极管基本放大电路的三种组态
(完整word版)放大电路的工作原理和三种基本放大组态
放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
简述放大电路的三种组态的特点
简述放大电路的三种组态的特点在电子学中,放大电路是基础的组成部分,它能够放大微弱的电信号,使之足够驱动后续的电路或设备。
放大电路有三种基本组态,分别是共发射极、共基极和共集电极。
每种组态都有其独特的特点和应用场景。
1. 共发射极放大电路(Common Emitter放大电路):共发射极放大电路是最常用的组态之一。
其主要特点包括:a. 输入信号施加在基极和发射极之间,控制晶体管的电流;b. 输出信号则取自集电极和发射极之间;c. 共发射极放大电路具有电压和电流放大能力,因此既可放大交流信号也可放大直流信号;d. 由于其电压放大能力较高,因此常用于音频放大器、功率放大器等场合。
2. 共基极放大电路(Common Base放大电路):共基极放大电路的特点在于:a. 输入信号加在基极上,通过晶体管的电流不受输入信号的控制;b. 输出信号则取自集电极上;c. 共基极放大电路只有电流放大能力而无电压放大能力,因此主要应用于高频信号放大或宽频带放大场合;d. 由于其输入阻抗高、输出阻抗低,因此常用于宽频带放大器、高频振荡器等场合。
3. 共集电极放大电路(Common Collector放大电路):共集电极放大电路的特点包括:a. 输入信号加在基极上,通过晶体管的电流不受输入信号的控制;b. 输出信号则取自发射极上;c. 共集电极放大电路只有电流放大能力而无电压放大能力,因此常用于缓冲、隔离和电流放大等场合;d. 由于其输入阻抗高、输出阻抗低,因此常用于前置级、缓冲级等场合。
总结来说,这三种组态的放大电路各有其独特的应用场景和特点。
在实际应用中,应根据具体需求选择合适的组态,以达到最佳的放大效果。
【2024版】模拟电子技术试题库及答案
4、二极管的伏安特性曲线上可分为死区、正向导通区、反向截止区和
反向击穿区四个工作区。
5、用指针式万用表检测二极管极性时,需选用欧姆挡的R×1k档位,检测中若指针偏转较大,可判断与红表棒相接触的电极是二极管的阴极;与黑表棒相接触的电极是二极管的阳极。检测二极管好坏时,若两表棒位置调换前后万用表指针偏转都很大,说明二极管已经被击穿;两表棒位置调换前后万用表指针偏转都很小时,说明该二极管已经老化不通。
6、如果把三极管的集电极和发射极对调使用?三极管会损坏吗?为什么?
答:集电极和发射极对调使用,三极管不会损坏,但是其电流放大能力大大降低。因为集电极和发射极的杂质浓度差异很大,且结面积也不同。
7、晶闸管与普通二极管、普通三极管的作用有何不同?其导通和阻断的条件有什么不同?
答:普通二极管根据其单向导电性可知,阳极加电源正极、阴极加电源负极时导通,反之阻断,可用于整流、钳位、限幅和电子开关;普通三极管在放大电路中起放大作用,在数字电子技术中起开关作用,普通三极管用于放大作用时,只要发射极正偏、集电极反偏时就会导通起放大作用,当发射极反偏时就会阻断放大信号通过;用作开关元件时,当发射结和集电结都正偏时,它就会饱和导通,当发射极反偏或发射极和集电极两个极都反偏时,晶体管就截止,阻断信号通过。晶闸管属于硅可控整流器件,只有导通和关断两种状态。晶闸管具有PNPN四层半导体结构,有阳极,阴极和门极三个电极。晶闸管加正向电压且门极有触发电流时导通,即:晶闸管仅在正向阳极电压时是不能导通的,还需门控极同时也要承受正向电压的情况下才能导通(晶闸管一旦导通后,门控极即失去作用);当晶闸管承受反向阳极电压时,不管门极承受多大电压,晶闸管都处于阻断状态,或者晶闸管在导通情况下,其主回路电压(或电流)减小到接近于零值时,晶闸管也会自动关断。
三极管放大电路原理和组态
三极管的根本工作管理构造与操作原理三极管的根本构造是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。
三个接出来的端点依序称为射极〔emitter, E〕、基极〔base, B〕和集极〔collector, C〕,名称来源和它们在三极管操作时的功能有关。
图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极管的符号一致。
在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。
图1 pnp(a)与npn(b)三极管的构造示意图与电路符号。
三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓〞正向活性区〞(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面那么在反向偏压,通常用作放大器的三极管都以此方式偏压。
图2(a)为一pnp三极管在此偏压区的示意图。
EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区那么会变宽,载体看到的位障变大,故本身是不导通的。
图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。
三极管和两个反向相接的pn二极管有什么差异呢?其间最大的不同部分就在于三极管的两个接面相当接近。
以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。
当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。
IC的大小和BC间反向偏压的大小关系不大。
基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E〔这部分是三极管作用不需要的部分〕。
2-6晶体管放大电路的三种组态
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
13
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
2. 6. 2 共集电极放大电路 共集基本放大电路如图2—33所示,集电极作为交流信号 所示, 共集基本放大电路如图 所示 的公共端,由发射极取出输出信号,因此也称为射极输出器。 的公共端,由发射极取出输出信号,因此也称为射极输出器。 假定BJT的(β=80,rbe=lk ,RL=3k 。放大电路的静态和 假定 的 = , 动态分析如下: 动态分析如下:
图2—33共集电极电路静态分析 共集电极电路静态分析
7
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
1.静态分析 静态分析
根据直流通路图2—33 (b)求解 点: 求解Q点 根据直流通路图 求解
UCC = IBQRb +UBEQ + (1+ β )IBQRe
IBQ =
UCC −UBEQ Rb + (1+ β)Re
Rb2 UB = ⋅ UCC Rb1 + Rb2
UB − UBE ICQ ≈ IEQ = Re
IBQ =
ICQ
β
UCEQ = UCC − ICQ Rc − IEQ Re
2
2.6 三极管放大电路的三种组态
第2章 三极管及其放大电路
2. 动态分析
微变等效电路如图2—32所示,电压放大倍数、输 所示,电压放大倍数、 微变等效电路如图 所示 入电阻和输出电阻求解如下。 入电阻和输出电阻求解如下。
& & & ' U o = I e ( Re // RL ) = (1 + β ) I b RL
mos管共源、共漏、共栅三种组态放大电路
mos管共源、共漏、共栅三种组态放大电路下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!共源、共漏、共栅三种组态放大电路是常见的MOS管放大电路配置,它们在集成电路设计中起到非常重要的作用。
基本放大电路其分析方法
二、基本放大电路及其分析方法一个放大器一般是由多个单级放大电路所组成,着重讨论双极型半导体三极管放大电路的三种组态,即共发射极,共集电极和共基极三种基本放大电路。
从共发射极电路入手,推及其他二种电路,其中将图解分析法和微变等效电路分析法,作为分析基础来介绍。
分析的步骤,首先是电路的静态工作点,然后分析其动态技术指标。
对于放大器来说,主要的动态技术指标有电压放大倍数、输入阻抗和输出阻抗。
.共射极基本放大电路的组成及放大作用在实践中,放大器的用途是非常广泛的,它能够利用三极管的电流控制作用把微弱的电信号增强到所要求的数值,为了了解放大器的工作原理,先从最基本的放大电路学习:图称为共射极放大电路,要保证发射结正偏,集电极反偏Ib=(V BB-V BE)/Rb,对于硅管V BE约为左右,锗管约为左右,I B=/Rb这个电路的偏流I B决定于V BB和Rb的大小,V BB和Rb 一经确定后,偏流I B就固定了,所以这种电路称为固定偏流电路,Rb又称为基极偏置电阻,电容Cb1和Cb2为隔直电容或耦合电容,在电路中的作用是“传送交流,隔离直流”,放大作用的实质是利用三极管的基极对集电极的控制作用来实现的.如下图上图是共射极放大电路的简化图,它在实际中用得比较多的一种电路组态,放大电路的主要性能指标,常用的有放大倍数、输入阻抗、输出阻抗、非线性失真、频率失真以及输出功率和效率等。
对于不同的用途的电路,其指标各有侧重。
初步了解放大电路的组成及简单工作原理后,就可以对放大电路进行分析。
主要方法有图解法和微变等效法。
.图解分析法静态工作情况分析当放大电路没有输入信号时,电路中各处的电压,电流都是不变的直流,称为直流工作状态简称静态,在静态工作情况下,三极管各电极的直流电压和直流电流的数值,将在管子的特性曲线上确定一点,这点称为静态工作点,下面通过例题来说明怎样估算静态工作点。
解:Cb1与Cb2的隔直作用,对于静态下的直流通路,相当于开路,计算静态工作点时,只需考虑图中的Vcc、Rb、Rc及三极管所组成的直流通路就可以了,I B=(Vcc-)/Rb(I C=βI B+I CEO )I C=βI B,V CE=V CC-I C R C如已知β,利用上式可近似估算放大电路的静态工作点。
三极管的三种基本放大电路
二、性能指标分析
IBQ = (VCC – UBEQ) / [RB + (1 + β ) RE] ICQ = β I BQ UCEQ = VCC – ICQRE
−
−
−
rbe β ib RB + RE RL uo
−
R'L = RE // RL
第3章 放大电路基础
一、电路组成与静态工作点
IBQ C1 + RB +VCC C2 RL
Ri
R’i
例3.2.1 β =100, RS= 1kΩ, RB1= 62kΩ, RB2= 20kΩ, RC= 3kΩ Ω Ω Ω Ω RE = 1.5kΩ, RL= 5.6kΩ, VCC = 15V。求:“Q ”, Au, Ri, Ro Ω Ω 。 [解] 1)求“Q” 解 ) +VCC 20 × 15 RB1 RC C2 U BQ = ≈ 3.7 ( V ) C1 + 20 + 62 + + RL 3 .7 − 0 .7 uo I RS = 2 (mA ) + CQ = I EQ = + RB2 RE us 1 .5 CE − − I BQ ≈ 2 / 100 = 0.02 (mA) = 20 µA U = 15 − 2( 3 + 1.5) = 6 ( V ) 2)求 Au、Ri、Ro 、 Aus CEQ )
–
RE = RL = Rs = 1 kΩ, VCC = 12V。求:“Q ”、Au、Ri、 Ω 。 、 Ro [解] 1)求“Q” +VCC 解 ) IBQ RB C1 IBQ = (VCC – UBE) / [RB + (1+ β ) RE]
β =120, RB = 300 kΩ, r’bb= 200 Ω, UBEQ = 0.7V Ω
双极型三极管放大电路的三种基本组态
41 × 2.8 = 1.6 + 41× 2.8 = 0.986
12
第五节 双极型三极管放大电路的三种基本组态
3. 输入、输出电阻
b ib
e - ie
+ Rs us+ ui
rbe Rb
iC βib
+
RL Re
uo
--
-
c
Ri = Rb //[ rbe + (1 + β) Re′] = 78.4 kΩ
-
b ib
ic c
rbe
Rb
e
βib
+
Re
RL uo
-
4
第五节 双极型三极管放大电路的三种基本组态
+ Rs
+ ui us
-
b ib
ic c
rbe
βib
Rb
e
Re
RL
ii
b ib
eie
io
R s +
rbe
+
+ ui
+ uo
u s-
-
-
βib
uo R e ic c
b ib
e - ie
+
rbe
+
Rs us+ ui Rb
ii +
ui
Re
ie e ic
ib
βib
rbe
io c +
uo
R´L
-
-
b 共基极放大电路的等效电路
共基接法的输出电阻比共射接法高得多 考虑Rc的作用 Ro= Rc // rcb ≈ Rc
三极管及其放大电路 ppt课件
② 基区:很薄(通常为几微米~几十微米),低
掺杂浓度;(薄牛肉)
c
③ 集电区: 掺杂浓度要比发 射区低;
面积比发射区大;
N
b
P
N
e
ppt课件
7
第2章 半导体三极管及其基本放大电路
2.1.2 BJT的电流放大作用
1.三极管的偏置 为实现放大,必须满足三极管的内部结构和外部 条件两方面的要求。
c
N
输出特性曲线可以划分为三个区域: 饱和区——iC受vCE控制的区域,该区域内vCE的 数值较小。此时Je正偏,Jc正偏
iC /mA
pp2t课5件℃
=80μA =60μA =40μA
=20μA
vCE /2V0
第2章 半导体三极管及其基本放大电路
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小。此时Je正偏,Jc正偏。
2.极限参数 (1)集电极最大允许电流ICM 指BJT的参数变化不超过允许值时集电极允 许的最大电流。
ppt课件
27
第2章 半导体三极管及其基本放大电路
(1)集电极最大允许电流ICM
指BJT的参数变化不超过允许值时集电极允许的最大电流。
(2)集电极最大允许功率损耗PCM
表示集电极上
过流区
允许损耗功率
Ii
Io
+
+
Rs Vi
放大电路 Ri (放大器)
Vo
RL
-
-
Ri
Ri决定了放大电路从信号源吸取信号幅值的大
小,即它决定了放大电路对信号源的要求。
Ri越大,Ii就越小,放大电路从信号源索取的电流越
小。放大电路所得到的输入电压Vi越接近信号源电压Vs。
极管放大电路三种组态的比较
3 噪声要求
如果需要低噪声放大,可以选择共基极管放大电路。
总结和结论
共射极管放大电路
稳定性高,适用于中等功率放大和负反馈应用。
共集极管放大电路
干扰衰减能力强,适用于低功率放大。
ቤተ መጻሕፍቲ ባይዱ
共基极管放大电路
频率响应宽,适用于低噪声放大。
极管放大电路三种组态的 比较
极管放大电路是电子设备中常见的关键组成部分。本演示将比较三种不同的 极管放大电路组态,探讨其特点、优缺点和实际应用中的选择考虑因素。
共射极管放大电路
1 特点
电流放大倍数高,输入和输出阻抗适中,适用于中等功率放大。
2 优点
稳定性高,频率响应广,容易实现负反馈。
3 缺点
相位反转,输出信号与输入信号之间存在180度的位相差。
三种组态的比较
共射极管放大电路
适用于中等功率放大和负反馈 应用,但存在相位反转的问题。
共基极管放大电路
适用于低噪声放大,但输出阻 抗高,稳定性较差。
共集极管放大电路
适用于低功率放大和干扰衰减, 但电流放大倍数较低。
实际应用中的选择考虑因素
1 功率要求
根据放大电路所需的功率,选择适合的组态。
2 干扰抑制
共基极管放大电路
1 特点
电压放大倍数高,输入阻抗低,适用于低噪声放大。
2 优点
频率响应宽,不会引起相位反转。
3 缺点
输出阻抗高,稳定性较差。
共集极管放大电路
1 特点
电流放大倍数较低,输入 和输出阻抗都很低,适用 于低功率放大。
2 优点
3 缺点
干扰衰减能力强,频率响 应宽,不会引起相位反转。
第8讲晶体管放大电路三种组态
U BQ U BEQ Re
I CQ
-
I BQ
I EQ 1
(b)直流通路
UCEQ VCC I CQ (Rc Re )
C1
+ R2 + Cb R1
+
C2 + uo
R1 R2 被Cb交流短路
+
ui
Re
-
-
Rc RL + VCC
-
+ Rc
(a)电路图
+ ui
Re
RL
uo
-
-
+
Ui
Re rbe
Ib
-
b
-
Rc // RL RL
微变等效电路
Au Uo Ui
RL rbe
Ie e Ib
c
+
Ui
Re rbe
Ib
+
Rc RL U o
(2)输入电阻
Ri Ri // Re
-
rbe Ri I e (1 ) I b (1 ) (3)输出电阻 rbe Ri Re // Ri Re // (1 ) 输入为零, I b 为零, Ui
o
Rb
Re // RL RL I R U
o e L
( 1 )RL Au rbe (1 ) RL
结论:
Io Ib 但是,输出电流Ie增加了。Ai (1 ) Ii Ie
2. 输入输出同相,输出电压跟随输入电压, 故称电压跟随器。
三种基本组态放大电路
3.2 三种基本组态放大电路掌握三极管三种组态放大电路的工作原理; 会对放大电路的主要性能指标进行分析;了解场效应管放大电路的工作原理。
一、共发射极放大电路(一)电路的组成直流电源V CC 通过R B1、R B2、R C 、R E 使三极管获得合适的偏置,为三极管的放大作用提供必要的条件, R B1、R B2称为基极偏置电阻,R E 称为发射极电阻,R C 称为集电极负载电阻,利用R C 的降压作用,将三极管 集电极电流的变化转换成集电极电压的变化,从而实现信号的电压放大。
与R E 并联的电容C E ,称为发射极 旁路电容,用以短路交流,使R E 对放大电路的电压放大倍数不产生影响,故要求它对信号频率的容抗越小 越好,因此,在低频放大电路中CE通常也采用电解电容器。
(二)直流分析断开放大电路中的所有电容,即得到直流通路,如下图所示,此电路又称为分压偏置式工作点 稳定直 电流通路。
电路工作要求:I 1≥ (5 ~ 10)I BQ ,U BQ ≥ (5 ~ 10)U BE Q求静态工作点Q:方法1.估算稳定Q点的原理:方法2.利用戴维宁定理求IBQ(三)性能指标分析将放大电路中的C1、C2、CE短路,电源VCC短路,得到交流通路,然后将三极管用H参数小信号电路模型代入,便得到放大电路小信号电路模型如下图所示。
E1.电压放大倍数2.输入电阻二、共集电极放大电路(射极输出器、射极跟随器) (二)性能指标分析1.电压放大倍数2.输入电阻R 'L = R E // R L3.输出电阻共集电极电路特点 共集电极电路用途 1.U o 与U i 同相,具有电压跟随作用 1.高阻抗输入级 2.无电压放大作用 A u <1 2. 低阻抗输出级 3.输入电阻高;输出电阻低 3.中间隔离级例题2.电路如图所示,已知三极管的β=120,R B = 300 k Ω,r 'bb = 200 Ω,U BEQ = 0.7 V R E = R L = R s = 1 k Ω,V CC = 12V 。
放大电路组成及三种组态
基本放大器的组成原则
基本放大器通常是指由一个晶体管或场效应管构成的单级放大器。
放大器条件:
1.要有控制元件:晶体管或场效应管;
2.要有电源--提供能量; 3.偏置在放大区; 4.待放大信号一定加在发射结(或栅源结),不可加到集电极(或漏极);
iC iE I S (e
信号从基极输入, 从发射极输出, ------共集电极
信号从发射极输入, 从集电极输出, ------共基极
第二章
以用途最为广泛的阻容耦合共发射极放大器为例:
▲ 管子--核心控制元件; ▲ RB--偏置电阻, 保证发射结正偏,(放大区); ▲ UCC---能源, 同时保证集电结反偏, 管子工 作在放大区; ▲ RC---集电极负载电阻, 将变化电流转变为 变化电压;
u u u i i i u i (R // R ) u
C
2 1000 10 10
晶体管放大器电路结构及放大原理
u BE UT
1) I S e
u BE UT
5.信号可从集电极或发射极输出,不可从基极(或栅极)输出; 6.要有一定的负载(RC或RE), 将变化电流转为变化电压。
第二章 根据输入、输出回路公共端所接的电极不同,实际有共发射极、 共集电极和共基极三种基本(组态)放大器。
信号从基极输入, 从集电极输出, ------共发射极
RB
C1 RS +
RC
C2 RL
+ UO
UCC
Us
+ Ui
-
-
控制
▲ 信号源通过耦合电容C1输入到管子基极; ▲ 放大了的信号又通过耦合电容C2输出到负载RL;
bjt放大电路的三种基本组态
BJT(双极型晶体管)放大电路的三种基本组态如下:
1. 共射放大电路:这是最基本的组态,也是其他两种组态的基础。
在这个设置中,输入信号控制基极电流,从而改变集电极电流,并最终改变输出电压。
这种关系提供了放大作用。
在共射放大电路中,信号从输入端加入,通过晶体管放大后,从输出端取出,这就完成了一次放大过程。
2. 共集放大电路,也被称为射极跟随器或射极输出器。
它的输入阻抗高,输出阻抗低,具有电压放大和电流驱动的作用。
此外,由于输入电流对基极电压的影响相对较小,因此共集放大电路的频带也较宽。
这些特点使得它常用于输入级缓冲放大电路,以减少信号失真和提高信噪比。
3. 共基放大电路,它具有高输入阻抗和低输出阻抗的特点,但频率特性较差,增益较低。
由于这些特点,它通常用于作多级放大器的中间级或作为频率补偿电路使用。
以上三种组态各有其特点和应用范围。
在选择使用哪种组态时,通常会考虑信号的性质、频率响应、电压放大倍数以及电源电压等因素。
同时,BJT放大电路的设计和制作也涉及到许多其他因素,如电阻和电容的选择、电路的布线和接地等。
这些因素都会影响到放大电路的性能和稳定性。
以上内容仅供参考,建议到知识分享平台获取更多信息。
实验5三种基本组态晶体管放大电路
课程编号实验项目序号本科学生实验卡和实验报告信息科学与工程学院通信工程专业2015级1班课程名称:电子线路实验项目:三种基本组态晶体管放大电路2017——2018学年第一学期学号:201508030107 姓名:毛耀升专业年级班级:通信工程1501班四合院102 实验室组别:无实验日期:2017年12 月26日图5.1 工作点稳定的共发射极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;3、利用L键拨动负载电阻处并关,将负载电阻开路,适当调整示波器A通道参数,再测量输出波形幅值,然后用下列公式计算输出电阻Ro;其中Vo是负载电阻开路时的输出电压;4、连接上负载电阻,再利用空格键拨动开关,使发射极旁路电容断开,适当调整示波器A通道参数,再测量、计算电压放大倍数。
并说明旁路电容的作用。
(二)共集电极放大电路1、建立共集电极放大电路如图5.2所示。
NPN型晶体管取理想模式,电流放大系数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表设置为交流模式;图5.2 工作点稳定的共集电极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;3、仿照5.3.1中的步骤3求电路输出电阻。
(三)共基极放大电路1、建立共基极放大电路,如图5.3所示。
NPN型晶体管取理想模式,电流放大系数设置为50。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表;图5.3 工作点稳定的共基极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻;3、仿照5.3.1步骤3求电路输出电阻。
《电子技术基础》练习题库
《电子技术基础》练习题库第一章思考复习题1.填空题(1)半导体中有两种载流子,一种是_______.另一种是_____.(2)在N型半导体中,多数载流子是______.在P型半导体中.主要靠其多数载流子_____导电.(3)PN结单向导电性表现为:外加正向电压时_______;外加反向电压时______.。
(4)二极管的反向电流随外界的温度而________.反向电流越小,说明二极管的单向电性________.一般硅二极管的反向电流比锗管_______很多,所以电流越小,说明二极管的单向导电性________.一般硅二极管的反向电流比锗管_______很多,所以应用中一般多选用硅管.(5)稳压二极管稳压时,应工作在其伏安特性的_______区.(6)三级管是一种________控制器件;而场效应管则是一种______控制器件.(7)三级管工作在放大区的外部条件是:发射结-_______位置,集电结_________偏置.(8)三级管的输出特性分为三个区域,即_________区、___________区和_________区.(9)三级管在放大区的特点是:当基极电流固定时,其_______电流基本不变,体现了三极管的___________特性.(10) 用在电路中的整流二极管,主要考虑两个参数____________和_______________,选择时应适当留有余地.(11) 在放大区,对NPN型的三极管有电位关系:Uc___________Ub_______Ue;而对PNP型的管子,有电位关系:Uc______Ub__________ Ue.(12) 根据结构不同,场效应管分为两大类,__________和___________场效应管.(13) 为实现场子效应管栅源电压对漏极电流的控制作用,结型场效应管在工作时,栅源之间的PN结必须_______位置.N沟道结型场效应管的Ucs不能______0,P沟道结型场效应管的Ucs不能___________0.(14) 场效应管的参数__________反映了场效应管栅源电压对漏极电流的控制及放大作用.(15) 场效应管与三极管相比较,其特点是:输入电阻比较___________,热稳定性比较_________.2.选择题(1)本征半导体,自由电子工业和空穴的数目是________.①相等②自由电子比空穴的数目多③自由电子比空穴的数目少(2)P型半导体的空穴数目多于自由电子,则P型半导体呈现的电性为______.①负电②正电③电中性(3)稳压二极管稳压,利用的是稳夺二级管的______.①正向特性②反向特性③反向击穿特性(4)用万用表测量二极管的极性,将红、黑表行分别接二极管的两个电极,若测得的电阻值很小(几千欧以下),则黑表笔所接电极为二极管的_____.①正极②负极③不能确定(5)测得电路中一个NPN型三极管的3个电极电位分别为:Uc=6V,UB=3v,Ue=2.3v,则可判定该三极管工作在_______.①截止区②饱和区③放大区(6)三极管的电流放大系数β,随温度的升高会______.①减小②增大③不变3.判断题(1)二极管外加正向电压时呈现很大的电阻,而外加反向电压时呈现很小的电阻。
《模拟电子技术基础》教案第二章基本放大电路(高教版)(中职教育).doc
第二章基本放大电路本章内容简介本章首先讨论半导体三极管(BJT )的结构、工作原理、特性曲线和主要参数。
随后着重讨论BJT放大电路的三种组态,即共发射极、共集电极和共基极三种放大电路。
内容安排上是从共发射极电路入手,再推及其他两种电路,并将图解法和小信号模型法,作为分析放大电路的基本方法。
(一)主要内容:◊半导体三极管的结构及工作原理,放大电路的三种基本组态◊静态工作点Q的不同选择对非线性失真的影响◊用H参数模型计算共射极放大电路的主要性能指标◊共集电极电路和共基极电路的工作原理◊三极管放大电路的频率响应(二)教学要点:从半导体三极管的结构及工作原理入手,重点介绍三种基本组态放大电路的静态工作点、动态参数(电压增益、源电压增益、输入电阻、输出电阻)的计算方法,H参数等效电路及其应用。
(三)基木要求:◊了解半导体三极管的工作原理、特性曲线及主要参数◊了解半导体三极管放大电路的分类◊掌握用图解法和小信号分析法分析放大电路的静态及动态工作情况◊理解放大电路的工作点稳定问题◊掌握放大电路的频率响应及各元件参数对其性能的影响2.1半导体三极管(BJT)2.1.1BJT的结构简介:半导体三极管有两种类型:NPN型和PNP型。
结构特点:发射区的掺杂浓度最高;集电区掺杂浓度低于发射区,且面积大;基区很薄,一般在几个微米至几十个微米,且掺杂浓度最低。
2.1.2BJT的电流分配与放大原理三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
i B =(l_Q )x* a1-a 2.三极管的三种组态共发射极接法,发射极作为公共电极,用CE 表示。
共基极接法,基极作为 公共电极,用CB 表示。
共集电极接法,集电极作为公共电极,用CC 表示。
q =必耳=«厶=厶/⑴《)BJT 的三种组态4. 放大作用综上所述,三极管的放大作用,主要是依靠它的发射极电流能够通过基区传 输,然后到达集电极而实现的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除去信号的输入、输出端。
另一端就是共极三极管基本放大电路的三种组态
组态一:共射电路
组态二:共集电极电路
共集电极组态基本放大电路如图所示。
(1)直流分析
(2)交流分析
放大倍数/输入电阻/输出电阻
组态三:共基极放大电路共基组态放大电路如图
交流、直流通路
微变等效电路
共基极组态基本放大电路的微变等效电路
性能指标
三种组态电路比较
放大电路的三种基本组态
2.6.1共集电极放大电路
上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。
又由于输出信号从发射极引出,因此这种电路也称为射极输出器。
下面对共集电极放大电路进行静态和动态分析。
一、静态工作点
根据上图(a)电路的基极回路可求得静态基极电流为
二、电流放大倍数
由上图(b)的等效电路可知
Ai= - (1+β) 三、电压放大倍数
由上图(a)可得
Re’=Re//RL
由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。
四、输入电阻
由图2.6.1(b)可得
Ri=rbe+(1+β)Re’
由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。
由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。
五、输出电阻
在上图(b)中,当输出端外加电压U。
,而US=0时,如暂不考虑Re的作用,可得下图。
由图可得
由上式可知,射极输出器的输出电阻等于基极回路的总电阻()除以(1+β),因此输出电阻很低,故带负载能力比较强。
由上式也可见,基极回路的电阻折合到发射极,需除以(1+β)。
2.6.2共基极放大电路
上图(a)是共基极放大电路的原理性电路图。
由图可见,发射极电源VEE的极性保证三极管的发射结正向偏置,集电极电源VCC的极性保证集电结反向偏置,从而可以使三极管工作在放大区,因输入信号与输出信号的公共端是基极,因此属于共基组态。
为了养活直流电源的种类,实际电路中一般一再另用一个发射极电源VEE,而是采用如上图(b)的形式,将VCC在电阻Rb1、Rb2上分压得到的结果接到基极。
当旁路电容Cb 足够大时,可认为Rb1两端电压基本稳定。
可以看出,此电压能够代表VEE,保证发射结正向偏置。
2.6.3三种基本组态的比较
根据前面的分析,现对共射、共集和共基三种基本组态的性能特点进行比较,并列于表2-1中。
上述三种接法的主要特点和应用,可以大致归纳如下:
①共射电路同时具有较大的电压放大倍数和电流放大倍数,输入电阻和输出电阻值比较适中,所以,一般只要对输入电阻、输出电阻和频率响应没有特殊要求的地方,均常采用。
因此,共射电路被广泛地用作低频电压放大电路和输入级、中间级和输出级。
②共集电路的特点是电压跟随,这就是电压放大倍数接近放大电路的三种基本组态2.6.1共集电极放大电路
上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。
又由于输出信号从发射极引出,因此这种电路也称为射极输出器。
下面对共集电极放大电路进行静态和动态分析。
一、静态工作点
根据上图(a)电路的基极回路可求得静态基极电流为
二、电流放大倍数
由上图(b)的等效电路可知
Ai= - (1+β) 三、电压放大倍数
由上图(a)可得
Re’=Re//RL
由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。
四、输入电阻
由图2.6.1(b)可得
Ri=rbe+(1+β)Re’
由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。
由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。
五、输出电阻
在上图(b)中,当输出端外加电压U。
,而US=0时,如暂不考虑Re的作用,可得下图。
由图可得
由上式可知,射极输出器的输出电阻等于基极回路的总电阻()除以(1+β),因此输出电阻很低,故带负载能力比较强。
由上式也可见,基极回路的电阻折合到发射极,需除以(1+β)。
2.6.2共基极放大电路
上图(a)是共基极放大电路的原理性电路图。
由图可见,发射极电源VEE的极性保证三极管的发射结正向偏置,集电极电源VCC的极性保证集电结反向偏置,从而可以使三极管工作在放大区,因输入信号与输出信号的公共端是基极,因此属于共基组态。
为了养活直流电源的种类,实际电路中一般一再另用一个发射极电源VEE,而是采用如上图(b)的形式,将VCC在电阻Rb1、Rb2上分压得到的结果接到基极。
当旁路电容Cb 足够大时,可认为Rb1两端电压基本稳定。
可以看出,此电压能够代表VEE,保证发射结正向偏置。
2.6.3三种基本组态的比较
根据前面的分析,现对共射、共集和共基三种基本组态的性能特点进行比较,并列于表2-1中。
上述三种接法的主要特点和应用,可以大致归纳如下:
①共射电路同时具有较大的电压放大倍数和电流放大倍数,输入电阻和输出电阻值比较适中,所以,一般只要对输入电阻、输出电阻和频率响应没有特殊要求的地方,均常采用。
因此,共射电路被广泛地用作低频电压放大电路和输入级、中间级和输出级。
②共集电路的特点是电压跟随,这就是电压放大倍数接近于1而小于1,而且输入电阻很高、输出电阻很低,由于具有这些特点,常被用作多级放大电路的输入级、输出级或作为隔离用的中间级。
首先,可以利用它作为量测放大器的输入级,以减小对被测电路的影响,提高量测的精度。
其次,如果放大电路输出端是一个变化的负载,那么为了在负载变化时保证放大电路的输出电压比较稳定,要求放大电路具有委低的输出电阻。
此时,可以采用射极输出器作为放大电路的输出级。
③共基电路的突出特点在于它具有很低的输入电阻,使晶体管结电容的影响不显着,因此频率响应得到很大改善,所以这种接法常常用于宽频带放大器中。
另外,由于输出电阻高,共基电路还可以作为恒流源。
于1而小于1,而且输入电阻很高、输出电阻很低,由于具有这些特点,常被用作多级放大电路的输入级、输出级或作为隔离用的中间级。
首先,可以利用它作为量测放大器的输入级,以减小对被测电路的影响,提高量测的精度。
其次,如果放大电路输出端是一个变化的负载,那么为了在负载变化时保证放大电路的输出电压比较稳定,要求放大电路具有委低的输出电阻。
此时,可以采用射极输出器作为放大电路的输出级。
③共基电路的突出特点在于它具有很低的输入电阻,使晶体管结电容的影响不显着,因此频率响应得到很大改善,所以这种接法常常用于宽频带放大器中。
另外,由于输出电阻高,共基电路还可以作为恒流源。