j=1:ntd(i,j)=tdd(7*(i-1)+j);endendtdtd_min=min(td(:))[row,col]=find(td==td_min)运行求解结果如下:w=0 3.0000Inf Inf Inf Inf Inf3.00000 2.0000Inf18.0000 2.5000InfInf 2.00000 6.0000 2.0000Inf InfInf Inf 6.00000 3.0000Inf InfInf18.0000 2.0000 6.00000 4.0000InfInf 2.5000Inf Inf 4.00000 1.5000Inf Inf Inf Inf Inf 1.50000 u=0 3.0000 5.000011.00007.0000 5.50007.00003.00000 2.00008.00004.0000 2.5000 4.00005.0000 2.000006.0000 2.0000 4.5000 6.000010.00007.0000 5.00000 3.00007.00008.50007.0000 4.0000 2.0000 6.00000 4.0000 5.50005.5000 2.5000 4.500010.0000 4.00000 1.50007.0000 4.0000 6.000011.5000 5.5000 1.50000 d=38.500023.500025.500040.500028.500028.000035.5000 d_min=23.5000rowcol=2tu=0 3.0000 5.000011.00007.0000 5.50007.000000 2.00008.0000 4.0000 2.5000 4.00000 2.00000 6.0000 2.0000 4.5000 6.00000 3.0000 5.00000 3.0000 5.50007.00000 3.0000 2.0000 6.00000 4.0000 5.50000 2.5000 4.500010.0000 4.00000 1.50000 3.0000 5.000011.0000 5.5000 1.5000000 2.00008.0000 4.0000 2.5000 4.00003.00000 2.00008.00004.0000 2.5000 4.00003.000000 6.0000 2.0000 2.50004.00003.00000 2.00000 3.0000 2.50004.00003.00000 2.0000 6.00000 2.50004.00003.00000 2.00008.00004.00000 1.50003.00000 2.00008.00004.0000 1.500000 2.00000 6.0000 2.0000 4.5000 6.00003.000000 6.0000 2.0000 2.50004.00005.0000 2.000006.0000 2.0000 4.5000 6.00005.0000 2.000000 2.0000 4.50006.00005.0000 2.000006.00000 4.0000 5.50005.0000 2.000006.0000 2.00000 1.50005.0000 2.000006.0000 2.0000 1.500000 3.0000 5.00000 3.0000 5.50007.00003.00000 2.00000 3.0000 2.50004.00005.0000 2.000000 2.0000 4.50006.000010.00007.0000 5.00000 3.00007.00008.50007.0000 4.0000 2.000000 4.0000 5.50005.5000 2.5000 4.50000 3.00000 1.50007.0000 4.0000 5.00000 3.0000 1.500000 3.0000 2.0000 6.00000 4.0000 5.50003.00000 2.0000 6.00000 2.50004.00005.0000 2.000006.00000 4.0000 5.50007.0000 4.0000 2.000000 4.0000 5.50007.0000 4.0000 2.0000 6.00000 4.0000 5.50005.5000 2.5000 2.00006.000000 1.50007.0000 4.0000 2.0000 6.00000 1.500000 2.5000 4.500010.0000 4.00000 1.50003.00000 2.00008.00004.00000 1.50005.0000 2.000006.0000 2.00000 1.50005.5000 2.5000 4.50000 3.00000 1.50005.5000 2.5000 2.00006.000000 1.50005.5000 2.5000 4.500010.0000 4.00000 1.50005.5000 2.5000 4.500010.0000 4.0000000 3.0000 5.000011.0000 5.5000 1.500003.00000 2.00008.00004.0000 1.500005.0000 2.000006.0000 2.0000 1.500007.0000 4.0000 5.00000 3.0000 1.500007.0000 4.0000 2.0000 6.00000 1.500005.5000 2.5000 4.500010.0000 4.0000007.0000 4.0000 6.000011.5000 5.5000 1.50000 td=38.500020.500020.500023.500020.500022.500026.000020.500023.500017.500014.500017.500018.500018.500020.500017.500025.500019.500022.500016.500016.500023.500014.500019.500040.500022.500017.000020.500020.500017.500022.500022.500028.500017.500020.500022.500018.500016.500017.000017.500028.000026.500026.000018.500016.500020.500020.500026.500035.5000 td_min=14.5000row=42col=24由运行结果得:建造一个银行,建设在居民点2v 最佳,最短路径总和为23.5千米。
网络计划流程图运用MATLAB确定关键线路的方法
运用Floyd 算法及MATLAB 编程确定网络计划图关键线路的方法古雨鑫(西南科技大学 四川 绵阳 621000)摘要:关键线路的确定对工程有着重要的意义,同时也是目前常用的一种工程项目进度控制的计划方法,本文通过运用Floyd 算法,以及MATL AB 编程对矩阵的处理能力,本文给出了两种确定关键线路的方法,可以简单方便的确定网络图中的关键线路。
关键词:MATLA B,网络流程图,Fl oyd 算法,关键线路ﻩ1 基本理论1.1基本概念工程中一项工作从开始到完成需要的时间和资源,在网络图中一般用箭线表示,箭尾表示工作的开始,而箭头表示工作的结束,工作的代号(或名称)一般写在箭线的上方,工作的所需要消耗的时间(资源)一般写在箭线的下方,除此以外,还有不消耗资源和时间的虚工作(一般用虚线表示,只与工作有逻辑关系),紧接着前一项的工作称为紧前工作,紧接着后一项的工作称为紧后工作。
节点指紧前工作和紧后工作的交点,并附有数码(工程中箭头的数码必须大于箭尾的数码).关键线路指的是工程中从起始节点到最后节点的所要经过的最长线路。
1。
2 确定关键线路的意义现代工程的特点是规模巨大,对时间,资源,资源都有严格的要求,而关键线路更是直接决定工程的总工期,对工程的控制起到了重要的作用,找出关键线路在工程中有着重要的实际意义,对工程的控制有着决定的影响。
ﻩ2 确定工程项目的M ATLAB 算法方法2.1采用Floyd 算法对关键线路的确定Floy d算法的基本思想是递推产生一个矩阵序列1k ,,,,n A A A , 其中矩阵k A 的第i 行第j 列元素k (,)A i j 表示是从顶点i V 到顶点j V 的路径上所经过的顶点序号不大于k的最短路径长度。
计算时用的迭代公式111(,)min((,),(,),(,)),K k k k A i j A i j A i k A k j ---=K 是迭代次数,,,1,2,,i k j n =。
图论MATLAB算法
第一章:Dijkstra 算法开始?dot i ≤输入,确定邻接矩阵a 确定邻接矩阵a 的节点数dot1=i算每一个节点到U 中每一个节点的最小值 输出第n i 个节点到第一个节点的最小距离i L ,i=1∧dot结束算这dot 个最小值的最小值l ,并确定其节点位置i nl L i n =将第一个节点放入集合U 中将已经确定的第i n 节点到所有节点的权值赋为∞ 将所有节点到第i n 节点的权值加上l 并代替之 ?2>i1+=i i将第i n 节点放入集合U 中 YESNOYESNO求下面赋权图(左图)中顶点u0到其余顶点的最短路。
其邻接矩阵W 为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞=024782063446046340357630135102273201847210W)(i u l迭 代 次 数0u 1u 2u 3u 4u 5u 6u 7u1 2 3 4 5 6 7 8 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞1 2 ∞ 7 ∞ 4 82 4 7 ∞ 4 83 7 ∞4 86 9 4 86 9 69 6 9 最后标记)(v l )(v z0 1 2 3 6 9 4 6 0u 0u 0u 2u 3u 3u 0u 6u1u 2u 3u 4u 5u 6u 7u 0ufunction dijkstra%注:此程序仅作参考,欢迎批评指正。
clcclear%Dijkstra算法:%%%%给邻接矩阵赋值%%%%%%%%%%%%a=[0,1,2,inf,7,inf,4,8;1,0,2,3,inf,inf,inf,7;0,0,0,1,5,inf,inf,inf;0,0,0,0,3,6,inf,inf;0,0,0,0,0,4,3,inf;0,0,0,0,0,0,6,4;0,0,0,0,0,0,0,2;];for i=2:8for j=1:i-1a(i,j)=a(j,i);endenddot=size(a,1);%节点数fprintf('\t邻接矩阵的标准形式:');afuquantu=a;%在赋权图中用到fprintf('\t其中,inf代表无穷大∞,a(i,j)代表第i个节点到第j个节点的权。
MATLAB编程:最短路问题
z 则 令 l(v ) = l(u ) W (u , v ) , (v ) = u
( 3) 设 v 是 使 l(v ) 取 最 小 值 的 S
定 义 3 ( 1 ) 设 P (u ,v)是 赋 权 图 G 中 从 u 到 v 的 路 径 , 则 称 w(P)
e E ( P )
w (e) 为 路 径
P 的权.
(2 )
在赋权图 G 中,从顶点 u 到顶点 v 的具有最小权的路
P (u , v ) , 称 为 u 到 v 的 最 短 路 .
u2
u 6
6
u5
图 G 的 边 为 边 集 的 图 G 的 子 图 , 称 为 G 的 由 V 1 导 出 的 子 图 , 记 为 G[V 1 ]. (3)设 E 1 E ,且 E 1 ,以 E 1 为 边 集 ,E 1 的 端 点 集 为 顶 点 集 的 图 G 的 子 图 , 称 为 G 的 由 E 1 导 出 的 子 图 ,记 为 G[E 1 ].
返回
邻接矩阵
对 无 向 图 G , 其 邻 接 矩 阵 A ( a ij ) , 其 中 :
a ij
1 0
若 v i 与 v j 相邻 若 v i 与 v j 不相邻
v1 A= 0 1 0 1 v2 1 0 1 1 0 1 0 1
注:假设图为简单图
返回
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的 数目(环 算两次) 称 为 v 的 次 数 , 记 为 d (v). (2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记 为 d + ( v), 从 顶 点 v 引 入 的 边 的 数 目 称 为 的 入 度 , 记 为 d - (v), d ( v)= d + ( v)+ d - ( v) 称 为 v 的 次 数 .