小学奥数几何专题训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级几何专题复习
如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接
而成,那么阴影部分的面积是_____cm2。(π取3。14)(几何)
有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米.(结头处绳长不计,π取3.14)
图中的阴影部分的面积是________平方厘米。(π取3)
如图,△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S△BEP=S△CFP=4,则S△BPC=______.
如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实体圆柱 体,容器内盛有m 升水时,水面恰好经过圆柱体的上底面。如果将容器倒 置,圆柱体有8厘米露出水面。已知圆柱体的底面积是正方体底面积的 1/8,求实心圆柱体的体积。
在三角形ABC中,已知三角形A DE 、三角形D CE 、三角形BCD 的面积分别是9,6,5,那么三角形D BE 的面积是ﻩﻩ.
A
答案:
::()5:(96)1:3BDC ADE EDC DB DA S S S ∆∆∆=+=+=,
所以113(965)3445
EDB ABE ABC BD AE S S S BA AC ∆∆∆=⨯=⨯⨯=⨯⨯++=
如图,三角形田地中有两条小路AE 和C F,交叉处为D,张大伯常走这两条小路,他知道DF =DC,且AD =2DE .则两块田地ACF 和CFB 的面积比是______.
F E D
C B A
F
E D
C B
A
【分析】 连接BD ,设1CED S =△(份),则2ACD ADF S S ==△△,设BED S x =△BFD S y =△,则有122x y
x y +=⎧⎨
=+⎩
,解得34x y =⎧⎨
=⎩
,所以:(22):(431)1:2ACF CFB S S =+++=△△
如图,H G F E 、、、、分别是四边形ABCD 各边的中点,FG 与FH 交于点O ,123S S S 、、及4S 分别表示四个小四边形的面积.试比较13S S +与24S S +的大小.
S 4
S 3
S 2
S 1
O
H
G
F
E D
C
B
A
S 4
S 3
S 2
S 1
O
H
G
F
E
D
C
B A
【分析】 连接AO 、BO 、CO 、DO ,则可判断出,每条边与O 所构成的三角形被平分为两部分,
分属于不同的组合,且对边中点连线,将四边形分成面积相等的两个小四边形,所
以13S S +=24S S +.
如图,对于任意四边形ABCD ,通过各边三等分点的相应连线,得到中间四边形EFGH ,求四边形EFGH 的面积是四边形ABCD 的几分之几?
D
[分析] 如图,分层次来考虑:
(1)23
BMD ABD S S =⨯,23
BPD CBD S S =⨯,
所以22()3
3
MBPD ABD CBD ABCD S S S S =+⨯=⨯
又因为DOM POM S S =,MNP BNP S S =,
所以12
MNPO MBPD S S =;
121
233
MNPO ABCD ABCD S S S =⨯⨯=⨯.
D
(2)已知13
MJ BD =,23
OK BD =;
所以:1:2MJ BD =;
所以:1:2ME EO =,即E 是三等分点; 同理,可知F 、G 、H 都是三等分点; 所以再次应用(1)的结论,可知,
1111
3339
EFGH MNPO ABCD ABCD S S S S =⨯=⨯⨯=.
如图,正方形ABCD 和正方形ECGF 并排放置,B F与EC 相交于点H ,已知AB =6厘米,则阴影部分的面积是________平方厘米
.
C
B
A
C
B
A
【分析】 连接DF 、CF ,可知四边形BDFC 是梯形,所以根据梯形蝴蝶定理有BHC DHF
S S =△△,又因
为DHF
DHG S S =△△,ﻩ所以66218BDC S S ==⨯÷=△阴影
右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC 的面积.
A
A
[分析] 连接AD ,可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等
于大正方形的边长,所以面积相等.因为三角形AGD是三角形ABD与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG与三角形GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD的面积,等于4428
⨯÷=(平方厘米).