(完整版)等差等比数列练习题(含答案)以及基础知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差等比数列基础知识点

(一)知识归纳: 1.概念与公式:

①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;

2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2

)

1(2)(11d n n na a a n S n n -+=+=

②等比数列:1°.定义若数列q a a a n

n n =+1

}{满足

(常数),则}{n a 称等比数列;2°.通项公式:;1

1k

n k n n q

a q

a a --==3°.前n 项和公式:),1(1)

1(111≠--=--=q q

q a q q a a S n n n 当q=1时.1na S n =

2.简单性质:

①首尾项性质:设数列,,,,,:}{321n n a a a a a

1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:

1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2

b

a A +=

2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:

1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n

n k k

k

k

a

a a 1

2131

2,,则

组成公差为n 2d 的等差数列;

2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=n

k n

n k n

n k k

k

k

a

a a 1

21

31

2,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为

偶数时这个结论不成立)

⑤若}{n a 是等比数列,

则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2

n q 的等比数列.

⑥若}{n a 是公差为d 的等差数列,

1°.若n 为奇数,则,,:(2

1+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶

数项的和);

2°.若n 为偶数,则.2

nd

S S =

-奇偶 (二)学习要点:

1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.

2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.

3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或

q

a

,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3

3

3

2

aq aq q a q

a aq aq aq a ±±或

”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:

(Ⅰ)已知

c

b a 1

,1,1成等差数列,求证: (1)c b a b a c a c b +++,

,成等差数列; (2)2

,2,2b

c b b a ---成等比数列.

[解析]该问题应该选择“中项”的知识解决,

.

2,2,2,

)2(4)(2)2)(2)(2(;

,,.)(2)()(2)()1(),(222112222

22

2成等比数列成等差数列b

c b b a b

b c a b ac b c b a c b a b a c a c b b

c a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac b ac c a b c a ---∴-=++-=--+++∴+=++=+++=

+++=++++=⇒=+⇒=+

[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,.

(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为 2128,求项数n. ① ②

相关文档
最新文档