数学建模常用模型有哪些[1]
数学建模—函数模型及其应用
(k为常数,k≠0);
(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);
(5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);
(6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
1 (),∈1 ,
了该车相邻两次加油时的情况.
加油时间
2020年5月1日
2020年5月15日
加油量(升)
12
48
加油时的累计里程(千米)
35 000
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为(
A.6升 B.8升
C.10升 D.12升
)
答案 B
解析 因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,
3
log 4 8 + = 1,
+ = 1,
解析依题意得
即 2
解得 a=2,b=-2.则
log 4 64 + = 4,
3 + = 4.
y=2log4x-2,当 y=8 时,即 2log4x-2=8,解得 x=1 024.
关键能力 学案突破
考点1
利用函数图像刻画实际问题
【例1】 (2020北京东城一模,10)
故耗油量V=48升.而这段时间内行驶的里程数S=35 600-35 000=600千米.
所以这段时间内,该车每100千米平均耗油量为
48
×100=8升,故选B.
600
3.(2020北京平谷二模,9)溶液酸碱度是通过pH计算的,pH的计算公式为
数学建模常用算法和模型全集
数学建模常用算法和模型全集数学建模是一种将现实世界的问题转化为数学问题,并通过建立数学模型来求解的方法。
在数学建模中,常常会用到各种算法和模型,下面是一些常用的算法和模型的全集。
一、算法1.线性规划算法:用于求解线性规划问题,例如单纯形法、内点法等。
2.非线性规划算法:用于求解非线性规划问题,例如牛顿法、梯度下降法等。
3.整数规划算法:用于求解整数规划问题,例如分支定界法、割平面法等。
4.动态规划算法:用于求解具有最优子结构性质的问题,例如背包问题、最短路径问题等。
5.遗传算法:模拟生物进化过程,用于求解优化问题,例如遗传算法、粒子群算法等。
6.蚁群算法:模拟蚂蚁寻找食物的行为,用于求解优化问题,例如蚁群算法、人工鱼群算法等。
7.模拟退火算法:模拟固体退火过程,用于求解优化问题,例如模拟退火算法、蒙特卡罗模拟等。
8.蒙特卡罗算法:通过随机抽样的方法求解问题,例如蒙特卡罗模拟、马尔科夫链蒙特卡罗等。
9.人工神经网络:模拟人脑神经元的工作原理,用于模式识别和函数逼近等问题,例如感知机、多层感知机等。
10.支持向量机:用于分类和回归问题,通过构造最大间隔超平面实现分类或回归的算法,例如支持向量机、核函数方法等。
二、模型1.线性模型:假设模型的输出与输入之间是线性关系,例如线性回归模型、线性分类模型等。
2.非线性模型:假设模型的输出与输入之间是非线性关系,例如多项式回归模型、神经网络模型等。
3.高斯模型:假设模型的输出服从高斯分布,例如线性回归模型、高斯朴素贝叶斯模型等。
4.时间序列模型:用于对时间序列数据进行建模和预测,例如AR模型、MA模型、ARMA模型等。
5.最优化模型:用于求解优化问题,例如线性规划模型、整数规划模型等。
6.图论模型:用于处理图结构数据的问题,例如最短路径模型、旅行商问题模型等。
7.神经网络模型:用于模式识别和函数逼近等问题,例如感知机模型、多层感知机模型等。
8.隐马尔可夫模型:用于对具有隐藏状态的序列进行建模,例如语音识别、自然语言处理等。
数学建模常用算法模型
数学模型的分类按模型的数学方法分:几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等按模型的特征分:静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等按模型的应用领域分:人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。
按建模的目的分:预测模型、优化模型、决策模型、控制模型等一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应按对模型结构的了解程度分:有白箱模型、灰箱模型、黑箱模型等比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。
按比赛命题方向分:国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策)数学建模十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理)算法简介1、灰色预测模型(必掌握)解决预测类型题目。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。
线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。
其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。
在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。
例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。
二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。
整数规划模型常用于离散决策问题,如项目选择、设备配置等。
例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。
三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。
该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。
动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。
例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。
在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。
四、图论模型图论是研究图和网络的数学理论。
图论模型常用于解决网络优化、路径规划、最短路径等问题。
例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。
可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。
五、回归分析模型回归分析是研究变量之间关系的一种统计方法。
回归分析模型通常用于预测和建立变量之间的数学关系。
例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。
可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。
六、排队论模型排队论是研究排队系统的数学理论。
排队论模型常用于优化服务质量、降低排队成本等问题。
数学建模常用算法模型
数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
数学建模主要运用的模型
数学建模主要运用的模型
数学建模主要运用的模型是指在数学建模过程中常用的数学模型。
数学建模是利用数学方法和技巧来研究实际问题并解决问题的过程。
在数学建模中,模型是非常重要的工具,它反映了问题的本质和规律。
常见的数学建模模型包括:
1. 数学优化模型。
这种模型主要用于寻求问题的最优解。
常见的数学优化模型有线性规划模型、整数规划模型、非线性规划模型等。
2. 统计模型。
这种模型主要用于分析数据和研究数据之间的关系。
常见的统计模型有回归模型、方差分析模型、时间序列模型等。
3. 差分方程模型。
这种模型主要用于研究动态系统和变化过程。
常见的差分方程模型有一阶差分方程模型、二阶差分方程模型、离散动力系统模型等。
4. 概率模型。
这种模型主要用于研究随机现象和随机变量的规律。
常见的概率模型有随机游走模型、马尔可夫模型、贝叶斯网络模型等。
数学建模模型的选择取决于问题的特点和要求。
在实际应用中,通常需要综合考虑多种模型,以达到最优解。
- 1 -。
数学建模常用模型有哪些
数学建模常用模型有哪些1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)作用:应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模-模型-大全
数学建模-模型-大全类别类别(2)模型名称关键点备注参考书目复杂系统库存模型排队模型可靠系统差分方程模型动力系统类酵母菌增长模型平衡点;平衡点的分类地高辛衰减模型战争模型总量一定时,对单量的分配竞争物种模型不稳定平衡:对初始值敏感比例性模型钓鱼比赛模型几何相似性身高、体重与灵活性模型数据拟合模型最小二乘拟合停止距离模型97海湾收成模型多项式拟合磁带播放模型高阶多项式敏感度很强光滑化115停止距离模型(2)三阶样条法。
有自然和强制样条两种134预测时间序列GM(1,1),指数平滑,线性平滑因果分析法聚类分析灰色关联度分析聚类分析因子分析模拟方法蒙特卡罗算法硬币投掷模型149汽油储存模型逆线性样条(可改变随机数范围)155港口系统模型改变参数时,改善164情况的分析离散概率模型马尔可夫链汽车租赁模型要结合蒙特卡罗算法176投票趋势模型177Markov决策串联和并联系统模型178线性规划模型无约束类生产计划模型192 取整数类载货模型194 动态规划类197多目标规划类投资问题有时须对目标进行取舍。
可采取加权系统层次分析 196冲突目标Minmax与maxmin机会约束约束满足概率性>P矛盾约束约束相互矛盾单纯形法木匠生产模型注意步骤性。
215 组合模型参数模型动态规划决策法背包问题排序问题多步骤形的规划数值搜索法工业流程优化黄金分割搜索法还有二分搜索法233网络流最大树最大流最短路关键路线法网络计划布点问题中心问题重心问题运输问题分配问题匈牙利方法最大匹配最优匹配旅行推销问题中国邮递员问题非线性规划分式规划目标是分式凸规划几何规划对策2人0种对策鞍点对策混合对策合作量纲分析模型单摆模型通过实验选择最终模型253 爆炸模型函数随爆炸威力上升改变258 烤火鸡模型262 阻力模型使用相似性、比例性。
注意它额外定义的物理量。
268图标模型军备竞赛模型民防、移动发射台、多弹头271 税收归宿模型税收-能源危机模型参考经济学书籍!288税收-汽油短缺模型微分方程模型人口模型马尔萨斯人口模型无限增长299有限增长模型可推广到其它生物的增长301用药模型储蓄模型关注Euler法的使用(该法并不精确)326 生物关系模型竞争捕猎模型363页:相应的Euler法使用捕食者-食饵模型Scheafer微分方程模型Lanchester战斗模型350 SIR模型军备竞赛的经济模型355 混沌与分形模型连续Steiner树库存模型优化问题制造模型最陡上升梯度方法375 石油转运模型Lagrange乘子法注意里面涉及到的经济学概念和意义381 航天飞机的水箱模型渔业模型注意各种“最优”的意义384最优化模拟退火法神经网络遗传算法分治算法差分进化蚁行算法粒子群不确定模型灰色系统数理统计模糊数学聚类分析模型名称所在目录1,国有企业业绩分化的数学模型2,打假问题的机理数学分析3,足球比赛排名问题4,大象群落的稳定性分析5,火车便餐最有价格方案6,影院最优设计方案7,国有企业业绩分化的数学模型8,打假问题的机理数学分析9,足球比赛排名问题10,大象群落的稳定性分析11,火车便餐最有价格方案12,施肥效果分析13,迷宫问题14,锁具装箱问题15,密码问题16,席位分配模型初等模型17,双重玻璃窗功效模型18,储存模型优化模型19,森林救火模型20,消费者均衡模型21,加工奶制品模型数学规划模型22,自来水输送模型23,混合泳接力模型24,投入产出模型25,三级火箭模型26,糖尿病模型27,传染病模型28,生物种群模型29,人口模型30,分子模型31,扫雪模型32,商人过河问题。
数学建模_四大模型总结
数学建模_四大模型总结四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
数学建模常用算法模型
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
初中数学建模30种经典模型
初中数学建模30种经典模型初中数学建模是培养学生综合运用数学知识解决实际问题的一种教学方法和手段。
以下是初中数学建模中的30种经典模型,并对每种模型进行简要介绍:1.线性规划模型:通过建立线性目标函数和线性约束条件,优化解决线性规划问题。
2.排队论模型:研究排队系统中的等待时间、服务能力等问题,以优化系统效率。
3.图论模型:利用图的概念和算法解决实际问题,如最短路径、网络流等。
4.组合数学模型:应用组合数学的方法解决实际问题,如排列组合、集合等。
5.概率模型:利用概率理论分析和预测事件发生的可能性和规律。
6.统计模型:收集、整理和分析数据,通过统计方法得出结论和推断。
7.几何模型:运用几何知识解决实际问题,如图形的面积、体积等。
8.算术平均模型:利用算术平均数来描述和分析数据的集中趋势。
9.加权平均模型:利用加权平均数考虑不同数据的重要性来得出综合结论。
10.正态分布模型:应用正态分布来描述和分析数据的分布情况。
11.投影模型:通过投影的方法解决几何体在平面上的投影问题。
12.比例模型:利用比例关系解决实际问题,如物体的放大缩小比例等。
13.数据拟合模型:根据已知数据点,通过曲线或函数拟合来推测未知数据点。
14.最优化模型:寻找最大值或最小值,优化某种指标或目标函数。
15.路径分析模型:研究在网络或图中找到最优路径的问题。
16.树状图模型:通过树状图的结构来描述和解决问题,如决策树等。
17.随机模型:基于随机事件和概率进行建模和分析。
18.多项式拟合模型:利用多项式函数对数据进行拟合和预测。
19.逻辑回归模型:通过逻辑回归分析,预测和分类离散型数据。
20.回归分析模型:分析自变量和因变量之间的关系,并进行预测和推断。
21.梯度下降模型:通过梯度下降算法来求解最优解的问题。
22.贪心算法模型:基于贪心策略解决最优化问题,每次选择当前最优解。
23.线性回归模型:通过线性关系对数据进行建模和预测。
24.模拟模型:通过构建模拟实验来模拟和分析实际情况。
大学生数学建模--常用模型与算法
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模系列-常用模型
性能,并根据评估结果进行模型优化或调整。
03
CATALOGUE
支持向量机模型
模型定义
线性分类器
支持向量机是一种线性分类器,通过找到一个超平面来分隔两个类 别的数据点。
核函数
支持向量机使用核函数将输入空间映射到一个高维特征空间,使得 线性分类器在高维空间中更容易找到分隔超平面。
间隔最大化
支持向量机旨在最大化间隔,即最小化分类错误的距离,以提高分类 器的泛化能力。
模型建立
数据预处理
对数据进行标准化或归一化处理,以确保不同特征的尺度不会影 响模型的性能。
核函数选择
选择合适的核函数,如线性核、多项式核、径向基函数等,以适 应不同的数据分布和问题类型。
参数调整
调整模型参数,如惩罚系数和核函数的参数,以获得最佳的分类 效果。
模型应用
二分类问题
支持向量机适用于解决二分类问题,如垃圾邮件分类、人脸识别 等。
05
CATALOGUE
主成分分析模型
模型定义
主成分分析(PCA)是一种常用的多 元统计分析方法,它通过线性变换将 多个相关变量转化为少数几个不相关 的变量,这些不相关的变量称为主成 分。
主成分分析旨在减少数据集的维度同 时保留数据集中的主要变化模式,以 便更好地理解数据的结构和关系。
模型建立
确定数据集
模型应用
总结词
K-均值聚类模型广泛应用于数据挖掘、模式识别、图 像处理等领域,可以用于市场细分、异常检测、分类 问题等。
详细描述
K-均值聚类模型的应用非常广泛,例如在市场细分中 ,可以将消费者按照购买行为、偏好等特征进行分类 ,帮助企业更好地理解客户需求和市场趋势。在异常 检测中,可以通过观察聚类结果中的离群点,发现数 据中的异常值。在图像处理中,可以将图像分割成不 同的区域,对每个区域进行特征提取和分析。此外, K-均值聚类模型还可以用于分类问题中,将数据点划 分为不同的类别。
常见数学建模模型
常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。
常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。
下面将分别介绍这些常见数学建模模型的基本原理和应用领域。
一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。
其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。
线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。
二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。
常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。
回归分析模型在市场预测、金融风险评估等领域有广泛的应用。
三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。
该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。
离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。
四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。
常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。
优化模型广泛应用于生产调度、资源分配、路径规划等领域。
以上是常见数学建模模型的基本原理和应用领域。
数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。
在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。
数学建模中常见的十大模型
数学建模经常使用的十年夜算法==转之迟辟智美创作(2011-07-24 16:13:14)转载▼1. 蒙特卡罗算法.该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是角逐时必用的方法.2. 数据拟合、参数估计、插值等数据处置算法.角逐中通常会遇到年夜量的数据需要处置,而处置数据的关键就在于这些算法,通常使用MATLAB 作为工具.3. 线性规划、整数规划、多元规划、二次规划等规划类算法.建模竞赛年夜大都问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解.4. 图论算法.这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备.5. 静态规划、回溯搜索、分治算法、分支定界等计算机算法.这些算法是算法设计中比力经常使用的方法,竞赛中很多场所会用到.6. 最优化理论的三年夜非经典算法:模拟退火算法、神经网络算法、遗传算法.这些问题是用来解决一些较困难的最优化问题的,对有些问题非常有帮手,可是算法的实现比力困难,需慎重使用.7. 网格算法和穷举法.两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型自己而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具.8. 一些连续数据离散化方法.很多问题都是实际来的,数据可以是连续的,而计算机只能处置离散的数据,因此将其离散化后进行差分取代微分、求和取代积分等思想是非常重要的.9. 数值分析算法.如果在角逐中采纳高级语言进行编程的话,那些数值分析中经常使用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用.10. 图象处置算法.赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处置就是需要解决的问题,通常使用MATLAB 进行处置.以下将结合历年的竞赛题,对这十类算法进行详细地说明.以下将结合历年的竞赛题,对这十类算法进行详细地说明.2 十类算法的详细说明2.1 蒙特卡罗算法年夜大都建模赛题中都离不开计算机仿真,随机性模拟是非经罕见的算法之一.举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差品级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不成能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中依照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出年夜量的方案,从中选取一个最佳的.另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不成能刻画出一个模型进行求解,只能靠随机仿真模拟.2.2 数据拟合、参数估计、插值等算法数据拟合在很多赛题中有应用,与图形处置有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处置,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处置.此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好.2.3 规划类问题算法竞赛中很多问题都和数学规划有关,可以说很多的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比力方便,所以还需要熟悉这两个软件.2.4 图论问题98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最年夜流,二分匹配等问题.每一个算法都应该实现一遍,否则到角逐时再写就晚了.2.5 计算机算法设计中的问题计算机算法设计包括很多内容:静态规划、回溯搜索、分治算法、分支定界.比如92 年B 题用分枝定界法,97 年B 题是典范的静态规划问题,另外98 年 B 题体现了分治算法.这方面问题和ACM 法式设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出书社)等与计算机算法有关的书.2.6 最优化理论的三年夜非经典算法这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快.近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,那时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是现今前沿科技的笼统体现.03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法.2.7 网格算法和穷举算法网格算法和穷举法一样,只是网格法是连续问题的穷举.比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很年夜.比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的.穷举法年夜家都熟悉,就不说了.2.8 一些连续数据离散化的方法年夜部份物理问题的编程解决,都和这种方法有一定的联系.物理问题是反映我们生活在一个连续的世界中,计算机只能处置离散的量,所以需要对连续量进行离散处置.这种方法应用很广,而且和上面的很多算法有关.事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想.2.9 数值分析算法这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,年夜可不用准备,因为象数值分析中有很多函数一般的数学软件是具备的.2.10 图象处置算法01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题要求更高,不单需要编程计算还要进行处置,而数模论文中也有很多图片需要展示,因此图象处置就是关键.做好这类问题,重要的是把MATLAB 学好,特别是图象处置的部份.。
数学建模常用算法模型
数学模型的分类按模型的数学方法分:几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等按模型的特征分:静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等按模型的应用领域分:人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。
对应12Matlab3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化9矩阵1012不言3样本点的个数有要求:①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小;②样本点的个数n>3k+1,k为自变量的个数;③因变量要符合正态分布4、马尔科夫预测(备用)类似的名词有,马尔科夫链、马尔科夫模型、,马氏链模型等一个序列之间没有信息的传递,前后没联系,数据与数据之间随机性强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温度高、中、低的概率,只能得到概率。
思考马尔科夫和元胞自动机之间的关系5、时间序列预测(必掌握)与马尔科夫链预测互补,至少有2个点需要信息的传递,ARMA模型,周期模型,季节模型等6、小波分析预测(高大上)数据无规律,海量数据,将波进行分离,分离出周期数据、规律性数据;可以做时间序列做不出的数据,应用范围比较广7、神经网络预测(备用)大量的数据,不需要模型,只需要输入和输出,黑箱处理,建议作为检验的办法8、混沌序列预测(高大上)比较难掌握,数学功底要求高17、投影寻踪综合评价法(高大上)揉和多种算法,比如遗传算法、最优化理论等18、方差分析、协方差分析等(备用)方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少;(1992年,作物生长的施肥效果问题)协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲及初始情况。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
数学建模系列-常用模型
(4)计算层次总排序权值和一致性检验
B1 对总目标的权值为: 0.595 0.263 0.082 0.475 0.429 0.055 0.633 0.099 0.166 0.110 0.3
同理得,, B3 对总目标的权值分别为:0.246 B2 ,
决策层对总目标的权向量为: 又
2,4,6,8 表示需要在上述两个标准之间拆衷时的标度
1/bij 两个元素的反比较
旅游问题中,第二层A的各因素对目标层Z的影响 两两比较结果如下:
Z A1 A1 1 A2 2 A3 1/4 A4 1/3 A5 1/3 A2 A3 A4 A5
1/2
1 1/7 1/5 1/5
A1 , A2 , A3 , A4 , A5
作为权向量,否则要重新构造成对比较矩阵,对 A 加以调整。 一致性检验:利用一致性指标和一致性比率<0.1 及随机一致性指标的数值表,对 A 进行检验的过程。
4 层次总排序及其一致性检验
确定某层所有因素对于总目标相对重要性的排序权值 过程,
称为层次总排序 从最高层到最低层逐层进行。设: 层m个因素A1, A2 ,, Am , A
, n
时, 为一致阵。 n A
A n 由于 连续的依赖于 aij ,则 比 大的越多, 的不一致
性越严重。用最大特征值对应的特征向量作为被比较因素对上 层某因素影响程度的权向量,其不一致程度越大, 引起的判断误差越大。因而可以用
n 数值的大小来衡量
A 的不一致程度。
定义一致性指标
过去研究自然和社会现象主要有机理分析法和统计分析法两
种方法,前者用经典的数学工具分析现象的因果关系,后者 以随机数学为工具,通过大量的观察数据寻求统计规律。近 年发展的系统分析是又一种方法,而层次分析法是系统分析 的数学工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模常用模型有哪些???
1蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
作用:
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。
建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。
要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。
这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实
际问题的浓厚兴趣和广博的知识面。
数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。
参考资料:。