(完整版)等差等比数列练习题(含答案)以及基础知识点
等差数列与等比数列的综合-高中数学知识点讲解(含答案)
等差数列与等比数列的综合(北京习题集)(教师版)一.选择题(共7小题)1.(2017秋•通州区期末)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,5a 成等比数列,那么数列{}n a 的前10项和10S 等于( ) A .90B .100C .10或90D .10或1002.(2018•延庆县一模)若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于( ) A .4B .5C .6D .73.(2018•西城区校级模拟)已知等差数列{}n a 的公差和首项都不为0,且1a 、2a 、4a 成等比数列,则1143(a a a += ) A .2B .3C .5D .74.(2018秋•西城区校级期中)若1,a ,b 成等差数列,3,2a +,5b +,成等比数列,则等差数列的公差为() A .3B .3或1-C .3-D .3或3-5.(2017•东城区三模)已知数列{}n a 是公差为1-的等差数列,且4a 是2a 与5a 的等比中项,n S 为{}n a 的前n 项和,则6(S = ) A .90-B .45-C .0D .156.(2015秋•海淀区校级期末)已知等差数列1,a ,b ,又4,2a +,1b +为等比数列,求该等差数列的公差() A .1-B .0C .2D .17.(2016•东城区二模)成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( ) A .12n n b -=B .13n n b -=C .22n n b -=D .23n n b -=二.填空题(共8小题)8.(2017秋•房山区期末)等差数列{}n a 的首项为1,公差不为0,且2a ,3a ,6a 成等比数列,则6S = . 9.(2017秋•海淀区期末)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项和为 . 10.(2018秋•东城区校级期中)若等差数列{}n a 与等比数列{}n b 中,若110a b =>,11110a b =>,则6a ,6b 的大小关系为 .11.(2018•海淀区校级三模)已知等差数列{}n a 中,公差0d ≠,12a =,1a ,2a ,4a 是等比数列{}n b 的前三项,则等差数列{}n a 的公差d = ,等比数列{}n b 的前n 项n S =12.(2017•北京)若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b = . 13.(2017•西城区二模)已知等差数列{}n a 的公差为2,且1a ,2a ,4a 成等比数列,则1a = ;数列{}n a 的前n 项和n S = .14.(2017春•海淀区期中)若数列{}n a 满足12312()()n n a a a a a a n +++⋯+=+,则数列{}n a 是等差数列.类比上述结论,可以猜想:若数列{}n b 满足 ,则数列{}n b 是等比数列.15.(2016•顺义区一模)国家新能源汽车补贴政策,刺激了电动汽车的销售,据市场调查发现,某地区今年Q 型电动汽车的销售将以每月10%的增长率增长;R 型电动汽车的销售将每月递增20辆,已知该地区今年1月份销售Q 型和R 型车均为50辆,据此推测该地区今年Q 型汽车销售量约为 辆;这两款车的销售总量约为 辆.(参考数据:111.1 2.9≈,121.1 3.1≈,131.1 3.5)≈等差数列与等比数列的综合(北京习题集)(教师版)参考答案与试题解析一.选择题(共7小题)1.(2017秋•通州区期末)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,5a 成等比数列,那么数列{}n a 的前10项和10S 等于( ) A .90B .100C .10或90D .10或100【分析】设{}n a 的公差为d ,且0d ≠,由等比中项的性质、等差数列的通项公式列出方程,求出d 的值,由等差数列的前n 项和公式求出{}n a 的前10项和10S . 【解答】解:设等差数列{}n a 的公差为d ,且0d ≠, 11a =且1a ,2a ,5a 成等比数列,2215()a a a ∴=,则2(1)1(14)d d +=+, 解得2d =或0d =(舍去), {}n a ∴的前10项和1010910121002S ⨯=⨯+⨯=, 故选:B .【点评】本题考查等差数列的通项公式、前n 项和公式,以及等比中项的性质,考查方程思想.2.(2018•延庆县一模)若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于( ) A .4B .5C .6D .7【分析】由二次方程的韦达定理可得0a >,0b >,由题意可得a ,2-,b 或b ,2-,a 成等比数列,a ,b ,2-或b ,a ,2-或2-,a ,b 或2-,b ,a 成等差数列,由中项的性质,可得a ,b 的方程,解方程即可得到所求和. 【解答】解:a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点, 可得a b p +=,ab q =,即有0a >,0b >,a ,b ,2-这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,即a ,2-,b 或b ,2-,a 成等比数列, 可得4ab =;又a ,b ,2-或b ,a ,2-或2-,a ,b 或2-,b ,a 成等差数列,可得22b a =-或22a b =-, 解得4a =,1b =或1a =,4b =, 可得5a b +=, 故选:B .【点评】本题考查等差数列、等比数列的中项的性质,以及二次方程的韦达定理,考查方程思想和运算能力,属于中档题.3.(2018•西城区校级模拟)已知等差数列{}n a 的公差和首项都不为0,且1a 、2a 、4a 成等比数列,则1143(a a a += ) A .2B .3C .5D .7【分析】利用等差数列以及等比数列的通项公式,求出数列首项与公比的关系,然后求解即可.【解答】解:由1a 、2a 、4a 成等比数列得2241a a a =, 2111()(3)a d a a d ∴+=+,21d a d ∴=, 0d ≠,1d a ∴=,则1141113111315523a a a a d a a a d a +++===+, 故选:C .【点评】本题考查数列的通项公式的应用,等差数列以及等比数列的应用,考查计算能力.4.(2018秋•西城区校级期中)若1,a ,b 成等差数列,3,2a +,5b +,成等比数列,则等差数列的公差为() A .3B .3或1-C .3-D .3或3-【分析】由题意列关于a ,b 的方程组,求得a ,b 后可得等差数列的公差. 【解答】解:1,a ,b 成等差数列,3,2a +,5b +成等比数列,则 221(2)3(5)a b a b =+⎧⎨+=+⎩,解得:47a b =⎧⎨=⎩或25a b =-⎧⎨=-⎩(舍). ∴等差数列的公差为3b a -=.故选:A .【点评】本题考查了等差数列的定义,考查了等差数列的通项公式,是基础题.5.(2017•东城区三模)已知数列{}n a 是公差为1-的等差数列,且4a 是2a 与5a 的等比中项,n S 为{}n a 的前n 项和,则6(S = ) A .90-B .45-C .0D .15【分析】由题意和等差数列的通项公式可得1a 的方程,解方程代入求和公式计算可得.【解答】解:由题意可得2425a a a =,公差1d =-, 2111(3)()(4)a d a d a d ∴+=++代入数据可得2111(3)(1)(4)a a a -=--, 解得15a =, 61656152S a d ⨯∴=+=. 故选:D .【点评】本题考查等差数列的求和公式和通项公式,属基础题.6.(2015秋•海淀区校级期末)已知等差数列1,a ,b ,又4,2a +,1b +为等比数列,求该等差数列的公差() A .1-B .0C .2D .1【分析】设等差数列的公差为d ,运用等差数列和等比数列的中项的性质,解方程可得2a =,3b =,即可得到公差1d =.【解答】解:设等差数列的公差为d , 由1,a ,b 成等差数列,可得21a b =+, 由4,2a +,1b +为等比数列,可得:24(1)(2)b a +=+, 解得2a =,3b =, 可得公差11d a =-=. 故选:D .【点评】本题考查等差数列和等比数列的中项的性质,考查等差数列的公差的求法,以及运算能力,属于基础题. 7.(2016•东城区二模)成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( ) A .12n n b -=B .13n n b -=C .22n n b -=D .23n n b -=【分析】设成等差数列的三个正数为a d -,a ,a d +,由题意可得2a =,再由等比数列的中项的性质,可得1d =,求得公比为2,由等比数列的通项公式计算即可得到所求. 【解答】解:设成等差数列的三个正数为a d -,a ,a d +, 即有36a =,解得2a =,由题意可得23d -+,26+,213d ++成等比数列, 即为5d -,8,15d +成等比数列, 即有(5)(15)64d d -+=, 解得1(11d =-舍去),即有4,8,16成等比数列,可得公比为2, 则数列{}n b 的通项公式为33132422n n n n b b ---===. 故选:A .【点评】本题考查等差数列和等比数列的中项的性质,考查等比数列的通项公式的运用,以及运算能力,属于中档题.二.填空题(共8小题)8.(2017秋•房山区期末)等差数列{}n a 的首项为1,公差不为0,且2a ,3a ,6a 成等比数列,则6S = 24- . 【分析】设等差数列{}n a 的公差为0d ≠,由2a ,3a ,6a 成等比数列.解得d ,然后求解前6项的和. 【解答】解:设等差数列{}n a 的公差为0d ≠,2a ,3a ,6a 成等比数列.2326a a a ∴=,2(12)(1)(15)d d d ∴+=+⨯+,解得2d =-.611665(2)242S ∴=⨯+⨯⨯⨯-=-.故答案为:24-.【点评】本题考查等差数列与等比数列的通项公式,数列求和,考查了推理能力与计算能力,属于基础题. 9.(2017秋•海淀区期末)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项和为 5050 . 【分析】由已知列式求得等差数列的首项,然后代入等差数列的前n 项和公式得答案. 【解答】解:在公差为1的等差数列{}n a 中, 由1a ,2a ,4a 成等比数列,得:2111(1)(3)a a a +=+,即11a =. 100100991001150502S ⨯∴=⨯+⨯=. 故答案为:5050.【点评】本题考查等差数列的通项公式,考查了等比数列的性质,训练了等差数列的前n 项和的求法,是基础的计算题.10.(2018秋•东城区校级期中)若等差数列{}n a 与等比数列{}n b 中,若110a b =>,11110a b =>,则6a ,6b 的大小关系为 66a b .【分析】运用等差数列中项的性质和基本不等式,以及等比数列中项的性质,即可得到所求结论. 【解答】解:若等差数列{}n a 与等比数列{}n b 中,若110a b =>,11110a b =>, 由等差数列中项的性质可得11161112a a aa a +=66||b b =,当且仅当111a a =取得等号.故答案为:66a b .【点评】本题考查等差数列和等比数列中项的性质,以及基本不等式的运用,考查运算和推理能力,属于中档题. 11.(2018•海淀区校级三模)已知等差数列{}n a 中,公差0d ≠,12a =,1a ,2a ,4a 是等比数列{}n b 的前三项,则等差数列{}n a 的公差d = 2 ,等比数列{}n b 的前n 项n S =【分析】由已知列式求出等差数列的公差,进一步得到等比数列的公比,代入等比数列的前n 项和公式求等比数列{}n b 的前n 项n S .【解答】解:由12a =,1a ,2a ,4a 是等比数列{}n b 的前三项, 得2214a a a =,即2(2)2(23)d d +=+,解得2d =. 214a a d ∴=+=,则数列{}n b 是以2为首项,以2为公比的等比数列,∴12(12)2212n n n S +-==--.故答案为:2;122n +-.【点评】本题考查等差数列的通项公式,考查等比数列的性质及前n 项和,是中档题. 12.(2017•北京)若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b = 1 . 【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果. 【解答】解:等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==, 设等差数列的公差为d ,等比数列的公比为q . 可得:813d =-+,3d =,22a =;38q =-,解得2q =-,22b ∴=. 可得221a b =. 故答案为:1.【点评】本题考查等差数列以及等比数列的通项公式的应用,考查计算能力.13.(2017•西城区二模)已知等差数列{}n a 的公差为2,且1a ,2a ,4a 成等比数列,则1a = 2 ;数列{}n a 的前n 项和n S = .【分析】由题意可得1a ,12a +,16a +成等比数列,通过解方程求得1a 的值.然后求和.【解答】解:数列{}n a 是公差为2的等差数列,且1a ,2a ,4a 成等比数列,1a ∴,12a +,16a +成等比数列,2111(2)(6)a a a ∴+=+,解得12a =, 数列{}n a 的前n 项和2(1)222n n n S n n n -=+⨯=+. 故答案为:2;2n n +.【点评】本题主要考查等比数列的定义和性质,等差数列的通项公式的应用,属于基础题.14.(2017春•海淀区期中)若数列{}n a 满足12312()()n n a a a a a a n +++⋯+=+,则数列{}n a 是等差数列.类比上述结论,可以猜想:若数列{}n b 满足 21231()()n n n b b b b b b ⋯= ,则数列{}n b 是等比数列.【分析】把数列的项相加改成数列的项相乘,把结论的相乘的系数改成等比数列的指数,即可得到. 【解答】解:把数列的项相加改成数列的项相乘,把结论的相乘的系数改成等比数列的指数,可得: 若数列{}n b 满足21231()()n n n b b b b b b ⋯=,则数列{}n b 是等比数列. 故答案为:21231()()n n n b b b b b b ⋯=.【点评】本题考查等差数列与等比数列的综合,考查类比推理等基础知识与基本技能方法,属于基础题. 15.(2016•顺义区一模)国家新能源汽车补贴政策,刺激了电动汽车的销售,据市场调查发现,某地区今年Q 型电动汽车的销售将以每月10%的增长率增长;R 型电动汽车的销售将每月递增20辆,已知该地区今年1月份销售Q 型和R 型车均为50辆,据此推测该地区今年Q 型汽车销售量约为 1050 辆;这两款车的销售总量约为 辆.(参考数据:111.1 2.9≈,121.1 3.1≈,131.1 3.5)≈【分析】由题意可得,今年Q 型电动汽车的月销售量与R 型电动汽车的月销售量分别构成等比数列和等差数列,然后利用等比数列和等差数列的前n 项和求解.【解答】解:由题意可得,今年Q 型电动汽车的月销售量构成以50为首项,以1.1为公比的等比数列,则今年Q 型电动汽车的销售量为1250(111)10501 1.1-≈-;R 型电动汽车的月销售量构成以50为首项,以20为公差的等差数列,则R 型电动汽车的销售量为121112502019202⨯⨯+⨯=. ∴这两款车的销售总量约为:105019202970+=.故答案为:1050;2970.【点评】本题考查等差数列与等比数列的综合,考查了等差数列与等比数列的前n项和,是基础题.。
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导(小编推荐)第一篇:等差数列与等比数列专题辅导(小编推荐)等差数列与等比数列专题辅导(1)在等差数列{an}中, a7=9, a13=-2, 则a25=()A-22B-24C60D64(2)在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=()A864B1176C1440D1536(3)已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=()A–4B–6C–8D–10(4)设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n 项和,则()AS4>S3BS4=S2CS6(5)已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则a1·a4·a7·…·a28=5101520A 2B2C2D2(6)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是:()A.4005B.4006C.4007D.4008(7)在等比数列{an}中, a1<0, 若对正整数n都有anAq>1B0a1(3n-1)(8)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1=__________.2(9)等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为_________.(10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列, 且a1=2, 公和为5,那么a18的值为_______,这个数列的前21项和S21的值为.(11)已知等差数列{an}共2n+1项, 其中奇数项之和为290, 偶数项之和为261,求第n+1项及项数2n+1的值.(12)设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.(Ⅰ)证明a1=d;(Ⅱ)求公差d的值和数列{an}的通项公式.(13)已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(14)ΔOBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n, Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), an=(Ⅰ)求a1,a2,a3及an;(Ⅱ)证明yn+4=1-(Ⅲ)若记bn=y4n+41yn+yn+1+yn+2.2yn,n∈N*;4-y4n,n∈N*,证明{bn}是等比数列.答案:1-7 BDBDA BB8.29.21010.3, 5211.29, 1912.(2)d=2 an=2n13.n=414.(1)an=2(2)(3)证明略第二篇:等差数列与等比数列等差数列与等比数列⎧>0,递增数列⎪一、等差数列的定义:an+1-an=d(d:公差)(常数)⎨=0,常数列,⎪<0,递减数列⎩1.证明数列{an}为等差数列:(1)定义:an+1-an=d(常数)(2)等差中项:2an+1=an+an+2注:(1)不可用a2-a1=a3-a2=a4-a3=Λ=“常数”证(2)a1=⎨例1.(1)已知数列{an}为等差数列,求证:数列{an+an+1}为等差数列;变式:①已知数列{an}为等差数列,求证:数列{an+t}(t为常数)为等差数列;②已知数列{an}为等差数列,求证:数列{tan}(t为常数)为等差数列;③已知数列{an}、{bn}均为等差数列,求证:数列{an+bn}为等差数列(2)已知数列{an}的前n项和为Sn,且Sn=n2,求证:数列{an}为等差数列;变式:①已知数列{an}的前n项和为Sn,且Sn=n2+1,求:an②已知数列{an}的前n项和为Sn,且Sn=an2+bn,求:an ③已知数列{an}的前n项和为Sn,且Sn=an2+bn+c,求:an(3)已知数列{an}满足:a1=1,an+1=数列;(4)已知数列{an},a1=1,an+1=为等差数列(5)设数列{an}的前n项和为Sn,求证:数列{an}为等差数列的充要条件是{an}为等差数列⎧S1,n=1⎩Sn-Sn-1,n≥2an1,且bn=,求证:数列{bn}为等差an+1ann1an+,且bn=nan,求证:数列{bn}n+1n+1Sn=n(a1+an)22.证明数列{an}为单调数列:an+1-an=f(n)⎨⎧>0,递增数列递减数列⎩<0,注:(1)求数列{an}中an的极值也可采用此方法(2)已知数列{an}为等差数列ⅰ.若a1<0,d>0,则Sn有最小值;解法:①令an≤0{bn}②Snⅱ.若a1>0,d<0,则Sn有最大值;解法:①令an≥0②Sn例2.已知an=(11-2n)2n,求数列{an}的最大项例3.(1)已知等差数列{an}的前n项和为Sn,且an=10-2n,求Sn的最大值;(2)已知等差数列{an}的前n项和为Sn,且an=2n-13,求Sn的最小值;3.叠加法:已知a1=a,an+1-an=f(n),求an例4.(1)已知数列{an}为等差数列,首项为a1,公差为d,求an;(2)已知数列{an},a1=1,an+1=4.通项公式:an=a1+(n-1)d(1)an=am+(n-m)d(2)an是关于n的一次函数,且n的系数为公差d.例5.已知数列{an}为等差数列,a5=-3,a9=13,求an5.等差中项:若a、b、c成等差数列,则b=(1)若数列{an}为等差数列,则2an+1n+11an+,求an nna+c称为a、c的等差中项2=an+an+2;(2)若已知三个数成等差数列,且其和为定值,则可设这三个数为a-d、a、a+d;(3)若数列{an}为等差数列,且公差d≠0,则am+an=ap+aq⇔m+n=p+q(4)在有穷等差数列{an}中,与首尾两项距离相等的两项的和等于首尾两项的和.即:a1+an=a2+an-1=a3+an-2=Λ=ak+an-k+1例6.(1)已知:等差数列中连续三项的和为21,平方和为179,求这三项(2)在3与19之间插入3个数后成等差数列,求这三个数(3)已知:a、b、c成等差数列求证:①b+c、a+c、a+b成等差数列;②a(b+c)、b(a+c)、c(a+b)成等差数列;③a-bc、b-ac、c-ab 成等差数列(4)已知:a、b、c成等差数列,求证:2222111成等差数列 b+ca+ca+blg(a-c)、lg(a+c-2b)成等差(5)已知:成等差数列,求证:lg(a+c)、数列(6)若方程a(b-c)xb(c-a)x+c(a-b)=0有相等实根,求证:成等差111abc111abc数列例7.在等差数列{an}中,(1)若a5+a10=12,求S14;(2)若a8=m,求S15;(3)若a4+a6+a15+a17=50,求S20;(4)若a2+a4=18,a3+a5=32,求S6;(5)若a2+a5+a12+a15=36,求S16;(6)若a3+a4+a5+a6+a7=450,求a2+a8(7)若等差数列{an}的各项都是负数,且a32+a82+2a3⋅a8=9,则其前10项和S10= ____________(8)在等差数列{an}中,若a3+a15=a5+an,则n=_______6.数列{an}的前n项和Sn=注:(1)倒序法求和;(2)等差数列{an}的前n项和Sn是关于自然数n的二次函数,且n的系数为n(a1+an)n(n-1)n(n-1)=na1+d=nan-d 222d,2常数项为零,即:Sn=An2+Bn(当A=0时数列{an}为常数列);(3)①S2n-1=(2n-1)an(可以将项与和之间进行相互转化)。
(完整版)等差等比数列求和与差的练习题
(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。
解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。
题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。
解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。
题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。
解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。
题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。
解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。
以上是关于等差数列求和与差的练题的完整版文档。
高中数学《等比数列性质》复习基础知识与练习题(含答案解析)
高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。
等差求和以及等比数列基础知识点
等差求和以及等比数列基础知识点(一)知识归纳: 1.概念与公式:等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列; 2°.通项公式:;11m n m n n q a q a a --==2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A += 2°等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数) (2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅③设p 、q 、r 、s 为正整数,且,s r q p +=+ 若}{n a 是等差数列,则;s r q pa a a a +=+(3) 若m+n=s+t (m, n, s, t ∈*N ),则n m s t a a a a ⋅=⋅.特别的,当n+m=2k 时,得2n m k a a a ⋅=注:④若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++ 组成公比这2n q 的等比数列. ⑤若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (4) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (5) ①当1q >时, ②当1q <0<时,110{}0{}{n n a a a a ><,则为递增数列,则为递减数列,110{}0{}{n n a a a a ><,则为递减数列,则为递增数列③当q=1时,该数列为常数列(此时数列也为等差数列); ④当q<0时,该数列为摆动数列.(二)学习要点:1、学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2、巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. 二、等差等比数列练习题1举例说明:1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )A .360B .370C .380D .390 2.已知a 1=1,a 8=6,则S 8等于( ) A .25 B .26 C .27 D .283.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.一、选择题1、等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) A .12 B .10 C .8 D .62.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .24 B .27 C .29 D .48 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .484.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( ) A .99 B .66 C .33 D .05.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A .13项 B .12项 C .11项 D .10项6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( ) A .9 B .10 C .11 D .12二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.8.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________.9.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *). (1)写出该数列的第3项;(2)判断74是否在该数列中.11、设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.二、等差等比数列练习题1(参考答案)举例说明:1、C2、D3、2n 4、 40.一、选择题:1、C.2、C.3、B4、B.5、A.6、B. 二、填空题:7、153 8、12 9、-72三、解答题:10.解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎪⎨⎪⎧-24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11、解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12、解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67,所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22.因为S n =n (a 1+a n )2=286,所以n =26.(2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,所以S 3n =3(S 2n -S n )=54.等比数列练习题2一、选择题1.等比数列{}n a的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++ =A .12B .10C .8D .2+3log 52.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( )A.32B.23C. 32或23D. -32或-233.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .1284.实数12345,,,,a a a a a 依次成等比数列,其中a1=2,a5=8,则a3的值为( ) A. -4 B.4 C. ±4 D. 55、在正项等比数列{}n a 中,991,a a 是方程016102=+-x x 的两个根,则605040a a a 的值为( )A. 32 B. 256 C. 64± D. 646、公差不为0的等差数列{an}中,a a a 632,,依次成等比数列,则公比等于( )A.21B.31C.2D.37、已知两数的等差中项是10,等比中项是8,则以这两数为根的一元二次方程是( )A.08102=++x xB. 064102=+-x xC. 064202=++x xD. 064202=+-x x8、等比数列为a ,2a +2,3a +3,…,第四项为( )A .-227B .227C .-27D .279、如果-1,a,b,c,-9成等比数列,那么( )(A )b=3,ac=9 (B)b=-3,ac=9 (C) b=3,ac=-9 (D)b=-3,ac=-9 10、等比数列{an}中,已知29-=a,则此数列前17项之积为 ( )A .216B .-216C .217D .-21711、各项都是正数的等比数列{an }的公比q ≠1,且132,21,a a a 成等差数列,则5443a a a a ++的值是( ) A.215+ B.215- C.251- D.215+或215-12、在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( ) A .33 B .72 C .84 D .18913、已知数列{an}为等比数列,且an >0, 253426452=++a a a a a a ,那么53a a +的值等于( )A.5 B.10 C.15 D.20 二、填空题1.在两数a,b(ab >0)之间插入3个数,使它们成等比数列,则中间一个数 . 2、.已知1, a1, a2, 4成等差数列,1, b1, b2, b3, 4成等比数列,则=+221b a a ______.3.已知等比数列{an}中,a1+a2=30,a3+a4=120,则a5+a6= .4.若a ,b ,c 成等比数列,则函数f(x)=ax2+bx +c 的图象与x 轴的交点个数为__________5、若数列{}n a 满足:1,2,111===+n a a a n n ,2,3….则=+++n a a a 21 .6、已知等比数列{,384,3,}103==a a a n 中则该数列的通n a = . 7.在递减等比数列{an}中,a4+a5=12,a2〃a7=27,则a10=________.8.已知等差数列{an}的公差d ≠0,且a1,a3,a9成等比数列,则1042931a a a a a a ++++值 .9、若各项均为正数的等比数列{}n a 满足23123a a a =-,则公比q = 10、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =11、已知数列{}n a 满足n n a S 411+=,则n a =三、解答题1、已知{}n a为等比数列,324202,3a a a =+=,求{}n a 的通项式。
(完整版)等差等比数列知识点总结
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
(完整版)等差数列练习题有答案
数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
(完整版)等差数列基础练习题.docx
数列基础知识点和方法归纳1. 等差数列的定义与性质定义: a n 1 a n d ( d 为常数), a n a 1n 1 d等差中项: x , A , y 成等差数列2Ax ya 1 a n nnn 1 前 n 项和Snna 1d22性质: a n 是等差数列(1)若 m n p q ,则 a ma n a p a q ;2. 等比数列的定义与性质定义:a n1q( q 为常数, q0 ),an aqn 1a n.1等 比 中 项 : x 、 G 、 y 成 等 比 数 列G2xy , 或Gxy .na 1 ( q 1) 前 项和:S n a 1qnn 1( q 1) (要注意!)1 q性质: a n 是等比数列(1)若 m np q ,则 a · aa · amnpq等差数列·基础练习题一、填空1.等差数列 8,5, 2,⋯的第 20___________.2.在等差数列中已知 a1=12, a6=27, d=___________3. 在等差数列中已知d 1,a7=8,a1=_______________ 34.等差数列 -10,-6,-2, 2,⋯前 ___的和是 545.数列 a n的前n和S n=3n n2,a n=___________二、9. 在等差数列a n中a3a1140 , a4a5a6a7a8a9a10的()A.84B.72C.60.D.4810. 在等差数列a n中,前 15 的和S1590 , a8()A.6B.3C.12D.412. 在等差数列a n中,若a3a4a5a6a7450 , a2a8的等于()A.45B.75C.180D.30014. 数列 3, 7,13, 21,31,⋯的通公式是()A. C.a n4n1B. a n n3n2n 2 a n n2n1 D.不存在16.设等差数列a n的前n 项和公式是S n5n23n ,求它的前3项,并求它的通项公式17.如果等差数列a n的前4项的和是2,前 9 项的和是 -6,求其前 n 项和的公式。
(完整版)等差数列知识点总结及练习(精华版)
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
【专题训练】数列(等差、等比) 知识点总结及题型归纳
基本量法求数列的通项公式11.复习 等差数列(1)定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常.数.,那么这个数列就叫等差数列, 1(2)n n a a d n --=≥d a a n n =1--d a a n n =2-1--(由定义,累加法推得通项公式)…… d a a =12-(2)通项公式1(1)n a a n d =+-(3)性质: 在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;(4)前项和公式d n n na a a n S n n 2)1(2)(11-+=+=等比数列(1)定义 : 如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,1n a +:(0)n a q q =≠ (2)通项公式11-⋅=n n q a a(3)性质:在等比数列{}n a 中,q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中(4)前项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn例1(2015年全国卷I ) n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(1)求{}n a 的通项公式:变式1:(湖北省武汉部分重点中学2020届高三起点考试)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (1)求数列{a n }的通项公式;变式2:已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式;例2已知数列{a n }的前n 项和为S n ,且2n n S a n =-.(1) 证明数列{1n a +}是等比数列,并求数列{}n a 的通项公式;变式1:(湖北省黄冈中学2019届高三数学模拟试题1)已知各项均为正数的等比数列{a n }的前n 项和为S n ,a 1=14,a 3+a 5=564.(1)求数列{a n }的通项公式;变式3:已知数列{}n a ,{}n b ,其中1,511-==b a ,且满足)3(2111---=n n n b a a ,)3(2111----=n n n b a b ,2*,≥∈n N n .(1)求证:数列{}n n b a -为等比数列,并求数列{a n }、{b n }的通项公式;例3 .已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; 变式(浙江省名校联盟2020届高三第一次联考试题)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项.数列{}n b的通项公式nn b =Νn *∈.(1)求数列{}n a 的通项公式;数列(等差、等比)知识点清单一、数列的概念1.数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
高考数学(理)二轮专题练习【专题4】(1)等差数列和等比数列(含答案)
第1讲 等差数列和等比数列考情解读 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列和等比数列热点一 等差数列例1 (1)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ) A .21 B .24 C .28 D .7(2)设等差数列{a n }的前n 项和为S n ,若-1<a 3<1,0<a 6<3,则S 9的取值范围是________. 思维启迪 (1)利用a 1+a 7=2a 4建立S 7和已知条件的联系;(2)将a 3,a 6的范围整体代入. 答案 (1)C (2)(-3,21)解析 (1)由题意可知,a 2+a 6=2a 4,则3a 4=12,a 4=4,所以S 7=7×(a 1+a 7)2=7a 4=28.(2)S 9=9a 1+36d =3(a 1+2d )+6(a 1+5d ) 又-1<a 3<1,0<a 6<3,∴-3<3(a 1+2d )<3,0<6(a 1+5d )<18, 故-3<S 9<21.思维升华 (1)等差数列问题的基本思想是求解a 1和d ,可利用方程思想; (2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a nm -n(m ,n ∈N *);④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和). (3)等差数列前n 项和的问题可以利用函数的性质或者转化为等差数列的项,利用性质解决.(1)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64(2)在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 (1)A (2)C解析 (1)因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16⇒a 8=8,再由等差数列前n 项和的计算公式可得S 11=11(a 1+a 11)2=11·2a 62=11a 6,又因为S 11=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. (2)由题意可知a 6+a 5>0,故S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,而S 9=(a 1+a 9)×92=2a 5×92=9a 5<0,故选C.热点二 等比数列例2 (1)(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =_____________________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n 等于( )A .4n -1B .4n -1C .2n -1D .2n -1思维启迪 (1)列方程求出d ,代入q 即可;(2)求出a 1,q ,代入化简. 答案 (1)1 (2)D解析 (1)设等差数列的公差为d ,则a 3=a 1+2d , a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2, ∴a n =2×(12)n -1=42n ,∴S n =2×(1-(12)n )1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1,故选D. 思维升华 (1){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m q n -m ;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (2)等比数列前n 项和公式 S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4D .8(2)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6D .7答案 (1)D (2)B解析 (1)∵a 4-2a 27+3a 8=0,∴2a 27=a 4+3a 8,即2a 27=4a 7,∴a 7=2,∴b 7=2,又∵b 2b 8b 11=b 1qb 1q 7b 1q 10=b 31q 18=(b 7)3=8,故选D.(2)设等比数列{a n }的公比为q ,由a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1(1-q n )1-q =a 1-a n q 1-q =2-32q 1-q=62,解得q =2.又a n =a 1q n-1,所以2×2n -1=2n =32,解得n =5.同理,当a 1=32,a n =2时,由S n =62,解得q =12.由a n =a 1q n -1=32×(12)n -1=2,得(12)n -1=116=(12)4,即n -1=4,n =5.综上,项数n 等于5,故选B.热点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.思维启迪 (1)利用方程思想求出a 1,代入公式求出a n 和S n ;(2)将恒成立问题通过分离法转化为最值.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q , 则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.即实数λ的取值范围为(6,+∞). 思维升华 等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求证:1b 1+1b 2+1b 3+…+1b n <12.(1)解 ∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得a n =S n -S n -1=2a n -2a n -1, ∴a na n -1=2, ∴数列{a n }是首项为12,公比为2的等比数列,∴a n =12×2n -1=2n -2.(2)证明 b n =(log 2a 2n +1)×(log 2a 2n +3)=log 222n +1-2×log 222n+3-2=(2n -1)(2n +1),1b n =12n -1×12n +1=12(12n -1-12n +1), 1b 1+1b 2+1b 3+…+1b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)<12(n ∈N *). 即1b 1+1b 2+1b 3+…+1b n <12.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.等差、等比数列的单调性 (1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列. (2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}仍为等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…,成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等比数列,其公差为q k .等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列,公差为k 2d . 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的充要条件是b 2=ac .真题感悟1.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4 =lg(a 4·a 5)4=lg(2×5)4=4.2.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0. ∴数列的前8项和最大,即n =8. 押题精练1.已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则a 2 013>0 D .若a 4>0,则a 2 014>0答案 C解析 因为a 3=a 1q 2,a 2 013=a 1q 2 012,而q 2与q 2 012均为正数,若a 3>0,则a 1>0,所以a 2 013>0,故选C.2.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 a n =a +(n -1)×1=n +a -1,所以b n =1+a n a n =n +an +a -1,因为对任意的n ∈N *,都有b n ≥b 8成立,即n +a n +a -1≥8+a 8+a -1(n ∈N *)恒成立,即n -8(a +7)(n +a -1)≤0(n ∈N *),则有⎩⎪⎨⎪⎧a +7<0,1-a <9,解得-8<a <-7. 3.设各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰好是等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,(T n +32)k ≥3n -6恒成立,求实数k 的取值范围.解 (1)当n ≥2时,由题设知4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, ∴a 2n +1=a 2n +4a n +4=(a n +2)2,∵a n >0,∴a n +1=a n +2.∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,∴a 25=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,∴a 1=1, ∵a 2-a 1=3-1=2,∴{a n }是首项a 1=1,公差d =2的等差数列. ∴等差数列{a n }的通项公式为a n =2n -1. ∵等比数列{b n }的公比q =a 5a 2=2×5-13=3,∴等比数列{b n }的通项公式为b n =3n . (2)T n =b 1(1-q n )1-q =3(1-3n )1-3=3n +1-32,∴(3n +1-32+32)k ≥3n -6对任意的n ∈N *恒成立,∴k ≥2n -43n 对任意的n ∈N *恒成立,令c n =2n -43n ,c n -c n -1=2n -43n -2n -63n -1=-2(2n -7)3n ,当n ≤3时,c n >c n -1; 当n ≥4时,c n <c n -1. ∴(c n )max =c 3=227,∴k ≥227.(推荐时间:60分钟)一、选择题1.等比数列{a n }中a 1=3,a 4=24,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189答案 C解析 由题意可得q 3=8,所以q =2.所以a 3+a 4+a 5=a 1q 2(1+q +q 2)=84. 2.设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是( ) A .27 B .36 C .45 D .54答案 D解析 由2a 6=6+a 7得a 5=6,所以S 9=9a 5=54.故选D.3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q1-q =-11,故a 1=-1,又a m =a 1·q m -1=-16,代入可求得m =5.4.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11 答案 B解析 ∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,a 8=3.故选B. 5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 014等于( )A.16 B .-16C .6D .-6答案 D解析 由a n =a n +1-1a n +1+1得a n +1=1+a n 1-a n ,而a 1=2,所以a 2=-3,a 3=-12,a 4=13,a 5=2,则数列是以4为周期,且a 1a 2a 3a 4=1,所以T 2 014=(a 1a 2a 3a 4)503a 1a 2=1503×2×(-3)=-6,故选D.6.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ), Q (2 011,a 2 011),则OP →·OQ →等于( ) A .2 011 B .-2 011 C .0 D .1 答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 二、填空题7.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 答案 3解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12. 又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×(12)2=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×(12)3=1, 所以a 9+a 11+a 13+a 15=2+1=3.8.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______.答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.9.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________. 答案 6解析 设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36, 故当n =6时,S n 取最小值.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.答案 2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧ 2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2)解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1, 由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2). 三、解答题11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15.解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54. 所以b n =b 1·q n -1=54·2n -1=5·2n -3, 即数列{b n }的通项公式b n =5·2n -3. (2)证明 由(1)得数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54, 即S n +54=5·2n -2. 所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2. 因此{S n +54}是以52为首项,2为公比的等比数列. 12.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{c n },若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n -9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列;(2)求{a n }的通项公式及前20项和S 20.(1)证明 ∵a n +1+a n =2n ,①∴a n +2+a n +1=2n +2.②由②-①得a n +2-a n =2(n ∈N *),∴{a n }是公差为2的准等差数列.(2)解 已知a 1=a ,a n +1+a n =2n (n ∈N *),∴a 1+a 2=2,即a 2=2-a .∴由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.∴当n 为偶数时,a n =2-a +(n 2-1)×2=n -a , 当n 为奇数时,a n =a +(n +12-1)×2=n +a -1, ∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数. S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×(1+19)×102=200. 13.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18. 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n . 假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,得n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.。
(完整版)等差等比数列综合练习题
等差数列等比数列综合练习题一.选择题1. 已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比21=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2373. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7C.6D.54. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24B .22C .20D .-85. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项6.已知a ,b ,c ,d 是公比为2的等比数列,则dc ba ++22等于( ) A .1 B .21 C .41D .817.在等比数列{}n a 中,7114146,5,a a a a •=+=则2010a a =( ) A.23B.32C.23或32 D.23-或 32- 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .209.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且7768,b a b b ==则( )A.2B. 4C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10D. 911.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( )A. d<0B. 110s >C.120s <D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则14a a 的值是( ) A .1 B .2 C .3 D .4二.填空题13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=•a a ,则5a =__________15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=,则()101102200lg x x x +++=________17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________三.解答题19. 设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数.20. 已知数列{}n a 中,111,23n n a a a -==+,求此数列的通项公式.21. 设等差数列{}na的前n项和公式是253ns n n=+,求它的前3项,并求它的通项公式.22. 已知等比数列{}n a的前n项和记为S n,,S10=10,S30=70,求S40。
高中数学《等差数列、等比数列》专题练习题(含答案解析)
高中数学《等差数列、等比数列》专题练习题(含答案解析)一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8 C [设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d a 1+4d24,6a 1+6×52d =48,解得d =4.故选C .]2.设公比为q (q >0)的等比数列{}a n 的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( )A .-2B .-1C .12D .23B [S 4-S 2=a 3+a 4=3a 4-3a 2 ,即3a 2+a 3-2a 4=0,即3a 2+a 2q -2a 2q 2=0 ,即2q 2-q -3=0,解得q =-1 (舍)或q =32,当q =32时,代入S 2=3a 2+2,得a 1+a 1q =3a 1q +2,解得a 1=-1,故选B .]3.(2018·莆田市3月质量检测)等比数列{a n }的前n 项和为S n ,已知S 2=a 1+2a 3,a 4=1,则S 4=( )A .78B .158C .14D .15D [由S 2=a 1+2a 3,得a 1+a 2=a 1+2a 3,即a 2=2a 3,又{a n }为等比数列,所以公比q =a 3a 2=12,又a 4=a 1q 3=a 18=1,所以a 1=8.S 4=a 11-q 41-q=8×⎝ ⎛⎭⎪⎫1-1161-12=15.故选D .]4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13C [∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.]5.(2018·衡水模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m+1=21,则m 等于( )A .3B .4C .5D .6C [在等比数列中,因为S m -1=5,S m =-11,S m +1=21,所以a m =S m -S m -1=-11-5=-16,a m +1=S m +1-S m =32.则公比q =a m +1a m=32-16=-2,因为S m =-11, 所以a 1[12m ]1+2=-11,①又a m +1=a 1(-2)m =32,② 两式联立解得m =5,a 1=-1.] 6.等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B .⎩⎨⎧⎭⎬⎫1,12C .⎩⎨⎧⎭⎬⎫12D .⎩⎨⎧⎭⎬⎫0,12,1B [a na 2n =a 1n -1da 12n -1d =a 1-d +nda 1-d +2nd,若a 1=d ,则a na 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1=d ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.] 7.已知等比数列{a n }中,a 2a 10=6a 6,等差数列{b n }中,b 4+b 6=a 6,则数列{b n }的前9项和为( )A .9B .27C .54D .72B [根据等比数列的基本性质有a 2a 10=a 26=6a 6,a 6=6,所以b 4+b 6=a 6=6,所以S 9=9b 1+b 92=9b 4+b 62=27.]8.(2018·安阳模拟)正项等比数列{a n }中,a 2=8,16a 24=a 1a 5,则数列{a n }的前n 项积T n 中的最大值为( )A .T 3B .T 4C .T 5D .T 6A [设正项等比数列{a n }的公比为q (q >0),则16a 24=a 1a 5=a 2a 4=8a 4,a 4=12,q 2=a 4a 2=116,又q >0,则q =14,a n =a 2q n -2=8×⎝ ⎛⎭⎪⎫14n -2=27-2n ,则T n =a 1a 2…a n =25+3+…+(7-2n )=2n (6-n ),当n =3时,n (6-n )取得最大值9,此时T n 最大,即(T n )max =T 3,故选A .]二、填空题9.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 3-S 2S 5-S 3的值为________.2 [根据等比中项有a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ),化简得a 1=-4d ,S 3-S 2S 5-S 3=a 3a 4+a 5=a 1+2d 2a 1+7d =-2d -d=2.] 10.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.10或11 [由na n +1-(n +1)a n =2n 2+2n =2n (n +1),两边同时除以n (n +1),得a n +1n +1-a nn =2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a nn =-40+(n -1)×2=2n -42,所以a n=2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b2a=--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等,所以n 取10或11时,a n 取最小值.]11.已知正项等差数列{a n }的前n 项和为S n ,S 10=40,则a 3·a 8的最大值为________. 16 [S 10=10a 1+a 102=40⇒a 1+a 10=a 3+a 8=8,a 3·a 8≤⎝ ⎛⎭⎪⎫a 3+a 822=⎝ ⎛⎭⎪⎫822=16, 当且仅当a 3=a 8=4时“=”成立.]12.已知函数{a n }满足a n +1+1=a n +12a n +3,且a 1=1,则数列⎩⎨⎧⎭⎬⎫2a n +1的前20项和为________.780 [由a n +1+1=a n +12a n +3得2a n +3a n +1=1a n +1+1,即1a n +1+1-1a n +1=2,∴数列⎩⎨⎧⎭⎬⎫1a n +1是以12为首项,2为公差的等差数列,则1a n +1=2n -32,∴数列⎩⎨⎧⎭⎬⎫2a n +1是以1为首项,4为公差的等差数列,其前20项的和为20+10×19×4=780.]三、解答题13.(2018·德阳二诊)已知数列{a n }满足a 1=1,a n +1=2a n +1 . (1)求证:数列{a n +1}为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . [解] (1)∵a n +1=2a n +1,∴a n +1+1=2(a n +1). 又a 1=1,∴a 1+1=2≠0,a n +1≠0.∴{a n +1}是以2为首项,2为公比的等比数列. (2)由(1)知a n =2n -1, ∴2na n a n +1=2n2n -12n +1-1=12n -1-12n +1-1,∴T n =12-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1.14.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.[解] (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21. (2)令(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3), 所以数列{a n +3}是首项为6,公比为2的等比数列, 因此存在λ=3,使得数列{a n +3}为等比数列,所以a n+3=(a1+3)×2n-1,a n=3(2n-1)(n∈N*).。
等比数列复习(全面知识点+精选例题+习题附答案)精编材料pdf版
四、等比数列1.等比数列的定义如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列就叫作等比数列,这个常数叫作等比数列的公比,通常用字母q 表示(0q ≠).递推式表示为1n na q a +=或1(2)nn a q n a -=≥. 例如:数列{}n a 满足12n n a a +=,则数列{}n a 是公比为2的等比数列.特别注意:等比数列中任何一项都不为0,公比0q ≠,若一个数列是常数列,则此数列一定是等差数列,除了0,0,0,这样的常数列之外,其余的也都是等比数列.注:10a >,1q >时,{}n a 是递增的等比数列;10a >,01q <<时,{}n a 是递减的等比数列; 10a <,01q <<时,{}n a 是递增的等比数列; 10a <,1q >时,{}n a 是递减的等比数列;1q =时,{}n a 是非零常数列; 0q <时,{}n a 是摆动数列.2.等比中项若三个数a ,G ,b 成等比数列,则G 叫作a 与b 的等比中项. 此时2G ab = 例如:2和8的等比中项为4±. 注:①一个等比数列,从第2项起,每一项都是它的前后两项的等比中项,即212n n n a a a ++=,每一项都是前后距离相同两项的等比中项,即2n n m n m a a a -+=.②当三个数成等比数列时,当四个数成等比数列时,常设这解析:由前三项成等比数列,可知2(33)x +3.等比数列的通项公式等比数列{}n a 的首项为1a ,公比为q ,则11n n a a q -=.4.等比数列的性质(1)等比数列{}n a 的第m 项为m a ,则n mn m a a q -=.★例如:7652812310a a q a q a q a q -=====.(2)若m n p q +=+,则m n p q a a a a =,若2m n p +=,则2m n p a a a =.★例如:2192837465a a a a a a a a a ====,12132n n n a a a a a a --===.(3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,组成公比为mq 的等比数列.例如:135721,,,,,,n a a a a a -组成公比为2q 的等比数列; 51015205,,,,,,n a a a a a 组成公比为5q 的等比数列.(4){}n a 是公比为q 的等比数列,则{}n ka 也是等比数列,公比为q . (5){}n a ,{}n b 都是等比数列,则{}n ka ,{||}n a ,2{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列.}a 中,2a =,公差0d ≠,且,a5.判断一个数列是等比数列的方法 (1)定义法:1n na q a +=(常数).★ (2)等比中项法:212+=n n n a a a +或211-+=n n n a a a .★ (3)通项公式法:11=n n a a q-(公比为q ).(4)前n 项和公式法:(0,0)nn S Aq A A q =-≠≠.11=知1a +练习题:答案解析:45a a a +=则1ln ln a +5022)22a a a a a a a a =++=++解析:由等比数列性质可知当2q =-时,四个数为1,2,4,8--无论怎样组合,不能同时满足128x x =且348x x =,故舍去 综上15m n +=. 答案:15数学浪子整理制作,侵权必究。
等差数列等比数列练习题
等差数列等比数列练习题等差数列和等比数列是数学中常见的两种数列。
它们在数学和实际生活中都有着广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握这两种数列的性质和运算方法。
一、等差数列练习题1. 求等差数列1,4,7,10,...的第n项。
解析:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
根据题目中的数列,首项a1=1,公差d=3。
代入公式得到an = 1 + (n-1)3。
2. 已知等差数列的首项为5,公差为2,若数列的第n项为23,求n。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到23 = 5 + (n-1)2。
解方程得到n = 10。
3. 若等差数列的前n项和为Sn = 3n^2 + 2n,求数列的首项和公差。
解析:等差数列的前n项和公式为Sn = n/2(a1 + an),代入已知条件得到3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。
化简得到3n^2 + 2n = n/2(2a1 + (n-1)d)。
由此可得2a1 + (n-1)d = 6n + 4。
由于a1和d都是整数,所以2a1 + (n-1)d必须是偶数。
因此,6n + 4必须是偶数,即n必须是奇数。
又因为Sn = 3n^2 + 2n,所以n必须是奇数时Sn才是整数。
根据这个条件,我们可以列举n的值,找到满足条件的n。
当n = 1时,Sn = 5;当n = 3时,Sn = 35;当n = 5时,Sn = 105。
由此可得首项a1 = 5,公差d = 6。
二、等比数列练习题1. 求等比数列2,6,18,54,...的第n项。
解析:等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
根据题目中的数列,首项a1=2,公比r=3。
代入公式得到an = 2 * 3^(n-1)。
2. 已知等比数列的首项为4,公比为0.5,若数列的第n项为1/128,求n。
等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版
等差数列与等比数列知识点总结及经典题目100道练习题:答案解析:14d +5 6解析:nS有最小值,可知1a<,0d>761aa<-变形得676a aa+<,故6a<,67a a+>671121212()12()22a aa aS++==>当12n<时,nS很明显都是小于0的故nS取到最小正数时的n为12.答案:1257解析:由1020S S=知对称轴为15n=,故最大值为前15项之和.答案:A5 8解析:41434442S a d⨯=+=,81878562S a d⨯=+=两式联立解得114a=,2d=-故2(1)14(2)152nn nS n n n-=+⨯-=-+对称轴为7.5,故当7n=或8n=时取最大值27715756S=-+⨯=.答案:最大值为7856S S==59解析:根据对称性,由67S S=可知58S S=,49S S=由中间到两端以此减小,所以985S S S<=,C选项错误.答案:C6 0解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5数列的下标只能取正整数,离对称轴最近的正整数为9,故9S最大.答案:C数学浪子整理制作,侵权必究。
等差等比数列的性质-高中数学常见题型解法归纳反馈训练(含答案).doc
高中数学常见题型解法归纳及反馈检测第38讲二等差等比数列的性质【知识要点】n — n一、等差数列的通项公式 a n = a A +(n-l)d = a m +(n-m)d (WG N= — ---- . a n = dn+ (%-〃),n — m当d HO 时,它是一个一次函数;等比数列的通项公式:色=即/1=4詡5(49工0)./? n Y]二、等差数列的前n 项和公式:S” =-(a t +%) =,吗般已知①时,用公式S” =-(a l +色), 已知〃时,用公式S n = na x +—(/?-1)6?;2S” = na A +~ (1 - — - —)n = An 2 + Bn,当d 丰0时,它是关于n 的二次函数.由于其常数2 2 2项为零,所以其图像过原点.na xq = 1^£沖・1-q三、等差数列错误!未找到引用源。
中,如果错误味找到引用源。
,则错误!未找到引用源。
,特殊地,错误! 未找到引用源。
时,则错误!未找到引用源。
,错误!未找到引用源。
是错误!未找到引用源。
的等差屮项.等比数列错误!未找到引用源。
中,如果错误!未找到引用源。
,则错误!未找到引用源…特殊地,错误!未 找到引用源。
时,贝U 错误味找到引用源。
,错误!未找到引用源。
是错误!未找到引用源。
的等比中项.四、等差数列被均匀分段求和后,得到的数列仍是等差数列,即错误!未找到引用源。
成等差数列. 等比数列被均匀分段求和后,得到的数列仍是等比数列,即错误!未找到引用源。
成等比数列. 【方法讲评】【例1】己知等差数列错误!未找到引用源。
中,错误!未找到引用源。
,求错误!未找到引用na A q = 1 吐£2 或S” = 等比数列的前斤项和公式:s n =<【解析】由题得力=壬字二貯=2【点评】对于等差数列的性质勺厂二弘+⑺・要注意灵活运用,提高解题效n-m率.知道了等差数列中的两项,就可以求出数列的公差.等差数列的首项是相对的,可以把其屮的某些项看 作是首项. 【例2]已知等比数列错误!未找到引用源。
高考难点:等差等比数列的性质(含详解)
高考难点:等差等比数列的性质考点解析:等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容. 例1、已知函数f (x )=412-x (x <-2).(1)求f (x )的反函数f --1(x ); (2)设a 1=1,11+n a =-f --1(a n )(n ∈N *),求a n ;(3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25m成立?若存在,求出m 的值;若不存在,说明理由. 解:(1)设y =412-x ,∵x <-2,∴x =-214y +, 即y =f --1(x )=-214y+(x >0) (2)∵411,14122121=-∴+=++nn nn a a a a ,∴{21na }是公差为4的等差数列,∵a 1=1, 21na =211a +4(n -1)=4n -3,∵a n >0,∴a n =341-n .(3)b n =S n +1-S n =a n +12=141+n ,由b n <25m ,得m >1425+n ,设g (n )= 1425+n ,∵g (n )= 1425+n 在n ∈N *上是减函数,∴g (n )的最大值是g (1)=5,∴m >5,存在最小正整数m =6,使对任意n ∈N *有b n <25m成立.例2、设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0.3,lg3=0.4)解法一:设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得.设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+lg3)-21n (n -1)lg3=(-23lg )·n 2+(2lg2+27lg3)·n可见,当n =3lg 3lg 272lg 2+时,S n 最大. 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大. 解法二:接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31,∴数列{lg a n }是以lg108为首项,以lg 31为公差的等差数列,令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5.5. 由于n ∈N *,可见数列{lg a n }的前5项和最大.一、选择题1.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则lim ∞→n S n 等于( ) 32 B. 32A.- C.2 D.-2二、填空题2.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是_________.3.等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________.4.已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则ycx a +=_________. 三、解答题5.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由.6.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列a 1b ,a 2b ,…,a n b ,…为等比数列,其中b 1=1,b 2=5,b 3=17.(1)求数列{b n }的通项公式;(2)记T n =C 1n b 1+C 2n b 2+C 3n b 3+…+C nn b n ,求nn nn bT +∞→4lim. 7.设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2·b 4=a 3,分别求出{a n }及{b n }的前n 项和S 10及T 10.8.{a n }为等差数列,公差d ≠0,a n ≠0,(n ∈N *),且a k x 2+2a k +1x +a k +2=0(k ∈N *) (1)求证:当k 取不同自然数时,此方程有公共根; (2)若方程不同的根依次为x 1,x 2,…,x n ,…,求证:数列11,,11,1121+++n x x x 为等差数列.难点磁场解法一:将S m =30,S 2m =100代入S n =na 1+2)1(-n n d ,得: ⎪⎪⎩⎪⎪⎨⎧=-+=-+1002)12(22302)1(11d m m ma d m m ma 2102)13(33,2010,4013212=-+=∴+==d m m ma S m m a md m 解得解法二:由]2)13([32)13(33113dm a m d m m ma S m -+=-+=知,要求S 3m 只需求m[a 1+2)13(d m -],将②-①得ma 1+ 2)13(-m m d =70,∴S 3m =210.解法三:由等差数列{a n }的前n 项和公式知,S n 是关于n 的二次函数,即S n =An 2+Bn (A 、B 是常数).将S m =30,S 2m =100代入,得⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=⋅+=+m B m A m B m A Bm Am 1020 1002)2(30222,∴S 3m =A ·(3m )2+B ·3m =210 解法四:S 3m =S 2m +a 2m +1+a 2m +2+…+a 3m =S 2m +(a 1+2md )+…+(a m +2md )=S 2m +(a 1+…+a m )+m ·2md =S 2m +S m +2m 2d .由解法一知d =240m,代入得S 3m =210. 解法五:根据等差数列性质知:S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,从而有:2(S 2m -S m )=S m +(S 3m -S 2m )∴S 3m =3(S 2m -S m )=210解法六:∵S n =na 1+2)1(-n n d , ∴n S n =a 1+2)1(-n n d ∴点(n , nS n )是直线y =2)1(dx -+a 1上的一串点,由三点(m ,m S m ),(2m ,mS m22),(3m , m S m 33)共线,易得S 3m =3(S 2m -S m )=210.解法七:令m =1得S 1=30,S 2=100,得a 1=30,a 1+a 2=100,∴a 1=30,a 2=70∴a 3=70+(70-30)=110 ∴S 3=a 1+a 2+a 3=210 答案:210 课后训练一、1.解析:利用等比数列和的性质.依题意,3231510=S S ,而a 1=-1,故q ≠1,① ②∴3213232315510-=-=-S S S ,根据等比数列性质知S 5,S 10-S 5,S 15-S 10,…,也成等比数列,且它的公比为q 5,∴q 5=-321,即q =-21.∴.321lim 1-=-=∞→q a S n n 答案:B二、2.解析:解出a 、b ,解对数不等式即可. 答案:(-∞,8) 3.解析:利用S 奇/S 偶=nn 1+得解. 答案:第11项a 11=29 4.解法一:赋值法. 解法二:b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ),y c x a + =)1(41)1(21)1(2122222q q a q q a q q a xy cx ay ++++=+=2.答案:2三、5.(1)解:依题意有:⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯+=>⨯+==+=0212131302111212,12211311213d a S d a S d a a 解之得公差d 的取值范围为-724<d <-3. (2)解法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,在S 1,S 2,…,S 12中S k为最大值的条件为:a k ≥0且a k +1<0,即⎩⎨⎧<-+≥-+0)2(0)3(33d k a d k a∵a 3=12,∴⎩⎨⎧-<-≥122123d kd d kd ,∵d <0,∴2-d 12<k ≤3-d 12∵-724<d <-3,∴27<-d12<4,得5.5<k <7.因为k 是正整数,所以k =6,即在S 1,S 2,…,S 12中,S 6最大.解法二:由d <0得a 1>a 2>…>a 12>a 13,因此,若在1≤k ≤12中有自然数k ,使得a k ≥0,且a k +1<0,则S k 是S 1,S 2,…,S 12中的最大值.由等差数列性质得,当m 、n 、p 、q ∈N *,且m +n =p +q 时,a m +a n =a p +a q .所以有:2a 7=a 1+a 13=132S 13<0,∴a 7<0,a 7+a 6=a 1+a 12=61S 12>0,∴a 6≥-a 7>0,故在S 1,S 2,…,S 12中S 6最大.解法三:依题意得:)(2)212()1(221n n d d n d n n na S n -+-=-+= 222)]245(21[,0,)245(8)]245(21[2dn d d d d n d --∴<----=最小时,S n 最大; ∵-724<d <-3,∴6<21(5-d24)<6.5.从而,在正整数中,当n =6时,[n -21 (5-d24)]2最小,所以S 6最大. 点评:该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易.第(2)问难度较高,为求{S n }中的最大值S k ,1≤k ≤12,思路之一是知道S k 为最大值的充要条件是a k ≥0且a k +1<0,思路之三是可视S n 为n 的二次函数,借助配方法可求解.它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点.而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解.6.解:(1)由题意知a 52=a 1·a 17,即(a 1+4d )2=a 1(a 1+16d )⇒a 1d =2d 2,∵d ≠0,∴a 1=2d ,数列{n b a }的公比q =11154a da a a +==3, ∴n b a =a 1·3n -1① 又n b a =a 1+(b n -1)d =121a b n + ②由①②得a 1·3n -1=21+n b ·a 1.∵a 1=2d ≠0,∴b n =2·3n -1-1.(2)T n =C 1n b 1+C 2n b 2+…+C n n b n =C 1n (2·30-1)+C 2n ·(2·31-1)+…+C nn (2·3n -1-1)=32(C 1n +C 2n ·32+…+C n n ·3n )-(C 1n +C 2n +…+C nn )=32[(1+3)n -1]-(2n -1)= 32·4n -2n +31, .32)41()43(211)41(31)21(32lim 1324312432lim 4lim 11=-⋅++-=-⋅++-⋅=+∴-∞→-∞→∞→n n nn n n n n n n n n n n b T 7.解:∵{a n }为等差数列,{b n }为等比数列,∴a 2+a 4=2a 3,b 2·b 4=b 32,已知a 2+a 4=b 3,b 2·b 4=a 3,∴b 3=2a 3,a 3=b 32, 得b 3=2b 32,∵b 3≠0,∴b 3=21,a 3=41.由a 1=1,a 3=41,知{a n }的公差d =-83,∴S 10=10a 1+2910⨯d =-855.由b 1=1,b 3=21,知{b n }的公比q =22或q =-22, ).22(32311)1(,22);22(32311)1(,221011010110-=--=-=+=--==q q b T q q q b T q 时当时当8.证明:(1)∵{a n }是等差数列,∴2a k +1=a k +a k +2,故方程a k x 2+2a k +1x +a k +2=0可变为(a k x +a k +2)(x +1)=0,∴当k 取不同自然数时,原方程有一个公共根-1.(2)原方程不同的根为x k =kk k k k a da d a a a 2122--=+-=-+ .21}11{)(2122)2(21111,211111为公差的等差数列是以常数-+∴-=-=-=---=+-+-=+∴+++k k k k k k k k k x d d d a a d a d a x x d a x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知cb a 1,1,1成等差数列,求证: (1)c b a b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac b ac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,.(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为 2128,求项数n. ① ②①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,①②①,②⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列练习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z--=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n+=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n nab aD .如果一个数列{}n a 的前n 项和c ab S n n+=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。