2020高考应用题专题(含答案版)

合集下载

高考数学应用题复习题集及参考答案

高考数学应用题复习题集及参考答案

高考数学应用题复习题集及参考答案本文为高考数学应用题复习题集及参考答案,旨在帮助学生复习并加深对应用题的理解。

以下是一系列经典的数学应用题,每道题后附有详细的解答和解题思路。

希望能够对广大考生有所帮助。

一、函数与极限1. 设函数\[y = f(x) = \frac{{\sin x}}{{\sqrt{x}}}\],求\[\lim_{{x\rightarrow 0}} f(x)\]的值。

解答:由于\[\lim_{{x \rightarrow 0}} \sin x = 0\],且\[\lim_{{x \rightarrow 0}} \sqrt{x} = 0\],所以我们有:\[\lim_{{x \rightarrow 0}} f(x) = \lim_{{x \rightarrow 0}} \frac{{\sin x}}{{\sqrt{x}}}\]\[= \frac{{\lim_{{x \rightarrow 0}} \sin x}}{{\lim_{{x \rightarrow 0}} \sqrt{x}}}\]\[= \frac{0}{0}\](形式不定)利用洛必达法则,求导得:\[\lim_{{x \rightarrow 0}} f(x) = \lim_{{x \rightarrow 0}} \frac{{\cos x}}{{\frac{1}{{2\sqrt{x}}}}}\]\[= \lim_{{x \rightarrow 0}} 2\sqrt{x} \cdot \cos x\]\[= 2 \cdot 0 \cdot 1 = 0\]因此,\[\lim_{{x \rightarrow 0}} f(x) = 0\]。

二、微分与导数2. 已知函数\[y = f(x) = x^3 - 3x^2 - 4x + 12\],求导函数\[y' = f'(x)\]。

解答:使用导数的定义,对函数进行求导:\[y' = \lim_{{\Delta x \rightarrow 0}} \frac{{f(x+\Delta x) -f(x)}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{(x+\Delta x)^3 - 3(x+\Delta x)^2 - 4(x+\Delta x) + 12 - (x^3 - 3x^2 - 4x + 12)}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{x^3 + 3x^2 \Delta x +3x(\Delta x)^2 + (\Delta x)^3 - 3x^2 - 6x \Delta x - 3(\Delta x)^2 - 4x -4\Delta x + 12 - x^3 + 3x^2 + 4x - 12}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - 6x \Delta x - 3(\Delta x)^2 - 4\Delta x}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} (3x^2 + 3x \Delta x + (\Delta x)^2 - 6x - 3\Delta x - 4)\]\[= 3x^2 - 6x - 4\]因此,导函数\[y' = f'(x) = 3x^2 - 6x - 4\]。

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

新高考数学专题复习-《应用题》专题

新高考数学专题复习-《应用题》专题

高三数学《应用题》专题一、复习目标:数学应用性问题是高考命题的主要题型之一.解答应用题关键是深刻理解题意,会从文字语言向数学的符号语言进行转化,这就需要我们建立恰当的数学模型,其中函数、数列、不等式、是较为常见的模型,而三角,立几,解析等模型也不容忽视.二、考试要求:应用题在高考中一般是中等难度的题型,只要有耐心,再加上细心,抓住关键词、句一般同学都能拿到70%的分数,而大多数同学怕应用题,看到文字叙述比较长就读不下去,因此应用题也就变成了难题,而老师一讲评,又感到很简单,所以解答应用题一定要有信心和耐心 三、基础知识、基本方法归纳:解应用题的一般步骤是:1.读题:读懂和深刻理解,译为数学语言,找出主要关系;往往是求那个量,就设这个量为变量x,解答时注意名数是否统一(广东08应用题17);2.建模:把主要关系数量化、符号化,抽象成数学问题,即转化为一个数学表达式,注意要根据实际意义写出函数的定义域(如一模应用题20);3.求解:化归为纯数学问题,选择合适的数学方法求解;往往是转化为求函数的最值 4.作答:根据解答结果,回答问题的解决情况。

四个步骤用框图可简单表示为:在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型等等.Ⅰ.函数模型 现实世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决. Ⅱ.几何模型 如航行、建桥、测量等涉及一定图形属性的应用问题,常常需要应用几何图形的性质,或用方程、不等式或用三角函数知识来求解.Ⅲ.数列模型 如增长率、、存款复利、分期付款等与年(月)份有关的实际问题,大多可归结为数列问题,即通过建立相应的数列模型来解决.在解应用题时,是否是数列问题主要看自变量是否与正整数有关. 五、课堂练习与例题 1.一种专门占据内存的计算机病毒开始时占据内存2KB ,工作时3分钟自身复制一次,(即复制后所占内存是原来的2倍),那么,开机后( )分钟,该病毒占据64MB (1210MB KB )。

2020年高考数学专题复习一元二次不等式及其解法

2020年高考数学专题复习一元二次不等式及其解法

一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.一元二次不等式的解集判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:选A.由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)(教材习题改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则实数m 的取值范围是________.解析:由题意知:Δ=(m +1)2+4m >0.即m 2+6m +1>0,解得:m >-3+22或m <-3-2 2.答案:(-∞,-3-22)∪(-3+22,+∞)一元二次不等式的解法 (高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.主要命题角度有:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数.角度一 解不含参数的一元二次不等式解下列不等式: (1)-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}.角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ). 【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3, 解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba ,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5. 即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.1.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1},B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]3.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ; (2)解不等式x -cax -b>0(c 为常数). 解:(1)由题知1,b 为方程ax 2-3x +2=0的两根, 即⎩⎪⎨⎪⎧b =2a ,1+b =3a .所以a =1,b =2.(2)不等式等价于(x -c )(x -2)>0,当c >2时,解集为{x |x >c 或x <2};当c <2时,解集为{x |x >2或x <c };当c =2时,解集为{x |x ≠2}.一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.主要命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.【解析】 当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R ,只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12. 综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 【答案】 ⎝ ⎛⎭⎪⎫12,+∞角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,1-32B .⎣⎢⎡⎭⎪⎫1+32,+∞C .⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞D .⎣⎢⎡⎦⎥⎤1-32,1+32【解析】 因为x ∈(0,2], 所以a 2-a ≥xx 2+1=1x +1x .要使a 2-a ≥1x +1x在x ∈(0,2]时恒成立, 则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x≥2,当且仅当x =1时等号成立,即⎝⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.【答案】 C角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为________.【解析】 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4), 则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立方程解得x <1或x >3.【答案】 {x |x <1或x >3}(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)三个“二次”间的转化二次函数、二次方程与二次不等式统称三个“二次”,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题.(2019·温州八校联考)已知函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解:(1)当m =0时,f (x )=-1<0恒成立,当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0].(2)不等式f (x )<5-m ,即(x 2-x +1)m <6, 因为x 2-x +1>0,所以m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67.所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67.一元二次不等式的应用某汽车厂上年度生产汽车的投入成本为1012销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?【解】 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000(1+0.6x )(0<x <1), 整理得y =-6 000x 2+2 000x +20 000(0<x <1). (2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧y -(12-10)×10 000>0,0<x <1,即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13,所以投入成本增加的比例应在⎝ ⎛⎭⎪⎫0,13范围内.解不等式应用题的步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系; (2)将文字语言转化为符号语言,用不等式(组)表示不等关系; (3)解不等式(组),得到数学结论,要注意数学模型中元素的实际意义;(4)回归实际问题,将数学结论还原为实际问题的结果.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价, 所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. [基础达标]1.设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A =[-1,2],B =(1,+∞),A ∩B =(1,2].2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A .56 B .16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56.3.(2019·浙江省名校协作体高三联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:选A.法一:当x ≤0时,x +2≥x 2, 所以-1≤x ≤0;①当x >0时,-x +2≥x 2,所以0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].4.(2019·宁波效实中学模拟)不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选C.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min,由于a b +16b a ≥2a b ·16b a=8(当且仅当a =4b 时等号成立),所以x 2+2x <8,解得-4<x <2.5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].6.(2019·台州联考)在R 上定义运算:=ad -bc .若不等式对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C .13D .32解析:选D.原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32,故选D.7.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.已知函数f (x )=x 2+2x +1,如果使f (x )≤kx 对任意实数x ∈(1,m ]都成立的m 的最大值是5,则实数k =________.解析:设g (x )=f (x )-kx =x 2+(2-k )x +1,由题意知g (x )≤0对任意实数x ∈(1,m ]都成立的m 的最大值是5,所以x =5是方程g (x )=0的一个根,将x =5代入g (x )=0,可以解得k =365(经检验满足题意).答案:36510.已知f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,3x -2,x >0,若|f (x )|≥ax 在x ∈[-1,1]上恒成立,则实数a 的取值范围是____________.解析:当x =0时,|f (x )|≥ax 恒成立,a ∈R ;当0<x ≤1时,|f (x )|≥ax 转化为a ≤|f (x )|x =|3x -2|x =|3-2x |.因为|3-2x|的最小值为0,所以a ≤0;当-1≤x <0时,|f (x )|≥ax 转化为a ≥|f (x )|x =-|x 2-2x |=-|x -2x |.因为-|x -2x|的最大值为-1,所以a ≥-1,综上可得a ∈[-1,0].答案:[-1,0]11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.12.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c . (1)求证:函数y =f (x )必有两个不同的零点;(2)若函数y =f (x )的两个零点分别为m ,n 求|m -n |的取值范围.解:(1)证明:由题意知a +b +c =0,且-b2a >1.所以a <0且ca>1,所以ac >0. 对于函数f (x )=ax 2+(a -b )x -c 有Δ=(a -b )2+4ac >0.所以函数y =f (x )必有两个不同零点.(2)|m -n |2=(m +n )2-4mn =(b -a )2+4ac a 2=(-2a -c )2+4ac a2=⎝ ⎛⎭⎪⎫c a 2+8⎝ ⎛⎭⎪⎫c a +4. 由不等式ax 2+bx +c >0的解集为(1,t )可知,方程ax 2+bx +c =0的两个解分别为1和t (t >1),由根与系数的关系知c a=t ,所以|m -n |2=t 2+8t +4,t ∈(1,+∞). 所以|m -n |>13,所以|m -n |的取值范围为(13,+∞). [能力提升]1.(2019·金华市东阳二中高三调研)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A .⎝ ⎛⎭⎪⎫-235,+∞ B .⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .(-∞,-1)解析:选A.由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝ ⎛⎭⎪⎫-235,+∞. 2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a=2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.3.(2019·杭州模拟)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析:原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.答案:[-4,3]4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.(2019·杭州高级中学质检)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .6.(2019·丽水市高考数学模拟)已知函数f (x )=|x +a |x 2+1(a ∈R ).(1)当a =1时,解不等式f (x )>1;(2)对任意的b ∈(0,1),当x ∈(1,2)时,f (x )>bx恒成立,求a 的取值范围.解:(1)f (x )=|x +1|x 2+1>1⇔x 2+1<|x +1|⇔⎩⎪⎨⎪⎧x +1≥0x 2+1<x +1或⎩⎪⎨⎪⎧x +1<0x 2+1<-(x +1)⇔0<x <1.故不等式的解集为{x |0<x <1}.(2)f (x )=|x +a |x 2+1>b x ⇔|x +a |>b (x +1x )⇔x +a >b (x +1x )或x +a <-b (x +1x )⇔a >(b -1)x+b x 或a <-[(b +1)x +b x]对任意x ∈(1,2)恒成立.所以a ≥2b -1或a ≤-(52b +2)对任意b ∈(0,1)恒成立.所以a ≥1或a ≤-92.。

高中数学经典概率与统计(解析版)

高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。

高考数学应用题及答案

高考数学应用题及答案

高考数学应用题及答案1. 题目:某工厂生产一种产品,该产品的成本函数为 \( C(x) =3000 + 50x \),其中 \( x \) 表示生产的产品数量。

如果每件产品的销售价格为 \( 150 \) 元,求生产多少件产品时,工厂的利润最大。

答案:首先,我们需要找到利润函数 \( P(x) \)。

利润等于总收入减去总成本,即 \( P(x) = R(x) - C(x) \)。

总收入 \( R(x) \) 为 \( 150x \),因此利润函数为:\[ P(x) = 150x - (3000 + 50x) = 100x - 3000 \]为了找到利润最大的生产数量,我们需要求 \( P(x) \) 的最大值。

由于 \( P(x) \) 是关于 \( x \) 的线性函数,其最大值出现在\( x \) 取最大值时。

然而,实际生产中 \( x \) 必须是非负整数。

因此,我们需要考虑实际的生产限制。

由于 \( P(x) \) 是一个递增的线性函数,所以当 \( x \) 越大,利润 \( P(x) \) 也越大。

但是,实际生产中可能存在生产能力的限制,例如机器的最大生产能力、原材料的限制等。

假设生产能力限制为\( x_{\text{max}} \),那么在 \( 0 \leq x \leq x_{\text{max}} \) 的范围内,利润函数 \( P(x) \) 是递增的。

因此,在没有额外限制的情况下,生产的产品数量越多,利润越大。

但是,实际中需要考虑生产能力的限制。

2. 题目:某商店销售两种商品,商品A的售价为 \( 20 \) 元,成本为 \( 15 \) 元;商品B的售价为 \( 30 \) 元,成本为 \( 25 \) 元。

如果商店计划销售这两种商品,使得总利润最大化,且商品A和商品B的销售数量比为 \( 3:2 \),求商店应该销售多少件商品A和商品B。

答案:设商品A的销售数量为 \( 3k \) 件,商品B的销售数量为\( 2k \) 件,其中 \( k \) 为正整数。

高考数学实际应用题集

高考数学实际应用题集

高考数学实际应用题集1. 假设一辆汽车以60公里/小时的速度行驶,行驶了1小时后,汽车所行驶的距离是多少?答案:60公里2. 一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,求长方体的对角线长度。

答案:5厘米3. 小明买了一本书,书的定价是100元,书店给出了9折的优惠,小明实际需要支付多少钱?答案:90元4. 某公司有100名员工,其中30%的员工是女性,那么该公司有多少名女性员工?答案:30名5. 一个等差数列的前两项分别是1和3,求这个等差数列的第10项。

答案:176. 一个圆的半径增加了20%,原来的面积是200π平方厘米,增加后的面积是多少?答案:240π平方厘米7. 一个正方体的边长是6厘米,求它的表面积和体积。

答案:表面积112平方厘米,体积72立方厘米8. 一个水池的底面积是20平方米,如果每小时注水2立方米,那么填满水池需要多少时间?答案:10小时9. 一个长方体的长是4厘米,宽是3厘米,高是2厘米,求这个长方体的对角线长度。

答案:5厘米10. 一条直线上有三个点A、B、C,点A的坐标是(1,2),点B 的坐标是(3,4),点C的坐标是(5,6),求线段BC的长度。

答案:7厘米11. 一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。

答案:48π立方厘米12. 一个正三角形的边长是6厘米,求这个正三角形的面积。

答案:18平方厘米13. 一个等比数列的前两项分别是1和2,求这个等比数列的第10项。

答案:102414. 一个球的半径是5厘米,求这个球的表面积和体积。

答案:表面积125π平方厘米,体积413.12立方厘米15. 一个长方体的长是4厘米,宽是3厘米,高是2厘米,求这个长方体的对角线长度。

答案:5厘米16. 一条直线上有三个点A、B、C,点A的坐标是(1,2),点B 的坐标是(3,4),点C的坐标是(5,6),求线段AB的长度。

答案:3厘米17. 一个圆的半径是3厘米,求这个圆的面积。

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用2(含解析)

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用2(含解析)

2020届高考数学命题猜想函数与方程﹑函数模型及其应用【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国卷Ⅱ)已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】见解析【解析】(2)由于,所以等价于.设=,则g ′(x )=≥0,仅当x=0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=,f (3a+1)=,故f (x )有一个零点.综上,f (x )只有一个零点.【感悟提升】新定义问题的本质是转化思想的应用,即把新定义问题转化为已知的问题加以解决,解题的关键是理解新定义,把新定义表达的问题转化为我们已经掌握的数学问题,然后根据题目的要求进行推理计算得出结论.【变式探究】给出定义:如果函数f(x)在[a ,b]上存在x1,x2(a<x1<x2<b),满足f ′(x1)=f (b )-f (a )b -a ,f ′(x2)=f (b )-f (a )b -a ,则称实数x1,x2为[a ,b]上的“对望数”,函数f(x)为[a ,b]上的“对望函数”.已知函数f(x)=13x3-x2+m 是[0,m]上的“对望函数”,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫32,3 B .(2,3) C.⎝⎛⎭⎪⎪⎫32,2 3 D .(2,2 3)【答案】A【命题热点突破三】 函数模型及其应用解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.例3、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】8【变式探究】随着网络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.1 、(2017·全国Ⅲ)已知函数f(x)=x2-2x +a(ex -1+e -x +1)有唯一零点,则a 等于 A.-12B.13C.12 D.1【解析】f(x)=x2-2x +a(ex -1+e -x +1) =(x -1)2+a[ex -1+e -(x -1)]-1,令t =x -1,则g(t)=f(t +1)=t2+a(et +e -t)-1. ∵g(-t)=(-t)2+a(e -t +et)-1=g(t), ∴函数g(t)为偶函数.∵f(x)有唯一零点,∴g(t)也有唯一零点. 又g(t)为偶函数,由偶函数的性质知g(0)=0, ∴2a -1=0,解得a =12 .【答案】C.2、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】81.【2016高考新课标1卷】函数在[]2,2-的图像大致为(A)(B)(C)(D)【答案】D2.【2016高考山东文数】已知函数其中0m>,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.【答案】() 3,+∞【解析】画出函数图象如下图所示:由图所示,要()f x b=有三个不同的根,需要红色部分图像在深蓝色图像的下方,即,解得3m >。

高考应用题复习(含答案)

高考应用题复习(含答案)

C应用题复习训练题1、如图,公园有一块边长为2的等边△ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,D 在AB 上,E 在AC 上.(1)设AD =x (x≥0),ED =y ,求用x 表示y 的函数关系式;(2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE是参观线路,则希望它最长,DE 的位置又应在哪里?请说明理由2(本题满分16分)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x ()01x <<,那么月平均销售量减少的百分率为2x . 记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元). (1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. 3.(本题满分15分)如图所示,一条直角走廊宽为2米。

现有一转动灵活的平板车,其平板面为矩形ABEF ,它的宽为1米。

直线EF 分别交直线AC 、BC 于M 、N ,过墙角D 作DP ⊥AC 于P ,DQ ⊥BC 于Q ;⑴若平板车卡在直角走廊内,且∠θ=CAB ,试求平板面的长(用θ表示);⑵若平板车要想顺利通过直角走廊,其长度不能超过多少米?4.(本小题15分)某建筑的金属支架如图所示,根据要求AB 至少长2.8m ,C 为AB 的中点,B 到D 的距离比CD 的长小0.5m ,060BCD ∠=,已知建筑支架的材料每米的价格一定,问怎样设计,AB CD 的长,可使建造这个支架的成本最低?BBACD地面5、某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a 元(a 为常数,2≤a ≤5 )的税收。

设每件产品的售价为x 元(35≤x ≤41),根据市场调查,日销售量与xe (e 为自然对数的底数)成反比例。

2020年高考全国卷Ⅲ理综(含答案)

2020年高考全国卷Ⅲ理综(含答案)

2020年高考全国卷Ⅲ理综(含答案)2020年普通高等学校招生全国统一考试(全国卷三)理科综合能力测试注意事项:1.答卷前,请务必在答题卡上填写姓名和准考证号。

2.回答选择题时,请使用铅笔将所选答案对应题目的答案标号涂黑。

如需更改答案,请使用橡皮擦擦干净后重新涂黑。

回答非选择题时,请将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,请将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1C 12N 14O 16Mg 24S 32Fe 56Cu 64一、选择题:本题共13个小题,每小题6分。

共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.关于真核生物的遗传信息及其传递的叙述,错误的是:A.遗传信息可以从DNA流向RNA,也可以从RNA流向蛋白质。

B.细胞中以DNA的一条单链为模板转录出的RNA均可编码多肽。

C.细胞中DNA分子的碱基总数与所有基因的碱基数之和不相等。

D.染色体DNA分子中的一条单链可以转录出不同的RNA 分子。

2.取燕麦胚芽鞘切段,随机分成三组,第1组置于一定浓度的蔗糖(Suc)溶液中(蔗糖能进入胚芽鞘细胞),第2组置于适宜浓度的生长素(IAA)溶液中,第3组置于IAA+Suc溶液中,一定时间内测定胚芽鞘长度的变化,结果如图所示。

用KCl代替蔗糖进行上述实验可以得到相同的结果。

下列说法不合理的是:A.KCl可进入胚芽鞘细胞中调节细胞的渗透压。

B.胚芽鞘伸长生长过程中,随着细胞对水分的吸收。

C.本实验中Suc是作为能源物质来提高IAA作用效果的。

D.IAA促进胚芽鞘伸长的效果可因加入Suc或KCl而提高。

3.细胞内有些tRNA分子的反密码子中含有稀有碱基次黄嘌呤(I),含有I的反密码子在与mRNA中的密码子互补配对时,存在如图所示的配对方式(Gly表示甘氨酸)。

下列说法错误的是:A.一种反密码子可以识别不同的密码子。

B.密码子与反密码子的碱基之间通过氢键结合。

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m4.如图所示,半径为R的圆管BCD竖直放置,一可视为质点的质量为m的小球以某一初速度从A点水平抛出,恰好从B点沿切线方向进入圆管,到达圆管最高点D后水平射出.已知小球在D点对管下壁压力大小为12mg,且A、D两点在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功.【答案】(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y在B 点:v 0=60y v tan(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v Dω=D v R (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.5.如图,图象所反映的物理情景是:物体以大小不变的初速度v 0沿木板滑动,若木板倾角θ不同,物体沿木板上滑的距离S 也不同,便可得出图示的S -θ图象.问: (1)物体初速度v 0的大小.(2)木板是否粗糙?若粗糙,则动摩擦因数μ为多少? (3)物体运动中有否最大加速度以及它发生在什么地方?【答案】(1)017.3m /s v = (2)0.75μ= (3)最大加速度点坐标()53,12m sθ︒'==【解析】 【分析】 【详解】(1)当θ=90º时,物体做竖直上抛运动,根据速度位移公式可知:01210317.3m /s v gs ===(2)当θ=0º时,根据动能定理得,201mg 2s mv μ=,解得:203000.75221020v gs μ===⨯⨯(3)加速度cos sin 3cos sin cos sin 4mg mg a g g g mμθθμθθθθ+⎛⎫==+=+ ⎪⎝⎭得到,当θ=53º时,α有极大值2m 12.5m /s a = ,由动能定理得,20102mv mas '-= ,所以12m s '= 所以最大加速度点坐标()53,12m s θ︒'==6.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。

专题12 高考常见应用题(解析版)

专题12 高考常见应用题(解析版)

专题12 高考常见应用题专题点拨求解简单的应用性问题,可直接应用有关知识解题;用数学解决一些复杂的实际问题,除了掌握必要的数学基础知识外,还必须注重对以下能力的锻炼与培养.1.阅读理解能力.首先能层次分明地阅读并理解数学语言表述的实际问题的详尽含义;其次能用准确的数学语言将题目的已知与求解翻译出来,并注意它的清晰性与完整性.2.数学的迁移能力.即建立数学模型的能力.能从阅读中抽象出解决问题的数或形,并判断用哪些数学知识予以解决,将之转化为纯数学问题.3.解决纯数学问题的能力.能经过综合分析,应用数学的基础知识和基本方法,完整解答所建立的数学模型.4.常识能力.平时应关注生活中的点滴常识,对由数学模型解决的结果,进行检验、判断、修正,得到符合实际的解答.5.表达能力.解一道主观应用题,就像是写一篇小论文,要做到论点明确,论据确凿,论证有力,有始有终,能自圆其说.特别注意在表述过程中,用简明的汉语与数学语言的互补,使语句流畅、自然而清晰.解决复杂的应用题是一件难事,但又无可回避,只有通过不断地体验反思才能达到能力的培养与提高.解答应用题一般分为四个步骤:1.阅读理解:分析背景材料,分清条件结论,把握数量关系;2.建立模型:联想数学问题,运用数学语言,建立数学模型;3.求解模型:运用思想方法,使用知识技能,求得数学结果;4.还原实际:审视实际问题,验证运算结果,表述最后结论.简单归结为:审题、化成数学问题、建立数学模型、进行推理运算、检验、作答.例题剖析一、函数型应用性问题【例1】我国西部某省4A级风景区内居住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施.据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计)每天的旅游人数与第天近似地满足(千人),且参观民俗文化村的游客人均消费近似地满足()143|22|=--(元).g x x(1)求该村第天的旅游收入(单位千元,*≤≤∈)的函数关系;130,x x N(2)若以最低日收入的20%作为每一天的纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本? 【解析】(1)依据题意,有*8()()()(8)(143|22|)(130,)p x f x g x x x x N x=⋅=+⋅--≤≤∈ = (2) 当,时,968()89769761152p x x x =++≥=(当且仅当时,等号成立) . 因此,min ()(11)1152p x p ==(千元) . 当2230x <≤,时,1320()81312p x x x=-++ . 考察函数的图像,可知在(22,30]上单调递减,于是,min ()(30)1116p x p ==(千元) . 又11521116>,所以,日最低收入为1116千元.该村两年可收回的投资资金为=8035.2(千元)=803.52(万元) . 因803.52万元800万元,所以,该村两年内能收回全部投资资金.二、三角函数型应用性问题【例2】 在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y (元)与时间x (天)的关系在ABC 段可近似地用函数y =a sin (ωx +φ)+20(a >0,ω>0,0<ω<π)的图象从最高点A 到最低点C 的一段来描述(如图),并且从C 点到今天的D 点在底部横盘整理,今天也出现了明显的底部结束信号. 老张预测这只股票未来一段时间的走势图会如图中虚线DEF 段所示,且DEF 段与ABC 段关于直线l :x =34对称,点B ,D 的坐标分别是(12,20)(44,12).(1)请你帮老张确定a ,ω,φ的值,并写出ABC 段的函数解析式;(2)如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【解析】(1)a =12﹣4=8,T4=24﹣12=12,∴T =48,ω=2π48=π24, 由π24×24+φ=3π2可得φ=π2, ∴f (x )=8sin (π24x +π2)+20=8cosπ24x +20,x ∈[0,24].(2)由题意得DEF 的解析式为:y =8cos[π24(68﹣x )]+20,由8cos[π24(68﹣x )]+20=24,得x =60,故买入60﹣44=16天后股价至少是买入价的两倍.【变式训练】如图,某广场有一块边长为1(hm )的正方形区域ABCD ,在点A 处装有一个可转动的摄像头,其能够捕捉到图象的角∠P AQ 始终为45°(其中点P ,Q 分别在边BC ,CD 上)设∠P AB =θ,记tan θ=t .(1)用t 表示的PQ 长度,并研究△CPQ 的周长l 是否为定值?(2)问摄像头能捕捉到正方形ABCD 内部区域的面积S 至多为多少hm 2?【解析】(1)设BP =t ,CP =1﹣t (0≤t ≤1), 所以∠DAQ =45°﹣θ,DQ =A tan (45°﹣θ)=1−t1+t , 则:CQ =1−1−t 1+t =2t1+t. 所以:PQ =√(1−t)2+(2t 1+t )2=1+t 21+t ,故:l =CP +CQ +PQ =1﹣t +2t 1+t +1+t 21+t =1﹣t +1+t =2.所以△CPQ 的周长为定值2. (2)S =S 正方形﹣S △ABP ﹣S △ADQ ,=1−t2−12⋅1−t1+t =2−12(t +1+21+t )≤2−√2.当且仅当t =√2−1时,摄像头能捕捉到正方形ABCD 内部区域的面积S 至多为2−√2hm 2.三、数列型应用性问题【例3】某高科技企业研制出一种型号为的精密数控车床,型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为型车床所创造价值的第一年).若第1年型车床创造的价值是250万元,且第1年至第6年,每年型车床创造的价值减少30万元;从第7年开始,每年型车床创造的价值是上一年价值的50%.现用()表示型车床在第年创造的价值. (1)求数列()的通项公式;(2)记为数列的前项和,.企业经过成本核算,若万元,则继续使用型车床,否则更换型车床.试问该企业须在第几年年初更换型车床?(已知:若正数数列是单调递减数列,则数列也是单调递减数列). 【解析】(1)由题设,知,,…,构成首项,公差的等差数列.故28030n a n =-(,)(万元). ,,…,(,)构成首项,公比的等比数列.故71502n n a -⎛⎫=⨯ ⎪⎝⎭(,)(万元).于是,728030,16150,72n n n n a n --⎧⎪=⎨⎛⎫⨯⎪ ⎪⎝⎭⎩≤≤≥()(万元). (2)由(1)知,是单调递减数列,于是,数列也是单调递减数列.当16n ≤≤时,26515nn S T n n==-,单调递减,6175100T =>(万元). 所以(万元).当时,66110010501001115022n n n n S T n n n--⎡⎤⎛⎫+⨯-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===, 当时,(万元);当时,(万元).所以,当,时,恒有.故该企业需要在第11年年初更换型车床.四、解析几何型应用性问题【例4】某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s 号线线路示意图如图所示,已知M 、N 是东西方向主干道边两个景点,P 、Q 是南北方向主干道边两个景点,四个景点距离城市中心O 均为5√2km ,线路AB 段上的任意一点到景点N 的距离比到景点M 的距离都多10km ,线路BC 段上的任意一点到O 的距离都相等,线路CD 段上的任意一点到景点Q 的距离比到景点P 的距离都多10km ,以O 为原点建立平面直角坐标系xOy . (1)求轨道交通s 号线线路示意图所在曲线的方程;(2)规划中的线路AB 段上需建一站点G 到景点Q 的距离最近,问如何设置站点G 的位置?【解析】(1)∵线路AB 段上的任意一点到景点N 的距离比到景点M 的距离都多10km , ∴线路AB 的轨迹为以MN 为焦点的双曲线的一部分, 设双曲线方程为x 2a 2−y 2b 2=1,则{2a =102c =10√2,∴a =5,b =5. ∴线路AB 的方程是:x 225−y 225=1(x ≤﹣5,y ≥0), 同理可得线路CD 的方程为:y 225−x 225=1(x ≥0,y ≤﹣5).故而B (﹣5,0),∵线路BC 段上的任意一点到O 的距离都相等, ∴线路BC 的方程为:x 2+y 2=25(﹣5≤x ≤0,﹣5≤y ≤0). (2)Q (0,5√2),设G (x ,y ),则x 2﹣y 2=25,∴GQ 2=x 2+(y ﹣5√2)2=2y 2﹣10√2y +75=2(y −5√22)2﹣25, ∴当y =5√22时,GQ 最小,代入双曲线方程可得x =−5√62, ∴G (−5√62,5√22). 五、立体几何型应用性问题【例5】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,l =2r +1(l 为圆柱的高,r 为球的半径,l ≥2).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域;(2)若预算为8万元,求所能建造的储油罐中r 的最大值(精确到0.1),并求此时储油罐的体积V (单位:立方米,精确到0.1立方米).【解析】(1)半球的表面积S 1=2πr 2,圆柱的表面积S 2=2πr •l .于是y =3×2S 1+1×S 2=3×4πr 2+1×2πr ⋅(2r +1)=16πr 2+2πr . 定义域为[12,+∞).(2)16πr 2+2πr ≤80,即r 2+18r −5π≤0,解得r ≤−18+√164+20π2≈1.2.V =43πr 3+πr 2⋅(2r +1)=103πr 3+πr 2, 经计算得V ≈22.7(立方米).故r 的最大值为1.2(米),此时储油罐的体积约为22.7立方米.【变式训练】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24πcm ,高为30cm ,圆锥的母线长为20cm . (1)求这种“笼具”的体积(结果精确到0.1cm 3);(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?【解析】(1)设圆柱的底面半径为r ,高为h ,圆锥的母线长为l ,高为h 1,则2πr =24π,解得r =12cm .h 1=√202−122=16cm .∴笼具的体积V =πr 2h −13πr 2ℎ1=π×(122×30−13×122×16)=3552π≈11158.9cm 3. (2)圆柱的侧面积S 1=2πrh =720cm 2, 圆柱的底面积S 2=πr 2=144πcm 2, 圆锥的侧面积为πrl =240πcm 2.故笼具的表面积S =S 1+S 2+S 3=1104πcm 2. 故制造50个这样的笼具总造价为:1104π×50×8104=1104π25元.答:这种笼具的体积约为11158.9cm 3,生产50个笼具需要1104π25元.巩固训练1.某日,在我某海警基地码头O 处,发现北偏东60°方向的海面上有一艘可疑船只位于A 处,在测定可疑船的行驶方向后,基地指挥部命令海警巡逻艇从O 处即刻出发,以可疑船速度的2倍航速前去拦截,已知O和A相距60海里.(1)若可疑船只以40海里/小时的速度朝正北方向逃跑,则我海警巡逻船最少要用多少小时可以截获可疑船只(精确到0.01小时)?(2)若巡逻艇和可疑船在追逃过程中均未改变航向和航速,在点P处恰好截获可疑船只,在如图所示的平面直角坐标系中,求点P的轨迹方程.【解析】(1)设所需时间为t小时,则OP=80t,AP=40t,OA=60,在△OAP中,∠OAP=180°﹣60°=120°,由余弦定理可得OP2=OA2+AP2﹣2OA•AP•cos∠OAP,即(80t)2=602+(40t)2−2×60×40t×(−12),化简得4t2﹣2t﹣3=0,由于t>0,解得t=√13+14≈1.15小时;(2)设点A的坐标为(x0,y0),则x0=60cos30°=30√3,y0=60sin30°=30,所以,点A的坐标为(30√3,30).由题意知,OP=2AP,设点P的坐标为(x,y),由两点间的距离公式可得√x2+y2=2√(x−30√3)2+(y−30)2,化简得(x−40√3)2+(y−40)2=1600,因此,点P的轨迹方程为(x−40√3)2+(y−40)2=1600.2.利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射灯的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米(1)求抛物线的焦点到准线的距离(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°)【解析】(1)在图2中,以O为原点,以OC为y轴负半轴建立平面直角坐标系,设抛物线方程为x2=﹣2py(p>0),由题意可知B(32,−92),∴94=−2p •(−92),解得p =14.∴抛物线的焦点到准线的距离为14.(2)在图3中,∵OC ∥SD , ∴OC SD=CE DE=12,∴SD =2OC =9,又DC =12AB =32,∴sin ∠CSD =CDSD =16. ∴圆锥的母线与轴的夹角为arcsin 16≈9.59°.3.如图,A 、B 是海岸线OM 、ON 上的两个码头,海中小岛有码头Q 到海岸线OM 、ON 的距离分别为2km 、7√105km .测得tan ∠MON =﹣3,OA =6km .以点O 为坐标原点,射线OM 为x 轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18√2km /小时的平均速度在水上旅游线AB 航行(将航线AB 看作直线,码头Q 在第一象限,航线AB 经过Q ). (1)问游轮自码头A 沿AB →方向开往码头B 共需多少分钟?(2)海中有一处景点P (设点P 在xOy 平面内,PQ ⊥OM ,且PQ =6km ),游轮无法靠近.求游轮在水上旅游线AB 航行时离景点P 最近的点C 的坐标.【解析】(1)由已知得:A (6,0),直线ON 的方程为y =﹣3x , 设Q (x 1,2),(x 1>0),由1√10=7√105及x 1>0,得x 1=4,∴Q (4,2), ∴直线AQ 的方程为y =﹣(x ﹣6),即x +y ﹣6=0, 由{y =−3x x +y −6=0,得{x =−3y =9,即B (﹣3,9),∴AB =√(−3−6)2+92=9√2,即水上旅游线AB 的长为9√2km . 游轮在水上旅游线自码头A 沿AB →方向开往码头B 共航行30分钟时间. (2)点P 到直线AB 的垂直距离最近,则垂足为C . 由(1)知直线AB 的方程为x +y ﹣6=0, P (4,8),则直线PC 的方程为x ﹣y +4=0, 联立直线AB 和直线PC 的方程组{x +y −6=0x −y +4=0,得点C 的坐标为C (1,5).4.如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为O ,钉尖为A i (i =1,2,3,4). 1)设OA 1=a (a >0),当A 1,A 2,A 3在同一水平面内时,求OA 1与平面A 1A 2A 3所成角的大小(结果用反三角函数值表示).(2)若该“钉”的三个钉尖所确定的三角形的面积为3√2cm 2,要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料多少米?【解析】(1)根据题意,可知组成该种钉的四条线段长必相等,且两两所成的角相等,A 1,A 2,A 3,A 4两两连结后得到的四面体A 1A 2A 3A 4为正四面体, 延长A 4O 交平面A 1A 2A 3于B ,则A 4B ⊥平面A 1A 2A 3,连结A 1B , 则A 1B 是OA 1在平面A 1A 2A 3上的射影, ∴∠OA 1B 就是OA 1与平面A 1A 2A 3所成角, 设A 1A 4=l ,则A 1B =√33l ,在Rt △A 4A 1B 中,A 1A 42=A 1B 2+A 4B 2, 即l 2=(√33l)2+(a 2−(√33l)2+a)2,∴l =2√63a ,∴A 1B =√33×2√63a =2√23a , cos ∠OA 1B =A 1B OA 1=2√23(其中0<∠OA 1B <π2),∴∠OA 1B =2√23, ∴OA 1与平面A 1A 2A 3所成角的大小为arccos 2√23. (2)12A 1A 22⋅√32=3√2, 根据(1)可得A 1A 2=2√63a , ∴a =√2724cm ,∴要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料:1100⋅100⋅(4a)=4a =2√2164(米).∴要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料2√2164米.5.上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O 点为塔基、P 点为塔尖、点P 在地面上的射影为点H .在塔身OP 射影所在直线上选点A ,使仰角k ∠HAP =45°,过O 点与OA 成120°的地面上选B 点,使仰角∠HPB =45°(点A 、B 、O 都在同一水平面上),此时测得∠OAB =27°,A 与B 之间距离为33.6米.试求:(1)塔高(即线段PH 的长,精确到0.1米);(2)塔身的倾斜度(即PO 与PH 的夹角,精确到0.1°).【解析】(1)设塔高PH =x ,由题意知,∠HAP =45°,∠HBP =45°, ∴△P AH ,△PBH 均为等腰直角三角形, ∴AH =BH =x在△AHB 中,AH =BH =x ,∠HAB =27°,AB =33.6, ∴x =AB 2cos∠HAB =16.8cos27°=18.86 (2)在△BOH 中,∠BOH =120°,∴∠OBH =180°﹣120°﹣2×27°=6°,BH =18.9, 由OH sin∠OBH=BH sin∠BOH,得OH =18.86×sin6°sin120°=2.28, ∴∠OPH =arctan OH PH=arctan2.2818.86≈6.9°,∴塔高18.9米,塔的倾斜度为6.9°.6.如图,某公园有三个警卫室A 、B 、C 有直道相连,AB =2千米,AC =4千米,BC =2√3千米. (1)保安甲沿CA 从警卫室C 出发行至点P 处,此时PC =1,求PB 的直线距离;(2)保安甲沿CA 从警卫室C 出发前往警卫室A ,同时保安乙沿AB 从警卫室A 出发前往警卫室B ,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在公园内的最大通话距离不超过3千米,试问有多长时间两人不能通话? (精确到0.01小时)【解析】(1)△ABC中,AB=2,AC=4,BC=2√3,∴AB2+BC2=AC2,∴∠ABC=90°,∠C=30°,又PC=1,由余弦定理得PB2=BC2+PC2﹣2BC•PC•cos C=12+1﹣2×2√3×1×√32=7,∴PB=√7;(2)设甲出发后的时间为t小时,则由题意知0≤t≤4,设甲在CA上的位置为点M,则AM=4﹣t;①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t;如图所示,在△AMQ中,由余弦定理得,MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)•cos60°=7t2﹣16t+7>9,解得t<8−√157,或t>8+√157;∴0≤t≤8−√157;②当1≤t≤4时,乙在B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)•cos60°=t2﹣6t+12>9,解得t<3−√6,或t>3+√6;又1≤t≤4,∴不合题意,舍去;综上,当0≤t≤8−√157时,甲乙间的距离大于3千米且8−√157=8−3.877≈0.59,∴甲乙两人不能通话的时间为0.59小时.7.如图,某广场中间有一块扇形绿地OAB,其中O为扇形OAB所在圆的圆心,半径为r,∠AOB=π3.广场管理部门欲在绿地上修建观光小路:在弧AB̂上选一点C,过C修建与OB平行的小路CD,与OA平行的小路CE,设∠COA=θ.(1)当θ=π4时,求CD;(2)当θ取何值时,才能使得修建的道路CD与CE的总长s最大?并求出s的最大值.【解析】(1)某广场中间有一块扇形绿地OAB ,其中O 为扇形OAB 所在圆的圆心,半径为r ,∠AOB =π3. 广场管理部门欲在绿地上修建观光小路:在弧AB ̂上选一点C , 过C 修建与OB 平行的小路CD ,与OA 平行的小路CE , 设∠COA =θ,当θ=π4时, 由正弦定理得:CO sin∠CDO=CD sin∠COD,∴r sin120°=CD sin45°,∴CD =rsin45°sin120°=√6r3.(2)在△ODC 中,由正弦定理得:CO sin∠CDO=CD sin∠COD,∴r sin120°=CDsinθ,∴CD =2√33rsinθ,同理,CE =2√33rsin(π3−θ), ∴s =f (θ)=2√33rsinθ+2√33rsin(π3−θ) =2√33r sin (θ+π3)+2√33rsin(π3−θ) =2√33r sin (θ+π3),θ∈(0,π3), ∵θ∈(0,π3),∴θ+π3∈(π3,2π3),当θ+π3=π2时,即θ=π6时,s max =f (π6)=2√33r .8.某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数f (n )可近似地用函数f (n )=A cos (wn +θ)+k 来刻画,其中正整数n 表示月份且n ∈[1,12],例如n =1表示1月份,A 和k 是正整数,w >0,θ∈(0,π).统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多.(1)试根据已知信息,求f (n )的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由. 【解析】(1)根据题意知,T =12, ∴ω=2π12=π6; 又{A +k =500k −A =100, 解得{A =200k =300,由π6×2+θ=﹣π+2k π,k ∈Z ;解得θ=−4π3+2k π,k ∈Z ; 又θ∈(0,π),∴θ=2π3; ∴函数f (n )=200cos (π6n +2π3)+300;(2)令f (n )=200cos (π6n +2π3)+300≥400,化简得cos (π6n +2π3)≥12, 即−π3+2k π≤π6n +2π3≤π3+2k π,k ∈Z , 解得n ∈[12k ﹣6,12k ﹣2],k ∈Z ; 又n ∈[1,12], ∴n ∈[6,10],∴取n =6,7,8,9,10;即一年中6、7、8、9、10月是该地区的旅游“旺季”.9.如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数y =A sin (ωx +φ)(A >0,ω>0,φ∈(0,π)),x ∈[﹣4,0]的图象,图象的最高点为B (﹣1,2).边界的中间部分为长1千米的直线段CD ,且CD ∥EF .游乐场的后一部分边界是以O 为圆心的一段圆弧DÊ. (1)求曲线段FGBC 的函数表达式;(2)曲线段FGBC 上的入口G 距海岸线EF 最近距离为1千米,现准备从入口G 修一条笔直的景观路到O ,求景观路GO 长;(3)如图,在扇形ODE 区域内建一个平行四边形休闲区OMPQ ,平行四边形的一边在海岸线EF 上,一边在半径OD 上,另外一个顶点P 在圆弧DE ̂上,且∠POE =θ,求平行四边形休闲区OMPQ 面积的最大值及此时θ的值.【解析】(1)由已知条件,得A =2, 又∵T4=3,T =2πω=12,∴ω=π6. 又∵当x =﹣1时,有y =2sin (−π6+φ)=2,∴φ=2π3. ∴曲线段FGBC 的解析式为y =2sin(π6x +2π3),x ∈[﹣4,0]. (2)由y =2sin(π6x +2π3)=1 得x =6k +(﹣1)k ﹣4 (k ∈Z ),又x ∈[﹣4,0],∴k =0,x =﹣3.∴G (﹣3,1). ∴OG =√10.∴景观路GO 长为√10千米.(3)如图,OC =√3,CD =1,∴OD =2,∠COD =π6, 作PP 1⊥x 轴于P 1点,在Rt △OPP 1中,PP 1=OP sin θ=2sin θ, 在△OMP 中,OP sin120°=OM sin(60°−θ),∴OM =OP⋅sin(60°−θ)sin120°=4√3sin(60°−θ)=2cosθ−2√33sinθ. S 平行四边形OMPQ =OM •PP 1=(2cosθ−2√33sinθ)⋅2sinθ =4sinθcosθ−4√33sin 2θ=2sin2θ+2√33cos2θ−2√33 =4√33sin(2θ+π6)−2√33θ∈(0,π3). 当2θ+π6=π2时,即θ=π6时,平行四边形面积最大值为2√33.10.某创业投资公司拟投资开发某种新能源产品,估计能活得25万元~1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y =f (x )时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f(x)≤75恒成立;(3)f(x)≤x5恒成立.)(1)判断函数f(x)=x30+10是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数g(x)=a√x−5(a≥1)符合公司奖励方案函数模型要求,求实数a的取值范围.【解析】(1)对于函数模型f(x)=x30+10,当x∈[25,1600]时,f(x)是单调递增函数,则f(x)≤f(1600)=160310≤75,显然恒成立,若函数f(x)=x30+10−x5≤0恒成立,即x≥60∴f(x)=x30+10不恒成立,综上所述,函数模型f(x)=x30+10,满足基本要求①②,但是不满足③,故函数模型f(x)=x30+10,不符合公司要求;(2)x∈[25,1600]时,g(x)=a√x−5有意义,∴g(x)max=a√1600−5≤75,∴a≤2,设a√x−5≤x5恒成立,∴ax≤(5+x5)2恒成立,即a≤25x+2+x25,∵25x+x25≥2√25x⋅x25=2,当且仅当x=25时取等号,∴a≤2∵a≥1,∴1≤a≤2,故a的取值范围为[1,2]新题速递1.(2019秋•闵行区校级月考)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为圆弧的中点)和线段MN构成,已知圆O的半径为40米,点P到MN的距离为50米,现规范在此农田修建两个温室大棚,大棚Ⅰ内的地块形状为梯形MNBA,其中AB∥MN,且AB<MN,大棚Ⅱ内的地块形状为△ABP,要求A、B均在圆弧上,设OB与MN所成的角为θ.(1)用θ表示多边形MAPBN的面积,并确定sinθ的取值范围;(2)若分别在两个大棚内种植两种不同的蔬菜,且这两种蔬菜单位面积的年产值相等,求当θ为何值时,能使种植蔬菜的收益最大.【分析】(1)计算AB,梯形和三角形的高度,分别求出梯形和三角形的面积即可得出答案,根据AB <MN求出sinθ的范围;(2)根据和角公式求出面积最大值及其对应的θ的值即可.【解答】解:(1)等腰梯形MNBA的高为OB sinθ+10=40sinθ+10,AB=2OB cosθ=80cosθ,MN=2√402−102=20√15,∴等腰梯形MNBA的面积为12(80cosθ+20√15)×(40sinθ+10)=1600sinθcosθ+400cosθ+400√15sinθ+100√15,等腰三角形P AB中,P到AB的距离为OP﹣OB sinθ=40(1﹣sinθ),故等腰三角形P AB的面积为12•80cosθ•40(1﹣sinθ)=1600cosθ﹣1600sinθcosθ,∴多边形MAPBN的面积为S MAPBN=400√15sinθ+2000cosθ+100√15.∵AB<MN,∴0<80cosθ<20√15,即0<cosθ<√15 4,∴14<sinθ<1.(2)令f(θ)=400√15sinθ+2000cosθ+100√15=400(√15sinθ+5cosθ)+100√15,=400•2√10sin(θ+φ)+100√15.其中sinφ=52√10,cosφ=√152√10,即tanφ=√153.∴当θ+φ=π2即θ=π2−arctan√153时,f(θ)取得最大值,此时种植蔬菜的收益最大.2.(2019秋•浦东新区校级期中)某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工2m人(60<m<150,且m为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员a人,留岗员工可多创利润a千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员a人,留岗员工可多创利润2a千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.(1)设公司裁员人数为x,写出公司获得的经济效益y(千元)关于x的函数(经济效益=在职人员创利总额﹣被裁员工生活费);(2)为了获得最大的经济效益,该公司应裁员多少人?【分析】(1)欲求获得最大的经济效益时,该公司的裁员人数x.分情况求出和两种情况下函数的解析式,列出分段函数;分别对分段函数进行参数的讨论,最后得出裁员的最佳人数.(2)利用配方法,分段求函数的最值,再比较利润,即可求出公司获得最大的经济效益,公司应裁员的人数.【解答】解:(1)设公司裁员人数为x,获得的经济效益为y千元,则由题意得当0<x≤310×2m时,y=(2m﹣x)(100+x)﹣20x;当310×2m<x≤12×2m时,y=(2m﹣x)(100+2x)﹣20x;∴y={(100+x)(2m−x)−20x,0<x≤0.6m(100+2x)(2m−x)−20x,0.6m<x≤m,x∈N*;(2)当0<x≤0.6m时,y=(2m﹣x)(100+x)﹣20x=﹣[x2﹣2(m﹣60)x]+200m;①由①得对称轴x=m﹣60>0,当0<m﹣60<0.6m时,即60<m<150时,当x=60﹣m时,y有最大值,y1=m2+80m+3600;当0.6m<x≤m时,y=(2m﹣x)(100+2x)﹣20x=﹣2[x2﹣2(m﹣30)x]+200m;②由②得对称轴x=m﹣30,∵60<m<150,∴当0.6m<m﹣30<m时,即75<m<150时,x=m﹣30,y有最大值,y2=2m2+80m+1800;∵当m﹣30≤0.6m时,即60<m≤75时,x=0.6m时,y有最大值,y3=1.68m2+128m;∵当60<m≤75时,y3﹣y1=0.68m2+48m﹣3600;y3﹣y1在(60,75]上单调递增,当m=60时,(y3﹣y1)min=1728>0当75<m<150时,y2﹣y1=m2﹣1800>3825>0,即当60<m<150时,y2最大即当公司应裁员数为m﹣30,即公司应裁员m﹣30人时,获得的经济效益最大.3.(2019秋•闵行区校级期中)大学生王某开网店创业专卖某种文具,他将这种文具以每件2元的价格售出,开始第一个月就达到1万件,此后每个月都比前一个月多售出1.5万件,持续至第10个月,在第11个月出现下降,第11个月出售了13万件,第12个月出售了9万件,第13个月出售了7万件,另据观察,第18个月销量仍比上个月低,而他前十个月每月投入的成本与月份的平方成正比,第4个月成本为8000元,但第11个月起每月成本固定为3万元,现打算用函数f (x )=ax 2+bx +c (a ≠0)或f (x )=km x +n (k ≠0,m >0,m ≠1)来模拟销量下降期间的月销量.(1)请判断销量下降期间采用哪个函数模型来模拟销量函数更合理,并写出前20个月销量与月份x 之间的函数关系式;(2)前20个月内,该网店取得的月利润的最高纪录是多少,出现在哪个月? 【分析】(1)根据递减规律得出函数模型,利用待定系数法求出f (x )的解析式; (2)求出成本函数g (x ),得出利润函数h (x ),分段求出h (x )的最大值得出结论. 【解答】解:(1)f (x )=km x +n 更合理, f (x )={1.5x −0.5,1≤x ≤10,x ∈N214−x +5,11≤x ≤20,x ∈N.(2)设成本(单位:万元)关于月份x 的函数为g (x ),则当1≤x ≤10时,g (x )=kx 2, 由g (4)=16k =0.8得k =0.05,故g (x )={0.05x 2,1≤x ≤10且x ∈N3,11≤x ≤20且x ∈N.设网店的利润(单位:万元)关于月份x 的函数为h (x ), 则h (x )=2f (x )﹣g (x )={3x −1−0.05x 2,1≤x ≤10且x ∈N 215−x+7,11≤x ≤20且x ∈N.当1≤x ≤10时,h (x )=﹣0.05(x ﹣30)2+44, 故当x =10时,h (x )取得最大值h (10)=24. 当11≤x ≤20时,h (x )=215﹣x +7为减函数,故当x =11时,h (x )取得最大值h (11)=23, 综上,当x =10时h (x )取得最大值24. 即第10个月利润最高,最高利润为24万元.4.(2019秋•杨浦区期中)《上海市生活垃圾管理条例》于2019年7月1日正式实施,某小区全面实施垃圾分类处理,已知该小区每月垃圾分类处理量不超过300吨,每月垃圾分类处理成本y (元)与每月分类处理量x (吨)之间的函数关系式可近似表示为y =x 2﹣200x +40000,而分类处理一吨垃圾小区也可以获得300元的收益.(1)该小区每月分类处理多少吨垃圾,才能使得每吨垃圾分类处理的平均成本最低; (2)要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在什么范围? 【分析】(1)根据基本不等式得出平均成本取得最小值时对应的x 的值即可; (2)列不等式求出x 的范围即可.【解答】解:(1)每吨垃圾分类处理的平均成本为x 2−200x+40000+300xx=x +40000x+100≥2√x ⋅40000x+100=500, 当且仅当x =40000x即x =200时取等号, ∴当该小区每月分类处理200吨垃圾时,使得每吨垃圾分类处理的平均成本最低. (2)令x 2﹣200x +40000≤300x ,即x 2﹣500x +40000≤0,解得:100≤x ≤400, 又x ≤300,故100≤x ≤300.∴每月的垃圾分类处理量控制在[100,300]时,保证该小区每月的垃圾分类处理不亏损.5.(2019秋•徐汇区校级期中)据市场分析,某绿色蔬菜加工点月产量为10吨至25吨(包含10吨和25吨),月生产总成本y (万元)可以看成月产量x (吨)的二次函数,当月产量为10吨时,月总成本为20万元,当月产量为15吨时,月总成本最低为17.5万元. (1)写出月总成本y (万元)关于月产量x (吨)的函数解析式;(2)若x ∈[10,25],当月产量为多少时,每吨平均成本最低?最低平均成本是多少万元? 【分析】(1)设出函数解析式,代入(10,20),可得函数解析式; (2)求出每吨平均成本,利用基本不等式可求最值.【解答】解:(1)由题意,设y =a (x ﹣15)2+17.5(a ∈R ,a ≠0) 将x =10,y =20代入上式得:20=25a +17.5,解得a =110, ∴y =110(x ﹣15)2+17.5(10≤x ≤25) (2)平均成本yx =110x 2−3x+40x=110x +40x −3≥2√110x ⋅40x −3=1 当且仅当110x =40x ,即x =20∈[10,25]时上式“=”成立. 故当月产量为20吨时,每吨平均成本最低,最低成本为1万元.6.(2020•杨浦区一模)东西向的铁路上有两个道口A 、B ,铁路两侧的公路分布如图,C 位于A 的南偏西15°,且位于B 的南偏东15°方向,D 位于A 的正北方向,AC =AD =2km ,C 处一辆救护车欲通过道口前往D 处的医院送病人,发现北偏东45°方向的E 处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要1分钟,救护车和火车的速度均为60km /h . (1)判断救护车通过道口A 是否会受火车影响,并说明理由;(2)为了尽快将病人送到医院,救护车应选择A 、B 中的哪个道口?通过计算说明.【分析】(1)利用正弦定理求出AE ,进而求出火车到达A 处的时间,进而求解; (2)分别求出选择A 道口,B 道口的时间,进而求解. 【解答】解:(1)依据题意:在△ACE 中,正弦定理:AE sin30°=AC sin45°,即AE12=√22,解得:AE =√2,∴救护车到达A 处需要时间:260=130ℎ=2min ,火车到达A 处需要时间:√260ℎ=1.41min ,火车影响A 道口时间为[√2,√2+1],2∈[√2,√2+1], ∴救护车经过A 会受影响. (2)若选择A 道口:一共需要花费时间为:t A =√2+1+260×60=(3+√2)=4.41min 若选择B 道口:∵BE >BC ,通过B 道口不受火车影响; 一共花费时间为:t B =BC+BD 60ℎ,由余弦定理求AB 长:AB 2=BC 2+AC 2﹣2BC •AC cos ∠ACB ,即AB =√6−√2,∴BD =√AD 2+AB 2=√12−4√3,t B =BC+BD60ℎ=2+√12−4√360×60min =4.25min <t A , ∴选择B 过道.7.(2020•徐汇区一模)如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,景区管委会又开发了风景优美的景点D ,经测量景点D 位于景点A 的北偏东30°方向8km 处,位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB =5km .(1)景区管委会准备由景点D 向景点B 修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km )。

高三数学应用题专题复习(含答案)

高三数学应用题专题复习(含答案)

高三数学应用题专题复习(含答案)1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0xk x v --=25040)(千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据)236.25≈2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0xk x v --=25040)(千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据)236.25≈1.解:(1) 由题意:当0<x ≤50时,v (x )=30;当50≤x ≤200时,由于,kk x v --=25040)(再由已知可知,当x =200时,v (0)=0,代入解得k =2000.故函数v (x )的表达式为.………………6⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x v 分(2) 依题意并由(1)可得, ⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x x x x f 当0≤x ≤50时,f (x )=30x ,当x =50时取最大值1500. 当50<x ≤200时,20002000(250)20002504040(250)4025025025050000012000[40(250)1200025012000120004000 2.2363056()xx x x x x x x f x --⨯-=--+⨯+--=--+≤--=-≈-⨯==取等号当且仅当,即250138x =-≈时,f (x )取最大值.xx -=-250500000)250(40(这里也可利用求导来求最大值)综上,当车流密度为138 辆/千米时,车流量可以达到最大,最大值约为3056辆/小时. ………………14分2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .2. (Ⅰ)因为容器的体积为803π立方米, 所以3243r r l ππ+=803π,解得280433r l r =-, 由于2l r ≥,因此02r <≤.所以圆柱的侧面积为2rl π=28042(33r r r π-=2160833r r ππ-, 两端两个半球的表面积之和为24r π,所以建造费用y =21608r rππ-+24cr π,定义域为(0,2]. (Ⅱ)因为'y =216016r r ππ--+8cr π=328[(2)20]c r r π--,02r <≤ 由于c>3,所以c-2>0,所以令'0y >得:r >令'0y <得:0r <<(1)当932c <≤时,2≥时,函数y 在(0,2)上是单调递减的,故建造费最小时r=2.(2)当92c >时,即02<<时,函数y 在(0,2)上是先减后增的,故建造费最小时r =.。

专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

第五篇 数列及其应用专题5.04 数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( ) 【答案】 (1)√ (2)√ (3)× (4)√【解析】 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.【教材衍化】2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 021【答案】 B【解析】 a n =1n (n +1)=1n -1n +1, S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019. 3.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________. 【答案】 3649【解析】 由a 1=27,a 9=1243知,1243=27·q 8, 又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫1361-13=3649.【真题体验】 4.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.30【答案】 C【解析】 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.5.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.【答案】 2n +2+n (n +1)-4【解析】 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2,又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4.6.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.【答案】 a n =2(n +1)【解析】 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝⎛⎭⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 【考点聚焦】考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.【答案】见解析【解析】(1)设等比数列{a n }的公比为q ,∵a 1,a 2,a 3-1成等差数列,∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2, ∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1)=[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1)=1+(2n -1)2·n +1-2n1-2=n 2+2n -1. ∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .【规律方法】 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. 2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .【答案】见解析【解析】(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n . 【答案】见解析【解析】(1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2, 当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝⎛⎭⎫a n 2-n , 即a n +1=3a n +2,又a 2=8=3a 1+2,∴a n +1=3a n +2,n ∈N *,∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1. ∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝⎛⎭⎫13-1-132-1+⎝⎛⎭⎫132-1-133-1+…+⎝⎛⎭⎫13n -1-13n +1-1 =12-13n +1-1. 【规律方法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n . 【答案】见解析【解析】(1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n . 【答案】见解析【解析】(1)设{a n }的公比为q ,由题意知⎩⎪⎨⎪⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以a n =2n . (2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1, 又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n , 因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1, 所以T n =5-2n +52n . 【规律方法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式;(2)求数列{a n ·b n }的前n 项和T n .【答案】见解析【解析】(1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ),解得d =2(舍负),所以a n =1+(n -1)×2=2n -1.又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n . (2)由(1)知a n ·b n =(2n -1)·12n , 则T n =121+322+523+…+2n -12n ,①12T n =122+323+524+…+2n -12n +1,② 由①-②,得12T n =12+2×⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. ∴12T n =12+2×14⎝⎛⎭⎫1-12n -11-12-2n -12n +1, ∴T n =1+2-22n -1-2n -12n =3-4+2n -12n =3-3+2n 2n . 考点四 数列的综合应用【例4】 某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?【答案】见解析【解析】设该学生工作n 天,每天领工资a n 元,共领工资S n 元,则第一种方案a n (1)=38,S n (1)=38n ; 第二种方案a n (2)=4n ,S n (2)=4(1+2+3+…+n )=2n 2+2n ;第三种方案a n (3)=0.4×2n -1,S n (3)=0.4(1-2n )1-2=0.4(2n -1). 令S n (1)≥S n (2),即38n ≥2n 2+2n ,解得n ≤18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令S n (1)≥S n (3),即38n ≥0.4×(2n -1),利用计算器计算得小于或等于9天时,第一种方案报酬高,所以少于10天时,选择第一种方案.比较第二、第三种方案,S 10(2)=220,S 10(3)=409.2,S 10(3)>S 10(2),…,S n (3)>S n (2).所以等于或多于10天时,选择第三种方案.【规律方法】 数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 【答案】见解析【解析】(1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式,所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝⎛⎭⎫16n -5-16n +1, 故T n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-17+⎝⎛⎭⎫17-113+…+⎝⎛⎭⎫16n -5-16n +1=12⎝⎛⎭⎫1-16n +1=3n 6n +1. 【反思与感悟】1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中.【易错防范】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.8 【答案】 A【解析】 设{a n }的公差为d ,根据题意得a 23=a 2·a 6, 即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24. 2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400【答案】 B【解析】 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( ) A.9B.99C.10D.100【答案】 B【解析】 因为a n =1n +n +1=n +1-n , 所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1,令n +1-1=9,得n =99. 4.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026B.1 025C.1 024D.1 023【答案】 C 【解析】 ∵2n +12n =1+⎝⎛⎭⎫12n,∴T n =n +1-12n , ∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013恒成立,∴整数m 的最小值为1 024.5.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100 【答案】 D【解析】 当n =2k (k ∈N *)时,a 2k +1-a 2k =2,当n =2k -1(k ∈N *)时,a 2k +a 2k -1=2,当n =2k +1(k ∈N *)时,a 2k +2+a 2k +1=2,∴a 2k +1+a 2k -1=4,a 2k +2+a 2k =0,∴{a n }的前100项和=(a 1+a 3)+…+(a 97+a 99)+(a 2+a 4)+…+(a 98+a 100)=25×4+25×0=100.二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.【答案】 3n -1【解析】 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0,又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列,故S n =2(1-3n )1-3=3n -1. 7.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________. 【答案】 1516【解析】 等比数列{(n 2+n )a n }的首项为2a 1=13,第二项为6a 2=19,故公比为13,所以(n 2+n )a n =13·⎝⎛⎭⎫13n -1=13n ,所以a n =13n (n 2+n ),则3n a n =1n 2+n =1n -1n +1,其前n 项和为1-1n +1,n =15时,为1-116=1516. 8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.【答案】 9【解析】 由于平均产量类似于图形过P 1(1,S 1),P n (n ,S n )两点直线的斜率,斜率大平均产量就高,由图可知n =9时割线P 1P 9斜率最大,则m 的值为9.三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 【答案】见解析【解析】当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2=⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n=(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n=x 2(x 2n -1)x 2-1+x -2(1-x -2n)1-x -2+2n=(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n .当x =±1时,S n =4n .10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.【答案】见解析【解析】(1)解 因为a n +1=2+S n (n ∈N *),所以a n =2+S n -1(n ≥2),所以a n +1-a n =S n -S n -1=a n ,所以a n +1=2a n (n ≥2).又因为a 2=2+a 1=4,a 1=2,所以a 2=2a 1,所以数列{a n }是以2为首项,2为公比的等比数列,则a n =2·2n -1=2n (n ∈N *).(2)证明 因b n =1+log 2(a n )2,则b n =2n +1.则1b n b n +1=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=16-12(2n +3)<16.【能力提升题组】(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则() A.a n ≥2n +1 B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1【答案】 B【解析】 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2,∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 12.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定【答案】 A【解析】 投入资金逐月值构成等比数列{b n },利润逐月值构成等差数列{a n },等比数列{b n }可以看成关于n 的指数式函数,它是凹函数,等差数列{a n }可以看成关于n 的一次式函数.由于a 1=b 1,a 12=b 12,相当于图象有两个交点,且两交点间指数式函数图象在一次函数图象下方,所以全年的总利润ω=a 1+a 2+…+a 12比总投资N =b 1+b 2+…+b 12大,故选A.13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.【答案】 4n -1【解析】 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.14.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .【答案】见解析【解析】(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n=1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n=5+(n -1)=n +4, 所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3.又a 1=5也符合上式,所以a n =2n +3(n ∈N *),所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,①2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,②所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n +3)2n +1-10-(2n +2-8)=(2n +1)2n +1-2.【新高考创新预测】15.(多填题)已知公差不为零的等差数列{a n }中,a 1=1,且a 2,a 5,a 14成等比数列,{a n }的前n 项和为S n ,b n =(-1)n S n ,则a n =________,数列{b n }的前n 项和T n =________.【答案】 2n -1 (-1)n n (n +1)2【解析】 设等差数列{a n }的公差为d (d ≠0),则由a 2,a 5,a 14成等比数列得a 25=a 2·a 14,即(1+4d )2=(1+d )(1+13d ),解得d =2,则a n =a 1+(n -1)d =2n -1,S n =na 1+n (n -1)2d =n 2,当n 为偶数时,T n =-S 1+S 2-S 3+S 4-…-S n -1+S n =-12+22-32+42-…-(n -1)2+n 2=3+7+…+(2n -1)=n (n +1)2;当n为大于1的奇数时,T n =-S 1+S 2-S 3+S 4-…+S n -1-S n =-12+22-32+42-…-(n -2)2+(n -1)2-n 2=3+7+…+(2n -3)-n 2=-n (n +1)2,当n =1时,也符合上式.综上所述,T n =(-1)n n (n +1)2.。

高三数学练习(应用题)(附答案)

高三数学练习(应用题)(附答案)

高三数学练习(应用题)(附答案)高三数学练习(应用题)(附答案)1. 现有一块长方形草地,长为20米,宽为15米。

现要在草地周围建一圈石子路,宽度为1.5米。

请问需要多少石子路来建造完整的环路?解析:首先计算出草地的周长,再计算出石子路的周长,最后用石子路的周长除以石子路的宽度,即可得出所需的石子路片数。

草地的周长 = 2 × (长 + 宽) = 2 × (20 + 15) = 2 × 35 = 70米石子路的周长 = 草地的周长 + 2 × (宽度) = 70 + 2 × 1.5 = 73米所需的石子路片数 = 石子路的周长 ÷石子路的宽度= 73 ÷ 1.5 ≈ 48.7答案:需要49片石子路。

2. 现有一座圆形花坛,半径为5米。

其中心点距离花坛边缘的距离为3米。

现要在花坛内部种植树苗,每两棵树苗的距离要求至少为2米。

请问最多能种植多少棵树苗?解析:首先计算出花坛内部可以种植树苗的有效面积,然后计算树苗所需的面积,最后用有效面积除以树苗所需的面积,即可得出最多能种植的树苗数量。

花坛的有效面积 = 圆形面积 - 内圆的面积圆形面积= π × 半径² = 3.14 × 5² ≈ 78.5平方米内圆的面积= π × (半径 - 中心距离)² = 3.14 × (5 - 3)² ≈ 12.56平方米花坛的有效面积 = 78.5 - 12.56 ≈ 65.94平方米树苗所需的面积 = 2 × 2 = 4平方米最多能种植的树苗数量 = 花坛的有效面积 ÷树苗所需的面积≈ 16.49 ≈ 16棵答案:最多能种植16棵树苗。

3. 一辆汽车以每小时80公里的速度匀速行驶,行驶一小时后在某地停下来休息。

休息10分钟后,以每小时100公里的速度继续行驶。

高考数学应用问题(含答案解析)

高考数学应用问题(含答案解析)

难点41 应用性问题数学应用题是指利用数学知识解决其他领域中的问题.高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求.1.(★★★★★)一只小船以10 m/s 的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以20 m/s 的速度前进(如图),现在小船在水平P 点以南的40米处,汽车在桥上以西Q 点30米处(其中PQ ⊥水面),则小船与汽车间的最短距离为 .(不考虑汽车与小船本身的大小).2.(★★★★★)小宁中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜6分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开10分钟;(5)煮面条和菜共3分钟.以上各道工序除(4)之外,一次只能进行一道工序,小宁要将面条煮好,最少用分钟.3.(★★★★★)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足R (x )=⎩⎨⎧>≤≤-+-)5(2.10)50( 8.02.44.02x x x x .假定该产品销售平衡,那么根据上述统计规律.(1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少?[例1]为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从B孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计)?命题意图:本题考查建立函数关系、不等式性质、最值求法等基本知识及综合应用数学知识、思想与方法解决实际问题能力,属★★★★级题目.知识依托:重要不等式、导数的应用、建立函数关系式.错解分析:不能理解题意而导致关系式列不出来,或a 与b 间的等量关系找不到. 技巧与方法:关键在于如何求出函数最小值,条件最值可应用重要不等式或利用导数解决.解法一:设经沉淀后流出的水中该杂质的质量分数为y ,则由条件y =ab k (k >0为比例系数)其中a 、b 满足2a +4b +2ab =60 ①要求y 的最小值,只须求ab 的最大值.由①(a +2)(b +1)=32(a >0,b >0)且ab =30–(a +2b )应用重要不等式a +2b =(a +2)+(2b +2)–4≥124)22)(2(2=-++b a∴ab ≤18,当且仅当a =2b 时等号成立将a =2b 代入①得a =6,b =3.故当且仅当a =6,b =3时,经沉淀后流出的水中该杂质的质量分数最小.解法二:由2a +4b +2ab =60,得a a b +-=230, 记aa a ab u +-==2)30((0<a <30)则要求y 的最小值只须求u 的最大值. 由22)2()2(64++-='a a u ,令u ′=0得a =6 且当0<a <6时,u ′>0,当6<u <30时u ′<0,∴aa a u +-=2)30(在a =6时取最大值,此时b =3. 从而当且仅当a =6,b =3时,y =ab k 取最小值. [例2]某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相等.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?命题意图:本题考查等比数列、数列求和解不等式等知识以及极限思想方法和运用数学知识解决实际问题的能力,属★★★★★级题目.知识依托:数列极限、等比数列、解不等式.错解分析:①不能读懂题意,找不到解题的突破口;②写出b n +1与x 的关系后,不能进一步转化为极限问题;③运算出错,得不到准确结果.技巧与方法:建立第n 年的汽车保有量与每年新增汽车数量之间的函数关系式是关键、尽管本题入手容易,但解题过程中的准确性要求较高.解:设2001年末的汽车保有量为b 1万辆,以后各年汽车保有量依次为b 2万辆,b 3万辆,……每年新增汽车x 万辆,则b 1=30,b 2=b 1×0.94+x ,…对于n >1,有b n +1=b n ×0.94+x =b n –1×0.942+(1+0.94)x ,…所以b n +1=b 1×0.94n +x (1+0.94+0.942+…+0.94n –1)=b 1×0.94n +n n x x x 94.0)06.030(06.006.094.01⨯-+=⋅-. 当06.030x -≥0,即x ≤1.8时,b n +1≤b n ≤…≤b 1=30 当06.030x -<0,即x >1.8时,06.0]94.0)06.030(06.0[lim 1x x x n n =⨯-+-∞→ 并且数列{b n }逐项递增,可以任意靠近06.0x . 因此如果要求汽车保有量不超过60万辆,即b n ≤60(n =1,2,…)则有06.0x ≤60,所以x ≤3.6 综上,每年新增汽车不应超过3.6万辆.1.解应用题的一般思路可表示如下2.解应用题的一般程序(1)读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.(2)建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.(3)解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.(4)答:将数学结论还原给实际问题的结果.3.中学数学中常见应用问题与数学模型(1)优化问题.实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决.(2)预测问题:经济计划、市场预测这类问题通常设计成“数列模型”来解决.(3)最(极)值问题:工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值.(4(5)测量问题:可设计成“图形模型”利用几何知识解决.一、选择题1.(★★★★)某商场对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不予优惠,②如果超过200元但不超过500元,则按标价给予9折优惠,③如果超过500元,其500元按②条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次购买上述同样的商品,则应付款( )A.413.7元B.513.7元C.546.6元D.548.7元2.(★★★★)某体育彩票规定:从01到36共36个号码中抽出7个号码为一注,每注2元.某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B.1052元C.2100元D.2102元二、填空题3.(★★★★)一个球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下,当它最后静止在地面上时,共经过了米.4.(★★★★)有一广告气球直径为6米,放在公司大楼上空(如图),当某行人在A地观测气球时,其中心仰角为∠BAC=30°,并测得气球的视角β=2°,若θ很小时,可取sinθ=θ,试估计气球的高B C的值约为米.三、解答题5.(★★★★★)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为v千米/小时、2v千米/小时、10v千米/小时,每千米的运费分别为a元、b元、c元.且b<a<c,又这批海鲜在运输过程中的损耗为m元/小时,若使用三种运输工具分别运输时各自的总费用(运费与损耗之和)互不相等.试确定使用哪种运输工具总费用最省.(题中字母均为正的已知量)。

高考数学最新真题专题解析—数学实际应用题 (新高考卷)

高考数学最新真题专题解析—数学实际应用题 (新高考卷)

高考数学最新真题专题解析—数学实际应用题(新高考卷)【母题来源】2022年新高考I卷【母题题文】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A. 1.0×109m3B. 1.2×109m3C. 1.4×109m3D. 1.6×109m3【答案】C【解析】【分析】本题考查了棱台的体积公式的应用,属于基础题.【解答】解:依据棱台的体积公式V=13⋅(S+S′+√SS′)⋅ℎ=13⋅(140000000+180000000+√14000000×18000000)×9≈1.4×109m3.【母题来源】2022年新高考II卷【母题题文】中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,AA′,BB′,CC′,DD′是桁,DD1,CC1,BB1,AA1是脊,OD1,DC1,CB1,BA1是相等的步,相邻桁的脊步的比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3,若k1,k2,k3是公差为0.1的等差数列,直线OA的斜率为0.725,则k3=()A. 0.75B. 0.8C. 0.85D. 0.9【答案】D【解析】【分析】本题考查等差数列、直线的斜率与倾斜角的关系,比例的性质,属于中档题.【解答】解:设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3′由题意得k3=k1+0.2,k3=k2+0.1,=0.725,且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1解得k3=0.9.【命题意图】考察数学语言的转化,考察阅读能力,考察数列,直线,立体几何,函数与方程,不等式,三角函数等知识交汇处应用能力,考察逻辑推导能力,考察数形结合的数学思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学应用题专题
1. 经销商用一辆J 型卡车将某种水果从果园运送(满载)到相距400 km 的水果批发市场.据测算,J 型卡车满载行驶时,每100 km 所消耗的燃油量u(L)与速度v(km/h)的关系近似地满
足u =⎩
⎨⎧100
v
+23,0<v ≤50,v 2
500
+20,v>50.除燃油费外,人工工资、车损等其他费用平均每小时为300
元.已知燃油价格为每升(L)7.5元.
(1) 设运送这车水果的费用为y(元)(不计返程费用),将y 表示成速度v 的函数关系式; (2) 卡车应该以怎样的速度行驶,才能使运送这车水果的费用最少?
2. 某城市受雾霾影响严重,现欲在该城市中心P 的两侧建造A ,B 两个空气净化站(A ,P ,B 三点共线),A ,B 两站对该城市的净化度分别为1a a -,,其中(01)a ∈,.已知对该城市总净化效果为A ,B 两站对该城市的净化效果之和,且每站净化效果与净化度成正比,与中心
P 到净化站距离成反比.若1AB =,且当34AP =时,A 站对该城市的净化效果为3
a
,B 站对
该城市的净化效果为1a -. (1)设AP x =,(01)x ∈,,求A ,B 两站对该城市的总净化效果()f x ;
(2)无论A ,B 两站建在何处,若要求A ,B 两站对该城市的总净化效果至少达到2
5
,求
a 的取值集合.
3. 如图,直线1l 是某海岸线,2l 是位于近海的虚拟线,12l l ⊥于点P,点A,C 在2l 上,AC 的中点为O ,且km AC PA 2==.
(1)原计划开发一片以AC 为一条对角线,周长为8 km 的平行四边形水域ABCD,建深水养殖场.求深水养殖场的最大面积;
(2)现因资金充裕,计划扩大开发规模,开发如图五边形水域QABCD,建养殖场,其中ABCD 是周长为8 km 的平行四边形,点Q 在1l 上,且在点P 的上方,AD OQ ⊥, ︒≤∠90OCD . 养殖场分两个区域,四边形QAOD 区域内养殖浅水产品,其他区域内养殖深水产品,要求养殖浅水产品区域的面积最大.求点Q 与点P 的距离.
4. 如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台CP 的上端点P 处分别向水池内的三个不同方向建水滑道PA,PM,PB ,水滑道的下端点B,M,A 在同一条直线上,CM = 10m,∠
BCA=120°,CM 平分∠BCA ,假设水滑梯的滑道可以看成线段,B,M,A 均在过C 且与PC 垂直的平面内,为了滑梯的安全性,设计要求ACB PCA PCB S S S ∆∆∆≤+2.
(1)求滑梯的高PC 的最大值;
(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计∠PBC=30°,求该滑梯装置(即图(2)中的几何体)的体积最小值.
.
5.如图,已知A ,B 两镇分别位于东西湖岸MN 的A 处和湖中小岛的B 处,点C 在A 的正
西方向1km 处,经测量3tan 4BAN ∠=,π4
BCN ∠=.现计划铺设一条电缆联通A ,B 两镇.有两种方案供选择:①沿线段AB 在水下铺设;②在湖岸MN 上设立一中转站P ,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设.预算地下、水下的电缆修建费用分别为2万/km 、4万/km .
(1)求A ,B 两镇间的距离;
(2)应该选择哪种方案,使总修建费用较低?
C A P
B M
N
(第17题)
江苏省如皋中学2019届高三数学应用题专题
1. 解:(1) 由题意,当0<v ≤50时,y =7.5·400100u +300·400v =30·⎝⎛⎭⎫100v +23+300·400v
=123 000
v
+690, 当v >50时,y =7.5·400100u +300·400v
=30·⎝⎛⎭⎫v 2500+20+300·400v =3v 250+120 000v +600, 所以y =⎩⎪⎨⎪⎧
123 000
v +690,0<v ≤50,
3v 2
50+120 000
v +600,v >50.
(2) 当0<v ≤50时,y =
123 000
v
+690是单调减函数, 故v =50时,y 取得最小值y min =
123 000
50
+690=3 150; 当v >50时,y =3v 250+120 000
v +600(v >50).
由y′=3v 25-120 000v 2=3v 3-3×106
25v 2
=0,得v =100.
当50<v <100时,y ′<0,函数y =3v 250+120 000v +600单调递减;当v>100时,y ′>0,
函数y =3v 250+120 000
v
+600单调递增.
所以当v =100时,y 取得最小值y min =3×100250+120 000100+600=2 400.由于3 150>2
400,所以当v =100时,y 取得最小值.
答:当卡车以100 km/h 的速度行驶时,运送这车水果的费用最少.
2. 何处,若要求A ,B 两站对该城市的总净化效果至少达到
2
5
,求a 的取值集合. 解:(1)设A 站对城市的净化效果为1y ,比例系数为1k ,则11k a
y x
=,
由题意34x =,13a y =,即1334
k a a =,所以11
4k =,…
设B 站对P 城市的净化效果为2y ,比例系数为2k ,则2211a
y k x
-=-,
由34x =,21y a =-得21
4
k =
所以A 、B 两站对该城市的总净化效果121()44(1)
a a f x y y x x -=+=+-,(01)x ∈,;…6分 (2)由题意得1
()2
f x ≥对任意的(01)x ∈,恒成立,
只要(01)x ∈,时min 1
()2f x ≥即可; 又
111()((1))44(1)41a a a a x x x x x x
--+=++--- 1(1)(1)(1)41a x a x x x --=++-1(1)(1)(12
)41a x a x x x --+⋅-≥ 1
(12(1))4
a a =+- 当且仅当(1)(1)1a x a x x x --=
-即1111x a =+-时等号成立,则min 1
()(12(1))4
f x a a =+-, 又若12(12(1))45a a +-≥,则290100a a -+≤,即19
1010
a ≤≤,
综上,无论A 、B 两站建在何处,若要求A 、B 两站对P 城市的总净化效果至少达到2
5

a 的取值集合为19,1010⎡⎤
⎢⎥⎣⎦
. ………………………………14分
3
4. 如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台CP 的上端点P 处分别向水池内的三个不同方向建水滑道PA,PM,PB ,水滑道的下端点B,M,A 在同一条直线上,CM = 10m,∠
BCA=120°,CM 平分∠BCA ,假设水滑梯的滑道可以看成线段,B,M,A 均在过C 且与PC 垂直的平面内,为了滑梯的安全性,设计要求ACB PCA PCB S S S ∆∆∆≤+2.
(1)求滑梯的高PC 的最大值;
(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计∠PBC=30°,求该滑梯装置(即图(2)中的几何体)的体积最小值.
5. .(1)过B 作MN 的垂线,垂足为D .
在Rt ABD △中,
3
tan tan 4
BD BAD BAN AD ∠=∠==, 所以4
3
AD BD =
, 在Rt BCD △中,tan tan 1BD
BCD BCN CD
∠=∠==, 所以CD BD =.
则41
133
AC AD CD BD BD BD =-=-==,即3BD =,
所以3CD =,4AD =,
由勾股定理得,5AB =(km).
所以A ,B 两镇间的距离为5km .……………………………………………4分 (2)方案①:沿线段AB 在水下铺设时,总修建费用为5420⨯=(万元).………6分
方案②:设BPD θ∠=,则0π(,)2
θθ∈,其中0BAN θ=∠,
在Rt BDP △中,3tan tan BD DP θθ==,3
sin sin BD BP θθ==
, 所以3
44tan AP DP θ
=-=-.
则总修建费用为6122cos 24886tan sin sin AP BP θ
θθθ-+=-+=+⋅
.………8分 令2cos ()sin f θ
θθ
-=,则2
22sin (2cos )cos 12cos '()sin sin f θθθθθθθ---==
, 令'()0f θ=,得π
θ=,列表如下:
所以()f θ的最小值为()3
f =
所以方案②的总修建费用最小为8+(万元),此时4AP =.……12分
而820+,
所以应选择方案②,中转站P 设在A 的正西方向(4-km 处, 总修建费用较低.…
总修建费用较低.…
C A P
B
M
N (第17题)
D。

相关文档
最新文档