概率论与数理统计及其应用第二版课后答案浙江大学

合集下载

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

概率论与数理统计及其应用课后答案浙江大学盛骤版

概率论与数理统计及其应用课后答案浙江大学盛骤版

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论及数理统计及其应用第二版本课后标准答案.doc

概率论及数理统计及其应用第二版本课后标准答案.doc

第1章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果岀现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连岀现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若岀现H则再抛一次;若出现T,则再抛一颗骰子,观察岀现的各种结果。

角军:(1) S {2,3,4,5,6,7} ; (2) S {2,3,4,(3) S {H ,TH ,TTH ,TTTH , };(4) S {HH ,HT ,T1,T2,T3,T 4,T 5,T 6} □2,设A, B 是两个事件,已知P (A) 0.25, P (B) 0.5, P (AB) 0.125,,求P (A B), P (AB), P (AB), P [(A B)(AB)]。

解:P (A B) P (A) P OB) P (AB) 0.625 ,P (AB) P [(S A)B] P (B) P (AB) 0.375 ,P (AB) 1 P (AB) 0.875P [(A B)(AB)] P [(A B)(S AB )] P (A B) P [(A B)(AB)] 0.625 P (AB) 0.53,在100, 101, , 999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100, 101, , 999这900个3位数中不包含数字1的3位数的个数为8 9 9 648,所以所求得概率为648——0.729004,在仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全体三位数的个数有5 5 4 100个。

(1)该数是奇数的可能个数为4 4 3 48个,所以出现奇数的概率为48——0.48100(2)该数大于330的可能个数为2 4 5 4 5 4 48,所以该数大于330的概率为48——0.481005,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

概率论与数理统计答案浙江大学主编

概率论与数理统计答案浙江大学主编

概率论与数理统计答案浙江大学主编第一章概率论的基本概念注意:这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a),(0,b),(0,c),(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A所包含的样本点为(0,a),(1,a),(2,a)。

(3)事件B包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B所包含的样本点为(0,a),(0,b),(0,c)。

2、解(1)AB BC AC或ABC ABC ABC ABC;(2)AB BC AC(提示:题目等价于A,B,C至少有2个发生,与(1)相似);(3)ABC ABC ABC;(4)A B C或ABC;(提示:A,B,C至少有一个发生,或者A B C,,不同时发生);3(1)错。

依题得()()()()0=BApABp ,但空集p-p+=BAA ,≠B故A、B可能相容。

(2)错。

举反例(3)错。

举反例(4)对。

证明:由()6.0=p,()7.0=B p知A()()()()()3.0ApBpp,即A和B交非AABpB=-3.1>+-pA=B空,故A和B一定相容。

4、解(1)因为A B,不相容,所以A B,至少有一发生的概率为:P A B P A P B=+()()()=0.3+0.6=0.9(2) A B,都不发生的概率为:=-=-=;()1()10.90.1P A B P A B(3)A不发生同时B发生可表示为:A B,又因为A B,不相容,于是==;P A B P B()()0.65解:由题知()3.0=ABCP.,()05.0=ABACpBC因()()()()()-AB+p2=AC得,+ABBCpBCpABCppAC()()()()4.0ACpppBCAB3.0=+2=++ABCp故A,B,C 都不发生的概率为 ()()C B A p C B A p -=1 ()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”}若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则(1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C ==若是不放回抽样,则(1)2821028()45C P A C ==; (2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论与数理统计及其应用课后答案第二版浙大版4-7章

概率论与数理统计及其应用课后答案第二版浙大版4-7章

第4章 正态分布1,(1)设)1,0(~N Z ,求}24.1{≤Z P ,}37.224.1{≤<Z P ,}24.137.2{-≤<-Z P ; (2)设)1,0(~N Z ,且9147.0}{=≤a Z P ,0526.0}{=≥b Z P ,求b a ,。

解:(1)8925.0)24.1(}24.1{=Φ=≤Z P ,0986.08925.09911.0)24.1()37.2(}24.1{}37.2{}37.224.1{=-=Φ-Φ=≤-≤=≤<Z P Z P Z P 0986.0)]37.2(1[)]24.1(1[)37.2()24.1(}24.137.2{=Φ--Φ-=-Φ--Φ=-≤<-Z P(2))37.1(9147.0}{Φ==≤a Z P ,所以37.1=a ;}{10526.0}{b Z P b Z P <-==≥,所以)62.1(9474.0}{Φ==<b Z P ,即62.1=b 。

2,设)16,3(~N X ,求}84{≤<X P ,}50{≤≤X P 。

解:因为)16,3(~N X ,所以)1,0(~43N X -。

2957.05987.08944.0)25.0()25.1(}43843434{}84{=-=Φ-Φ=-≤-<-=≤<X P X P 4649.0)7734.01(6915.0)430()435(}50{=--=-Φ--Φ=≤≤X P 。

3,(1)设)36,25(~N X ,试确定C ,使得9544.0}25{=≤-C X P 。

(2)设)4,3(~N X ,试确定C ,使得95.0}{≥>C X P 。

解:(1)因为1)6(2)6()6(}25{}25{-Φ=-Φ-Φ=≤-≤-=≤-C C CC X C P C X P所以得到9772.0)6(=ΦC ,即0.26=C,0.12=C 。

概率论及数理统计及其应用第二版本课后答案.doc

概率论及数理统计及其应用第二版本课后答案.doc

第 1 章随机变量及其概率1,写出下列的本空:(1)投一骰子直至 6 个果中有一个果出两次,投的次数。

(2)投一骰子直至 6 个果中有一个果接出两次,投的次数。

(3)投一枚硬直至正面出,察正反面出的情况。

(4)抛一枚硬,若出 H 再抛一次;若出 T,再抛一骰子,察出的各种果。

解:(1)S{ 2,3,4,5,6,7} ;(2)S { 2,3,4, } ;(3)S { H ,TH ,TTH ,TTTH , } ;(4)S { HH , HT ,T1, T2, T3,T 4,T 5,T 6}。

2,A, B是两个事件,已知P(A) 0.25, P(B) 0.5, P( AB) 0.125, ,求___ ___P( A B), P( AB), P( AB), P[( A B)( AB)] 。

解: P( A B) P( A) P(B) P( AB) 0.625 ,P( AB) P[( S A) B] P( B) P( AB) 0.375 ,___P( AB) 1 P( AB) 0.875 ,___P[( A B)( AB)] P[( A B)(S AB )] P( A B) P[( A B)( AB)] 0.625 P( AB) 0.53,在 100,101,⋯, 999900 个 3 位数中,任取一个 3 位数,求不包含数字 1 个概率。

解:在 100,101,⋯,999900 个 3 位数中不包含数字 1 的 3 位数的个数 8 9 9 648 ,所以所求得概率6489000.724,在由数字 0,1,2,3,4,5 成且每个数字之多出一次的全体三位数中,任取一个三位数。

(1)求数是奇数的概率;(2)求数大于 330 的概率。

解:由数字 0,1,2,3,4,5 成且每个数字之多出一次的全体三位数的个数有 5 5 4 100 个。

(1)数是奇数的可能个数4 4 3 48 个,所以出奇数的概率480.48100(2)数大于 330 的可能个数 2 4 5 4 5 4 48,所以数大于330的概率480.481005,袋中有 5 只白球, 4 只球, 3 只黑球,在其中任取 4 只,求下列事件的概率。

概率论与数理统计及其应用第二版课后问题详解

概率论与数理统计及其应用第二版课后问题详解
P( A) 1 50%
(4) P( A | B ) P( AB ) 45% 9 ;
P(B ) 1 15% 17
(5) P( A | B) P( AB) 5% 1 。
P(B) 15% 3
文案大全
实用文档
11,在 11 张卡片上分别写上 engineering 这 11 个字母,从中任意连
数大于 330 的概率。
解:仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全
体三位数的个数有 55 4 100 个。(1)该数是奇数的可能个数为
4 43 48 个,所以出现奇数的概率为
48 0.48 100
(2)该数大于 330 的可能个数为 2 4 5 4 5 4 48,所以该数大于
上打字的概率分别为多少?
解:设“程序因打字机发生故障而被破坏”记为事件 M ,“程序在 A,B,C 三台打字机上打字”分别记为事件 N1, N2 , N3 。则根据全概率公式有
3
P(M ) P(Ni )P(M | Ni ) 0.6 0.01 0.3 0.05 0.1 0.04 0.025 , i 1
白球,放回,并放入 1 只白球;若取到红球不放回也不放入另外的球。
连续取球 4 次,求第一、二次取到白球且第三、四次取到红球的概率。
解:(1)由题意可得 P(A B) P(A) P(B) P(AB) 0.7 ,所以
P( A | B) P( AB) 0.1 1 , P(B | A) P( AB) 0.1 1 ,
特定的销售点得到 k(k n) 张提货单的概率。
解:根据题意, n(n M ) 张提货单分发给 M 个销售点的总的可能分法

概率论与数理统计及其应用》第二版浙江大学盛骤谢式千编

概率论与数理统计及其应用》第二版浙江大学盛骤谢式千编

教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率 (1)第二章随机变量及其分布 (9)第三章随机变量的数字特征 (25)第四章正态分布 (34)第五章样本及抽样分布 (40)第六章参数估计 (43)第七章假设检验 (54)希望能帮到你第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S(2){} ,4,3,2=S(3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P )])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂ 218185=-= 3、解:用A 表示事件“取到的三位数不包含数字1” 25189********)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330” (1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.485、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球;(2)4只中至少有2只红球;(3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338 (2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单” n kn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

概率论与数理统计和应用课后标准答案答案最新版(浙江大学_盛骤版)

概率论与数理统计和应用课后标准答案答案最新版(浙江大学_盛骤版)

概率论与数理统计和应⽤课后标准答案答案最新版(浙江⼤学_盛骤版)第1章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果出现两次,记录投掷的次数。

(2)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果接连出现两次,记录投掷的次数。

(3)连续投掷⼀枚硬币直⾄正⾯出现,观察正反⾯出现的情况。

(4)抛⼀枚硬币,若出现H 则再抛⼀次;若出现T ,则再抛⼀颗骰⼦,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ??。

解:625.0)()()()(=-+=?AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取⼀个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字⾄多出现⼀次的全体三位数中,任取⼀个三位数。

(1)求该数是奇数的概率;(2)求该数⼤于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现⼀次的全体三位数的个数有100455=??个。

概率论与数理统计及其应用课后答案(浙大版)第2章随机变量及其分布

概率论与数理统计及其应用课后答案(浙大版)第2章随机变量及其分布

概率论与数理统计及其应⽤课后答案(浙⼤版)第2章随机变量及其分布第2章随机变量及其分布1,解:显然,Y 是⼀个离散型的随机变量,Y 取k 表明第k 个⼈是A 型⾎⽽前1-k 个⼈都不是A 型⾎,因此有116.04.0)4.01(4.0}{--?=-?==k k k Y P ,( ,3,2,1=k )上式就是随机变量Y 的分布律(这是⼀个⼏何分布)。

2,解:X 只能取值0,1,2。

设以)3,2,1(=i A i 记第i 个阀门没有打开这⼀事件。

则)}(){()}({}0{3121321A A A A P A A A P X P ===)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P X P ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,解:根据题意,随机变量X 服从⼆项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515 =??==-k C k X P k k k 。

(1),2501.08.02.0)3(123315=??==C X P(2)8329.0)0()1(1)2(==-=-=≥X P X P X P ;(3)6129.0)3()2()1()31(==+=+==≤≤X P X P X P X P ;(4))2()3()4()5(1)5(=-=-=-=-=>X P X P X P X P X P0611.0)0()1(==-=-X P X P4,解:对于][5/3G 系统,当⾄少有3个元件正常⼯作时,系统正常⼯作。

⽽系统中正常⼯作的元件个数X 服从⼆项分布B(5, 0.9),所以系统正常⼯作的概率为99144.01.09.0)(535553=??==∑∑=-=k k k k k Ck X P5,解:根据题意,次品数X 服从⼆项分布B(8000, 0.001),所以∑=-?=≤=<6080008000999.0001.0)6()7(k k k kC X P X P3134.0!8!)001.08000(6860001.08000==?≈∑∑=-=?-k k k k k e k e (查表得)。

概率论与数理统计及其应用课后答案(浙大版)第5章 样本及抽样分布

概率论与数理统计及其应用课后答案(浙大版)第5章 样本及抽样分布

第5章 样本及抽样分布1,解:因为X 的概率密度为x e x f 22)(-=,0>x ,所以(1) 联合概率密度为)()()()(),,,(43214321x f x f x f x f x x x x g =)(2432116x x x x e+++-=,(0,,,4321>X X X X )(2)21,X X 的联合概率密度为)(2212x x e+-,所以⎰⎰⎰⎰----==<<<<2.17.02215.01215.02.17.02122212121224}2.17.0,15.0{dx edx edx dx eX X P x x x x))((4.24.121------=ee ee(3),21)(41)(41==∑=i i X E X E1612141)(161)(241=⎪⎭⎫⎝⎛⨯==∑=i i X D X D ; (4)41)()()(2121==X E X E X XE ,(由独立性)]41)()([21]41[21])5.0[()(])5.0([222222221221+-=+-=-=-X E XE XXE XE X E XX E 81]412141[21]4121)()([212222=-⎪⎭⎫ ⎝⎛+=+-+=X E X D ; (5)222212122212141)()()(])[()(⎪⎭⎫⎝⎛-=-=X E X E X X E X X E X X D163161)4141)(4141(161)]()()][()([222121=-++=-++=X E X D X E X D 。

2,解:(1)=<<<=<}85,85,85{}85),,{max(321321X X X P X X X P()3131321}1075851075{}85{}85{}85{}85{⎪⎭⎫ ⎝⎛-<-=<=<<<X P X P X P X P X P5955.08413.0)]1([33==Φ=;(2))9075()8060()}9075()8060{(3131<<+<<=<<⋃<<X P X P X X P}1075901075107575{}1075801075107560{}9075{}8060{3131-<-<-+-<-<-=<<<<-X P X P X P X P }1075901075107575{}1075801075107560{31-<-<--<-<--X P X P)]0()5.1()][5.0()5.0([)]0()5.1([)]5.0()5.0([Φ-Φ-Φ-Φ-Φ-Φ+-Φ-Φ=6503.04332.0383.04332.0383.0]5.09332.0][1)5.0(2[]5.09332.0[]1)5.0(2[=⨯-+=--Φ--+-Φ= (本题与答案不符) (3)323121232221232221]75100[)]()([)()()()(+=+==X E X D X E X E X E X X X E11108764.1⨯=;(4))(108764.1)(])[()(161132122321321X E X X X E X X X E X X XD -⨯=-=961110662.975108764.1⨯=-⨯=;1400)()(9)(4)32(321321=++=--X D X D X D X X X D ;(5)因为)200,150(~21N X X +,所以4443.05557.01)102(1)200150148(}148{21=-=Φ-=-Φ=≤+XX P 。

概率论与数理统计及其应用课后答案(浙江大学_盛骤版)

概率论与数理统计及其应用课后答案(浙江大学_盛骤版)

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计及其应用第二版课后答案DOC

概率论与数理统计及其应用第二版课后答案DOC

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计第二版课后习题答案

概率论与数理统计第二版课后习题答案

概率论与数理统计第二版课后习题答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。

而课后习题是学习这门学科的重要环节,通过解答习题可以巩固所学知识,提高问题解决能力。

本文将为大家提供《概率论与数理统计第二版》课后习题的答案,希望对大家的学习有所帮助。

第一章:概率论的基本概念1. 事件A、B相互独立,且P(A)=0.3,P(B)=0.4,求P(A∪B)。

解答:由于A、B相互独立,所以P(A∩B)=P(A)×P(B)=0.3×0.4=0.12。

根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.3+0.4-0.12=0.58。

2. 设A、B为两个事件,且P(A)=0.6,P(B)=0.7,若P(A∩B)=0.3,求事件“既不发生A也不发生B”的概率。

解答:事件“既不发生A也不发生B”可以表示为A和B的补集的交集,即A'∩B'。

根据概率的补集公式,P(A')=1-P(A)=0.4,P(B')=1-P(B)=0.3。

由于A、B相互独立,所以P(A'∩B')=P(A')×P(B')=0.4×0.3=0.12。

第二章:离散型随机变量及其分布律1. 设随机变量X的分布律为:P(X=k)=C(10,k)×(0.3)^k×(0.7)^(10-k),其中C(10,k)表示10中取k的组合数。

求P(X≥6)。

解答:P(X≥6)=1-P(X<6)=1-[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)]=1-[C(10,0)×(0.3)^0×(0.7)^10+C(10,1)×(0.3)^1×(0.7)^9+C(10,2)×(0.3)^2×(0.7)^8+ C(10,3)×(0.3)^3×(0.7)^7+C(10,4)×(0.3)^4×(0.7)^6+C(10,5)×(0.3)^5×(0.7)^5]=1 -[1×1×(0.7)^10+10×0.3×(0.7)^9+45×0.09×(0.7)^8+120×0.027×(0.7)^7+210×0. 0081×(0.7)^6+252×0.00243×(0.7)^5]=1-0.0282≈0.9718。

概率论与数理统计及其应用第二版课后答案浙江大学

概率论与数理统计及其应用第二版课后答案浙江大学

-
-
总结资料
-
-
-
即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为
17.06%.
15,计算机中心有三台打字机 A,B,C,程序交与各打字机打字的概率 依次为 0.6, 0.3, 0.1,打字机发生故障的概率依次为 0.01, 0.05, 0.04。
已知一程序因打字机发生故障而被破坏了,求该程序是在 A,B,C 上打
P(B) 0.3 3
P( A) 0.5 5
P( A | A B) P[ A( A B)] P( A) 5 ,
P(A B) P(A B) 7
P( AB | A B) P[ AB( A B)] P( AB) 1 ,
P(A B) P(A B) 7
P( A | AB) P[ A( AB)] P( AB) 1。
P( AB) P( AB)
(2)设 Ai (i 1,2,3,4) 表示“第 i 次取到白球”这一事件,而取到红球可 以用它的补来表示。那么第一、二次取到白球且第三、四次取到红球 可以表示为 A1 A2 A3 A4 ,它的概率为(根据乘法公式)
P( A1 A2 A3 A4 ) P( A1 )P( A2 | A1 )P( A3 | A1 A2 )P( A4 | A1 A2 A3 )
|
N3)
0.1 0.04 0.025
0.16

16,在通讯网络中装有密码钥匙,设全部收到的讯息中有 95%是可信 的。又设全部不可信的讯息中只有 0.1%是使用密码钥匙传送的,而 全部可信讯息是使用密码钥匙传送的。求由密码钥匙传送的一讯息是 可信讯息的概率。 解:设“一讯息是由密码钥匙传送的”记为事件 A ,“一讯息是可信 的”记为事件 B 。根据 Bayes 公式,所要求的概率为

概率论与数理统计及其应用第二版课后答案

概率论与数理统计及其应用第二版课后答案

the area under development envir onme nt. All admini strative law enforcement de partments to a ppoint a full -time pers onnel stati one d in areas dedi cated to coordinati ng and solving pr oblems a ss ociated with busi nesse s in thi s se ctor. When ther e are substantial i ssue s, se ctor lea ders arrange d to personal ly intervene, in -per son, in-pers on push tangi ble area buil ding a gree n light, easy li ne. To further reduce a nd standardi ze administrative examination a nd a ppr oval items, simplify examinati on and approval li nks, impr ove efficiency; accor ding to t he ...
3,在 100,101,…,999 这 900 个 3 位数中,任取一个 3 位数,求 不包含数字 1 个概率。
streamlining. Four are sta ndar d visits, except as re quire d to participate in traini ng, no ot her a ctivity. Five i s to impr ove new s reporting, for propaganda work stri ctly accor ding to t he regul ations. Six is stri ctly your prese ntation publis hed strictly accor ding to t he reg ulations.

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

目录第一章随机变量及其概率. (2)第二章随机变量及其分布. (13)第三章随机变量的数字特征. (30)第四章正态分布. (39)第五章样本及抽样分布. (49)第六章参数估计. (55)第七章假设检验. (68)第一章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。

解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S{H ,TH ,TTH ,TTTH , };(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求P(A B), P(AB), P(AB), P[( A B)(AB)]。

解:P(A B) P(A) P(B) P(AB) 0.625,P(AB) P[(S A)B] P(B) P(AB) 0.375,P(AB) 1 P(AB) 0.875,P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.53,在100, 101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100, 101,…,999这900个3位数中不包含数字1的3位数 的个数为8 9 9 648,所以所求得概率为4, 在仅由数字0,1, 2, 3, 4, 5组成且每个数字至多出现一次的全 体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该 数大于330的概率。

解:仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全 体三位数的个数有 5 5 4 100个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档