零基础自学学模电
模拟电路基础知识点总结
模拟电路基础知识点总结模拟电路是电子技术中的重要基础知识点,它在现代电子设备中起着至关重要的作用。
通过模拟电路的设计和分析,我们可以实现信号的放大、滤波、混频等功能,从而实现电子设备的正常工作。
一、模拟电路的基本概念1. 电路:由电子元器件和导线等连接而成的电子系统。
2. 模拟电路:处理模拟信号的电路,模拟信号是连续变化的信号。
3. 数字电路:处理数字信号的电路,数字信号是离散变化的信号。
4. 信号:表示信息的物理量,常见的信号有声音、图像、电压等。
5. 信号源:产生信号的电子元器件,比如函数发生器、麦克风等。
二、模拟电路的基本组成1. 电源:提供电路所需的电能。
2. 元件:电子电路中的基本构成单元,包括电阻、电容、电感等。
3. 连接线:将元器件连接起来,传递电能和信号。
4. 放大器:放大电路中的信号,提高信号的幅度。
5. 滤波器:去除电路中的杂散信号,保留所需信号。
6. 比较器:比较两个信号的大小,判断其关系。
7. 混频器:将两个不同频率的信号混合在一起。
三、模拟电路的基本原理1. 电流:电子在导体中的流动,是电荷的移动。
2. 电压:电荷在电场中的势能差,表示电子的能量。
3. 电阻:阻碍电流通过的元件,使电能转化为其他形式的能量。
4. 电容:存储电荷的元件,具有存储和释放能量的特性。
5. 电感:存储磁场能量的元件,具有阻碍电流变化的特性。
四、常见的模拟电路应用1. 放大器:将微弱信号放大到合适的幅度,如音频放大器。
2. 滤波器:去除电路中的噪声和杂散信号,如音频滤波器。
3. 混频器:将两个不同频率的信号混合在一起,如无线电调频。
4. 示波器:观测电路中的信号波形,如示波器。
5. 电源:提供电路所需的直流或交流电源,如电池、电源适配器。
总结:模拟电路是电子技术中的基础知识点,通过对电路的设计和分析,我们可以实现各种功能,如信号放大、滤波、混频等。
了解模拟电路的基本概念、组成和原理,以及常见的应用,对于理解和应用电子技术都是至关重要的。
模电基础知识总结
模电基础知识总结模拟电子技术(模电)是电子工程的重要基础学科,它研究的是电子元件与电路的工作原理和运行规律。
掌握模电的基础知识对于电子工程师来说至关重要。
本文将对模电的基础知识进行总结,希望能给读者提供一些帮助。
一、电路基础知识在学习模电之前,我们首先需要掌握一些电路的基础知识。
电路是电子工程中最基本的组成单元,它由电源、电阻、电容、电感等元件组成。
在电路中,电流和电压是重要的物理量。
电流表示电子在电路中的流动情况,而电压表示电子在电路中的能量转换。
二、放大器放大器是模电中一类重要的电子元件。
放大器的作用是将输入信号放大,以便输出信号具有较高的幅度。
常见的放大器有三种基本类型:电压放大器、电流放大器和功率放大器。
放大器有许多重要的性能指标,如增益、输入电阻、输出电阻等。
学习模电的过程中,我们需要熟悉这些性能指标的定义和计算方法。
三、滤波器滤波器是模电中用于剔除或改变信号中某些频率分量的电路。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
在实际应用中,我们经常需要使用滤波器来对信号进行处理。
了解滤波器的原理和性能对于电路设计至关重要。
四、振荡器振荡器是一种能够产生连续波形信号的电路。
在模电中有两种常见的振荡器:正弦波振荡器和方波振荡器。
振荡器的核心是一个反馈回路,该回路会使得输入信号被放大,并且以振荡的形式反馈给输入端。
振荡器在通信系统、计算机等领域有广泛的应用,掌握振荡器的原理和设计方法是模电学习的重要内容。
五、运算放大器运算放大器(Operational Amplifier)是模电中一种重要的集成电路。
它具有高增益、高输入阻抗和低输出阻抗的特点,在模拟电路中有广泛的应用。
运算放大器可以用于各种电路设计,如放大器、积分器、微分器和比较器等。
学习运算放大器的工作原理和应用是模电学习的核心内容。
六、模电实验模电实验是巩固和应用所学知识的重要环节。
通过实验,我们可以观察电路的实际运行情况,提高动手实践的能力。
模拟电子设计基础知识入门
模拟电子设计基础知识入门模拟电子设计是电子工程领域中一项重要的技术。
它涉及到模拟电路的设计、分析和优化,是构建电子设备和系统所必需的基础。
一、什么是模拟电子设计?模拟电子设计是指在电路中使用模拟信号进行数据处理和传输的技术。
与之相对的是数字电子设计,数字电子设计是使用数字信号进行处理和传输的技术。
模拟电子设计主要涉及模拟信号的放大、滤波和混频等处理,以及模拟信号与数字信号的转换。
二、模拟电子设计的基本原理模拟电子设计的基本原理包括模拟电路的基本元件和基本电路。
模拟电路的基本元件包括电阻、电容和电感等 pass by reference ,而基本电路包括放大器、滤波器和混频器等。
理解和掌握这些基本原理是进行模拟电子设计的前提。
在模拟电子设计中,放大器是最常见和重要的电路之一。
放大器主要用于放大信号,可以将微小的输入信号放大为较大的输出信号。
基本的放大器包括共射放大器、共基放大器和共集放大器等。
不同类型的放大器适用于不同的应用场景。
滤波器是模拟电子设计中另一个重要的电路。
滤波器可以通过选择特定的频率范围来滤除或增强信号的特定频率分量。
常见的滤波器包括低通滤波器、高通滤波器和带通滤波器等。
混频器是用于将不同频率的信号进行混合的电路。
混频器可以将高频信号和低频信号进行混合,产生新的频率信号。
混频器广泛应用于调频广播和无线通信等领域。
三、模拟电子设计的应用模拟电子设计在众多领域中都有广泛的应用。
在通信领域,模拟电子设计用于无线电、调制解调、射频电路等。
在音频领域,模拟电子设计用于音频放大器、音频混合器和音频滤波器等。
在生物医学领域,模拟电子设计用于生物传感器、心电图仪和医疗成像设备等。
与此同时,模拟电子设计也在工业控制、汽车电子和航空航天等领域中发挥着重要的作用。
模拟电子设计的应用范围广泛,不断推动着科技的发展和创新。
四、模拟电子设计的未来发展随着科技的不断进步,模拟电子设计也在不断发展和创新。
新型材料的应用、新型元件的研发以及电路设计软件的提高都为模拟电子设计提供了新的机遇和挑战。
模电100个知识点学习资料
模电100个知识点模电100个知识点总结1.在常温下,硅二极管的门槛电压约为,导通后在较大电流下的正向压降约为 0.7V;锗二极管的门槛电压约为降约为_0.2_V。
2、二极管的正向电阻3。
PN结外加正向电压时,扩散电流大于漂移电流,耗尽层4极管与负载并联,稳压二极管与输入电源之间必须加入一个电阻。
5、电子技术分为模拟电子技术和数字电子技术两大部分,其中研究在平滑、连续变化的电压或电流信号下工作的电子电路及其技术,称为模拟电子技术。
6、PN结反向偏置时,PN特性。
7、硅二极管导通后,其管压降是恒定的,且不随电流而改变,典型值为 0.7 伏;其门坎电压V th约为 0.5 伏。
8、二极管正向偏置时,其正向导通电流由多数载流子的扩散运动形成。
N型半导体的多子为自由电子、本征半、因掺入杂质性质不同,杂质半导体可为空穴(P)半导体和电子,它的两个主要参数是反映正向特、在常温下,硅二极管的开启电压约为 0.5 V压降约为 0.7 V。
13、频率响应是指在输入正弦信号的情况下,输出随频率连续变化的稳态响应。
15、N型半导体中的多数载流子是电子,少数载流子是空穴。
16、按一个周期内一只三极管的导通角区分,功率放大电路可分为甲类、极管的β增加,则I BQ增大,I CQ增大,U CEQ减小。
19,饱和,放大。
集成运算放大器是一种采用20Va = 1.2V, Vb=0.5V, Vc= 3.6V, 试问该三极管是硅管管(材料), NPN 型的三极管,该管的集电极是a、b、c中的 C 。
21、已知某两级放大电路中第一、第二级的对数增益分别为60dB和20dB, 则该放大电路总的对数增益为 80 dB,总的电压放大倍数为 10000 。
22、三极管实现放大作用的外部条件是:发射结正偏、集电结反偏。
某放大电路中的三极管,测得管脚电压V a = -1V,V b =-3.2V, V c =-3.9V, 这是硅管(硅、锗), NPN 型,集电极管脚是 a 。
模电基础学习知识教程.doc
模电基础教程01单元半导体器件基础半导体的导电特性导体、绝缘体和半导体本征半导体的导电特性杂质半导体的导电特性PN结晶体二极管二极管的结构与伏安特性半导体二极管的主要参数半导体二极管的等效电路与开关特性稳压二极管晶体三极管三极管的结构与分类三极管内部载流子的运动规律、电流分配关系和放大作用三极管的特性曲线三极管的主要参数三极管的开关特性场效应管结型场效应管绝缘栅型场效应管特殊半导体器件发光二极管光敏二极管和光敏三极管02单元基本放大电路基本放大电路的工作原理基本放大电路的组成直流通路与静态工作点交流通路与放大原理放大电路的性能指标放大电路的图解分析法放大电路的静态图解分析放大电路的动态图解分析输出电压的最大幅度与非线性失真分析微变等效电路分析法晶体管的h参数晶体管的微变等效电路用微变等效电路法分析放大电路静态工作点的稳定温度变化对静态工作点的影响工作点稳定的电路场效应管放大电路场效应管放大电路的静态分析多级放大电路多级放大电路的级间耦合方式多级放大电路的分析方法放大电路的频率特性单级阻容耦合放大电路的频率特性多级阻容耦合放大电路的频率特性03单元负反馈放大电路反馈的基本概念和分类反馈的基本概念和一般表达式反馈放大电路的类型与判断负反馈放大电路基本类型举例电压串联负反馈放大电路电流并联负反馈放大电路电流串联负反馈放大电路电压并联负反馈放大电路负反馈对放大电路性能的影响降低放大倍数提高放大倍数的稳定性展宽通频带减小非线性失真改变输入电阻和输出电阻负反馈放大电路的分析方法深度负反馈放大电路的近似计算*方框图法分析负反馈放大电路04单元功率放大器功率放大电路的基本知识概述甲类单管功率放大电路互补对称功率放大电路OCL类互补放大电路OTL甲乙类互补对称电路复合互补对称电路变压器耦合推挽功率放大电路05单元直接耦合放大电路概述直接耦合放大电路中的零点漂移基本差动放大电路的分析基本差动放大电路基本差动放大电路抑制零点漂移的原理基本差动放大电路的静态分析基本差动放大电路的动态分析差动放大电路的改进06单元集成运算放大器集成电路基础知识集成电路的特点集成电路恒流源有源负载的基本概念集成运放的典型电路及参数典型集成运放F007电路简介集成运放的主要技术参数集成运放的应用概述运放的基本连接方式集成运放在信号运算方面的应用集成运放在使用中应注意的问题07单元直流电源整流电路半波整流电路全波整流电路桥式整流电路倍压整流电路滤波电路电容滤波电路电感滤波电路复式滤波电路有源滤波电路稳压电路并联型硅稳压管稳压电路串联型稳压电路的稳压原理带有放大环节的串联型稳压电路稳压电源的质量指标提高稳压电源性能的措施08单元正弦波振荡电路自激振荡原理自激振荡的条件自激振荡的建立和振幅的稳定正弦波振荡电路的组成LC正弦波振荡电路变压器反馈式振荡电路三点式LC振荡电路三点式LC振荡电路的构成原则电感三点式振荡电路电容三点式振荡电路克拉泼与席勒振荡电路(改进型电容三点式振荡电路)石英晶体振荡器石英晶体的基本特性和等效电路石英晶振:并联型晶体振荡电路石英晶振:串联型晶体振荡电路RC振荡电路RC相移振荡电路文氏电桥振荡电路09单元调制、解调和变频调制方式调幅调幅原理调幅波的频谱调幅波的功率调幅电路检波小信号平方律检波大信号直线性检波调频调频的特点调频波的表达式调频电路:变容二极管调频电路调频与调幅的比较鉴频对称式比例鉴频电路不对称式比例鉴频电路变频变频原理变频电路10单元无线广播与接受无线电广播与接收无线电波的传播超外差收音机超外差收音机方框图超外差收音机性能指标LC谐振回路LC串联谐振回路LC并联谐振回路输入回路统调中频放大电路自动增益电路整机电路分析半导体导电特性导体、绝缘体和半导体自然界的各种物质就其导电性能来说、可以分为导体、绝缘体和半导体三大类。
学模电其实也不难,先牢记这100个知识点!
学模电其实也不难,先牢记这100个知识点!模电想必是电子专业的学生头疼的一门课程了。
小编用一句话形容一下:'老师说第一遍不懂,第二遍还是不懂,第三遍还是不懂。
'网友们是这么看模电的:*老师自己都不懂,还来教,更是不懂了,天书般难懂。
*模电=魔电*本科模电就够痛苦了,研究生的高阶模电简直是欲仙欲死。
*二极管、三极管、MOS带入门;运放、震荡电路、斩波电路显神通。
*课堂上老师讲的都会了课后又都不会了。
*模电学起来不算难,应付考试也简单,刚开始用起来觉得有点难,用的时间长了,感觉越来越难。
……难归难,但是不懂模电?你好意思说你是电工么?不知道下面这些知识点的也别说你学好了模电。
1.在常温下,硅二极管的门槛电压约为0.5V,导通后在较大电流下的正向压降约为0.7V;锗二极管的门槛电压约为0.1V,导通后在较大电流下的正向压降约为0.2V。
2、二极管的正向电阻小;反向电阻大。
3、二极管的最主要特性是单向导电性。
PN结外加正向电压时,扩散电流大于漂移电流,耗尽层变窄。
4、二极管最主要的电特性是单向导电性,稳压二极管在使用时,稳压二极管与负载并联,稳压二极管与输入电源之间必须加入一个电阻。
5、电子技术分为模拟电子技术和数字电子技术两大部分,其中研究在平滑、连续变化的电压或电流信号下工作的电子电路及其技术,称为模拟电子技术。
6、PN结反向偏置时,PN结的内电场增强。
PN具有具有单向导电特性。
7、硅二极管导通后,其管压降是恒定的,且不随电流而改变,典型值为0.7伏;其门坎电压Vth约为0.5伏。
8、二极管正向偏置时,其正向导通电流由多数载流子的扩散运动形成。
9、P型半导体的多子为空穴、N型半导体的多子为自由电子、本征半导体的载流子为电子—空穴对。
10、因掺入杂质性质不同,杂质半导体可为空穴(P)半导体和电子(N)半导体两大类。
11、二极管的最主要特性是单向导电性,它的两个主要参数是反映正向特性的最大整流电流和反映反向特性的反向击穿电压。
模拟电路学习方法
模拟电路学习方法模拟电路学习是电子工程专业的一门很重要的课程,应用范围也很广泛,尤其是在无线通信、控制系统、仪器仪表等领域中起着非常重要的作用。
但是模拟电路的学习对于大部分电子工程师来说都是一个非常有难度的课程,很多人都会感到十分的头疼和无从下手。
首先,模拟电路的基础非常重要,如果没有打好基础的话,后期的学习就会非常困难。
因此,在学习模拟电路的时候,我们要首先关注模拟电路的基础知识。
简单来说,模拟电路的学习可以分成以下几个部分:1、电路基础知识。
首先需要学习电路基础知识,掌握基本的电路定理和方法,包括欧姆定律、基尔霍夫定律、等效电路、戴维南定理、诺顿定理等。
2、元器件特性参数。
学习元器件的基本特性参数,包括电阻、电容和电感的等效参数、半导体器件(二极管、晶体管等)的特性参数等。
3、放大器的工作原理。
学习基本放大器的工作原理(如共源极、共漏极、共射极等放大器),掌握放大器的放大倍数、相位等基本参数。
4、滤波器的基本原理。
学习滤波器的工作原理,了解高通、低通、带通、带阻滤波器等的特点和应用。
5、振荡器的工作原理。
学习振荡器的基本原理,掌握LC震荡、晶体振荡器等的特点和应用。
其次,在学习模拟电路的时候,应该注重实践,不仅要结合实验来加深理论知识的理解,还需要了解实际应用中的具体情况,从而实现理论与实践的有机结合。
在实践中,需要注意以下几点:1、阅读电路图。
首先要学会阅读电路图,特别是掌握各种电路符号的含义,这是进一步深入电路研究的基础。
2、熟悉电器元件。
要熟悉各种电器元件的特性和用途,学习其电学特性参数,如电容、电阻、电感等电路组件的等效参数,了解器件的适用范围。
3、设计电路。
掌握基本的电路设计方法,学习电路设计中的基本流程和步骤,建立电路设计的思维模式。
4、进行电路实验。
要针对具体的电路实验设计实验方案,熟悉实验仪器的使用和操作,积极参与电路实验。
最后,需要注意的一点是要注重思维方式的改变,电路是一门很有思维层次的学科,因此需要打破传统的思维模式,追求创新,独立思考,锻炼灵活性和敏捷性,培养判断力和解决问题的能力。
模电基础学习知识教程.doc
模电基础教程01单元半导体器件基础半导体的导电特性导体、绝缘体和半导体本征半导体的导电特性杂质半导体的导电特性PN结晶体二极管二极管的结构与伏安特性半导体二极管的主要参数半导体二极管的等效电路与开关特性稳压二极管晶体三极管三极管的结构与分类三极管内部载流子的运动规律、电流分配关系和放大作用三极管的特性曲线三极管的主要参数三极管的开关特性场效应管结型场效应管绝缘栅型场效应管特殊半导体器件发光二极管光敏二极管和光敏三极管02单元基本放大电路基本放大电路的工作原理基本放大电路的组成直流通路与静态工作点交流通路与放大原理放大电路的性能指标放大电路的图解分析法放大电路的静态图解分析放大电路的动态图解分析输出电压的最大幅度与非线性失真分析微变等效电路分析法晶体管的h参数晶体管的微变等效电路用微变等效电路法分析放大电路静态工作点的稳定温度变化对静态工作点的影响工作点稳定的电路场效应管放大电路场效应管放大电路的静态分析多级放大电路多级放大电路的级间耦合方式多级放大电路的分析方法放大电路的频率特性单级阻容耦合放大电路的频率特性多级阻容耦合放大电路的频率特性03单元负反馈放大电路反馈的基本概念和分类反馈的基本概念和一般表达式反馈放大电路的类型与判断负反馈放大电路基本类型举例电压串联负反馈放大电路电流并联负反馈放大电路电流串联负反馈放大电路电压并联负反馈放大电路负反馈对放大电路性能的影响降低放大倍数提高放大倍数的稳定性展宽通频带减小非线性失真改变输入电阻和输出电阻负反馈放大电路的分析方法深度负反馈放大电路的近似计算*方框图法分析负反馈放大电路04单元功率放大器功率放大电路的基本知识概述甲类单管功率放大电路互补对称功率放大电路OCL类互补放大电路OTL甲乙类互补对称电路复合互补对称电路变压器耦合推挽功率放大电路05单元直接耦合放大电路概述直接耦合放大电路中的零点漂移基本差动放大电路的分析基本差动放大电路基本差动放大电路抑制零点漂移的原理基本差动放大电路的静态分析基本差动放大电路的动态分析差动放大电路的改进06单元集成运算放大器集成电路基础知识集成电路的特点集成电路恒流源有源负载的基本概念集成运放的典型电路及参数典型集成运放F007电路简介集成运放的主要技术参数集成运放的应用概述运放的基本连接方式集成运放在信号运算方面的应用集成运放在使用中应注意的问题07单元直流电源整流电路半波整流电路全波整流电路桥式整流电路倍压整流电路滤波电路电容滤波电路电感滤波电路复式滤波电路有源滤波电路稳压电路并联型硅稳压管稳压电路串联型稳压电路的稳压原理带有放大环节的串联型稳压电路稳压电源的质量指标提高稳压电源性能的措施08单元正弦波振荡电路自激振荡原理自激振荡的条件自激振荡的建立和振幅的稳定正弦波振荡电路的组成LC正弦波振荡电路变压器反馈式振荡电路三点式LC振荡电路三点式LC振荡电路的构成原则电感三点式振荡电路电容三点式振荡电路克拉泼与席勒振荡电路(改进型电容三点式振荡电路)石英晶体振荡器石英晶体的基本特性和等效电路石英晶振:并联型晶体振荡电路石英晶振:串联型晶体振荡电路RC振荡电路RC相移振荡电路文氏电桥振荡电路09单元调制、解调和变频调制方式调幅调幅原理调幅波的频谱调幅波的功率调幅电路检波小信号平方律检波大信号直线性检波调频调频的特点调频波的表达式调频电路:变容二极管调频电路调频与调幅的比较鉴频对称式比例鉴频电路不对称式比例鉴频电路变频变频原理变频电路10单元无线广播与接受无线电广播与接收无线电波的传播超外差收音机超外差收音机方框图超外差收音机性能指标LC谐振回路LC串联谐振回路LC并联谐振回路输入回路统调中频放大电路自动增益电路整机电路分析半导体导电特性导体、绝缘体和半导体自然界的各种物质就其导电性能来说、可以分为导体、绝缘体和半导体三大类。
模拟电路基础知识
模拟电路基础知识在我们的日常生活和现代科技中,模拟电路无处不在。
从简单的手电筒到复杂的智能手机,从家用电器到医疗设备,模拟电路都扮演着至关重要的角色。
那么,什么是模拟电路呢?模拟电路,简单来说,就是处理连续变化的电信号的电路。
与数字电路不同,数字电路处理的是离散的 0 和 1 信号,而模拟电路处理的信号在幅度和时间上都是连续变化的。
让我们先来了解一下模拟电路中的一些基本元件。
电阻,这是模拟电路中最常见的元件之一。
电阻的作用就是阻碍电流的流动,其阻值决定了电流通过时的阻力大小。
电阻的单位是欧姆(Ω),电阻的阻值可以通过色环来识别,也可以通过测量工具来准确测量。
电容,它能够储存电荷。
电容的大小用法拉(F)来表示,但在实际应用中,常用的单位有微法(μF)和皮法(pF)。
电容在电路中的作用包括滤波、耦合、定时等。
比如,在电源电路中,电容可以用来滤波,使输出的电压更加稳定。
电感,它可以储存磁场能量。
电感的单位是亨利(H),在电路中,电感常用于滤波、振荡等电路中。
接下来,我们说一说模拟电路中的基本定律和定理。
欧姆定律,这是我们最先接触到的电学定律之一。
它指出在一段导体中,电流与电压成正比,与电阻成反比,即 I = U / R 。
基尔霍夫定律,包括电流定律和电压定律。
基尔霍夫电流定律指出,在任何一个节点上,流入的电流之和等于流出的电流之和。
基尔霍夫电压定律则表明,在一个闭合回路中,电压升之和等于电压降之和。
然后,我们来看看模拟电路中的放大器。
放大器是模拟电路中非常重要的一部分,它能够将输入的小信号放大成较大的输出信号。
常见的放大器有运算放大器,其具有高增益、高输入阻抗和低输出阻抗等特点。
通过合理的外部电路连接,可以实现不同功能的放大电路,如反相放大器、同相放大器等。
模拟电路中的反馈也是一个重要的概念。
反馈可以分为正反馈和负反馈。
负反馈可以提高放大器的稳定性和性能,减小失真;而正反馈则可能导致电路产生振荡。
在模拟电路的设计和分析中,我们还需要考虑噪声的影响。
模拟电路知识点总结入门
模拟电路知识点总结入门一、模拟电路概述电路是电子技术的基础,它是利用电子元件、电子器件及其组合形成的一种由电磁场传输信息或者能量的装置。
而模拟电路是指用于处理模拟信号(即连续信号)的电路。
它是数字电路的基础,也是许多电子系统中不可或缺的一部分。
在模拟电路中,我们主要关心的是电压和电流等连续变化的信号。
通过对这些信号的处理,我们可以实现信号的放大、滤波、混频、调解和整形等功能。
因此,对于电子工程师而言,熟练掌握模拟电路的工作原理及设计方法至关重要。
二、模拟电路的基础知识1. 电路元件在模拟电路中,常用的电路元件包括电源、电阻、电容和电感等。
电源主要提供电路所需的电能;电阻用于控制电路的电流和电压;电容则用于存储电荷,可在电路中起到滤波和去纹波的作用;电感则主要用于存储磁能,常用于滤波、耦合和振荡电路中。
2. 基本电路在模拟电路中,一些基本的电路结构如电压放大器、运算放大器、滤波器、振荡器等等都是非常重要的。
掌握这些基本电路的工作原理和设计方法,对于理解模拟电路有着至关重要的作用。
3. 信号处理模拟信号的处理是模拟电路领域的重要内容。
其中,放大、滤波、混频、调解和整形等技术是模拟电路的基本应用之一。
在不同的应用场合下,我们需要根据信号的特性来选择不同的处理手段,以实现预期的效果。
三、模拟电路的设计方法1. 电路设计流程在进行模拟电路设计时,需要遵循一定的设计流程。
包括需求分析、电路框图设计、元件选型、仿真验证、电路布局及PCB设计等多个环节。
只有系统地、严密地执行这些步骤,才能设计出性能优良、可靠稳定的模拟电路。
2. 元器件选型元器件选型是模拟电路设计中的一个关键环节。
在选型时,要考虑元器件的性能指标、工作环境、成本等因素。
同时,还需要针对具体的应用要求,选择合适的元器件并进行参数计算和仿真验证,确保电路能够满足设计要求。
电路仿真是模拟电路设计中的必要步骤。
通过仿真软件,可以对电路的性能进行评估,发现可能的问题并进行改进。
零基础自学学模电
第一讲:电荷........................................1楼第二讲:电流、电压、电阻和欧姆定律...................2楼第三讲:电阻器的认识.................................14楼第四讲:电容器.......................................21楼第五讲:信号(一)...................................25楼信号(二)..................................34楼第六讲:半导体的基础知识.............................41楼第七讲:PN结的形成...................................56楼第八讲:PN结的机理...................................65楼第九讲:PN结的单向导电性.............................73楼第十讲:PN结的参数及使用要点.........................87楼第十一讲:三极管的结构................................95楼第十二讲:三极管的工作机理............................104楼第十三讲:三极管的特性曲线............................122楼第十四讲三极管基本放大电路的演变.....................134楼第十五讲:基本放大电路直流通路分析....................181楼第一讲电荷一、正电荷和负电荷初中的时候我们学习过的物理和化学里有有关自然界中的物质的定义是:物质由分子组成,分子由原子组成,原子由原子核和核外电子组成。
原子核带正电,核外电子带负电。
元素的序号就是一个原子中原子核内正电荷的数目,核外电子的数目与核内正电荷的数目相等,正电荷和负电荷相互抵消而呈电中性。
模电基础知识
模电基础知识目录一、模电概述 (2)二、模电基础知识 (2)1. 电路基本理论 (4)1.1 电路的基本概念 (5)1.2 欧姆定律与功率公式 (6)1.3 直流电路与交流电路 (7)2. 电子元器件 (8)2.1 电阻、电容、电感等被动元件 (9)2.2 二极管、晶体管等主动元件 (10)2.3 集成芯片与模块 (12)3. 信号与系统 (13)3.1 信号的概念及分类 (14)3.2 系统的基本概念 (16)3.3 信号传输与处理 (17)三、模电技术及应用领域 (19)1. 模电技术基础 (20)1.1 模数转换与数模转换 (21)1.2 放大、滤波、振荡等基础技术 (23)1.3 电路设计与调试 (24)2. 模电应用领域 (26)2.1 通信领域应用 (27)2.2 音频/视频领域应用 (28)2.3 自动化控制领域应用 (29)四、模电实验与项目实践 (31)1. 模电实验基础 (32)1.1 实验仪器介绍及使用方法 (33)1.2 实验设计与操作步骤 (34)1.3 实验数据分析与总结 (35)2. 模电项目实践 (36)2.1 项目选题及需求分析 (37)2.2 项目方案设计与实践过程介绍 (39)2.3 项目成果展示与评估 (39)五、模电技术发展趋势与挑战 (40)一、模电概述模拟电子技术(Analog Electronics)是电子工程领域的一个重要分支,主要研究模拟信号的生成、处理、传输和测量。
与数字电子技术相比,模拟电子技术主要处理连续变化的信号,如电压、电流等,而不是离散的数字信号。
在模拟电子技术中,基本的元件包括电阻、电容、电感、二极管和晶体管等。
这些元件通过电路设计组合在一起,形成各种复杂的模拟电路。
模拟电路可以对输入信号进行放大、滤波、调制、解调等多种操作,从而实现信号的处理、变换和传输等功能。
模拟电子技术在许多领域都有广泛的应用,如通信、音频处理、图像处理、自动控制等。
模拟电路基础知识教程
模拟电路基础知识教程模拟电路基础知识教程是学习电子工程的重要一环。
在这篇文章中,我将向大家介绍模拟电路的基本概念、原理和应用。
希望通过这篇教程能够帮助读者对模拟电路有更深入的了解。
模拟电路是指使用电流和电压来传输和处理信息的电路。
与数字电路不同,模拟电路的输入和输出是连续变化的。
它是电子设备中广泛使用的电路类型,在通信、无线电、音频和视频等各个领域都有应用。
首先,我们来了解一些模拟电路的基本元件。
模拟电路中最基本的元件是电阻、电容和电感。
电阻是阻碍电流流动的元件,用来限制电流的大小。
电容是储存电荷的元件,可以储存电能并在电路中释放。
电感是储存磁能的元件,通过产生电磁感应来阻碍电流的变化。
除了这些基本元件,模拟电路还包括放大器、滤波器和振荡器等。
放大器是模拟电路中最重要的部分之一,它可以放大电信号的强度。
滤波器用于过滤电路中的噪声和干扰信号,以保证输出信号的准确性和稳定性。
振荡器是一种能够产生周期性波形的电路,常常用于发生器和时钟电路。
接下来,我们来了解一些模拟电路的基本原理。
在理解模拟电路的原理之前,我们需要了解一些基本的电路分析方法。
其中,基尔霍夫定律是最重要的一条。
基尔霍夫定律分为电流定律和电压定律,它们用于分析电路中电流和电压的分布。
另外,欧姆定律是另一个基本原理,它描述了电流、电压和电阻之间的关系。
模拟电路的分析和设计通常使用电压和电流的参考方向进行。
参考方向是一个约定的方向,用于确定电路中电压和电流的正负。
通过选择适当的参考方向,我们可以通过应用基尔霍夫定律和欧姆定律来分析电路。
最后,我们来看一些模拟电路的实际应用。
模拟电路在很多领域都有应用,比如通信、音频和视频等。
在通信领域,模拟电路通常用于信号的放大和滤波。
在音频领域,模拟电路广泛应用于音响设备,用于放大和处理音频信号。
在视频领域,模拟电路用于视频信号的放大和处理。
总结:本文介绍了模拟电路的基本概念、原理和应用。
模拟电路是一种使用电流和电压来传输和处理信息的电路。
模拟电路基础 知识点
模拟电路基础知识点一、知识概述《模拟电路基础知识点》①基本定义:模拟电路啊,简单说就是处理模拟信号的电路。
模拟信号呢,就像咱们生活中那些连续变化的量,像是温度啊、声音啊,它们不是一跳一跳、离散的,而是平滑变化的。
②重要程度:在电子学科里,模拟电路可是基础中的基础。
几乎所有的电子产品,像收音机、电视机、手机等里面都有模拟电路的影子。
要是不懂模拟电路,后面那些复杂的电子线路可就别想弄明白了。
③前置知识:需要先掌握一点基本的电学知识,像电压、电流、电阻这些概念。
知道欧姆定律那是更好了。
就好比盖楼得先打好地基,掌握这些前置知识,才能更好地理解模拟电路的各种神奇之处。
④应用价值:模拟电路在现实生活中的应用超级多。
比如音频放大器,能把手机或者电脑里那小小的音量信号放大,这样我们就能听到响亮的声音。
再比如传感器电路,把环境里像温度、光线这些模拟量变成电信号再进行处理。
二、知识体系①知识图谱:模拟电路是电子学这个大树干里很粗壮的一根树枝。
它和数字电路等其他知识一起构成了整个电子技术的框架。
②关联知识:和电路分析基础关系很近,像是电路的基本定律啊,在模拟电路分析中经常用到。
和半导体物理也有联系,毕竟很多模拟电路元件都是半导体材料做的。
③重难点分析:掌握难度有点大。
其中的关键点在于理解各种元件的特性,像晶体管的放大作用。
我刚开始学的时候就很头疼这些元件的特性,感觉就像要记住一堆脾气古怪的人的喜好一样。
④考点分析:在电子相关的考试里很重要。
考查方式可多了,有时候让你分析一个简单模拟电路的电压放大倍数,有时候让你设计一个小的模拟电路满足给定的条件。
就像一场考验你对模拟电路掌控能力的考验。
三、详细讲解(这是理论概念类)①概念辨析:模拟电路核心概念就是处理模拟信号的电路。
模拟信号是连续变化的,和数字信号不同。
打个比方,数字信号是一个一个台阶,模拟信号是平滑的坡道。
②特征分析:主要特点就是能处理连续变化的信号,而且电路里的电压、电流等也都是连续变化的。
模电常见知识点总结
模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。
2. 电路元件:电路元件主要包括电阻、电容和电感。
电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。
3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。
模拟信号的处理包括滤波、放大、混频等操作。
4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。
5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。
6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。
7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。
8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。
二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。
3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。
4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。
5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。
6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。
7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。
模拟电路基础知识
模拟电路基础知识模拟电路是电子工程领域中的一个重要分支,它主要研究和设计处理模拟信号的电路。
模拟信号是指信号的幅度、频率或相位随时间连续变化的信号,与数字信号相对。
模拟电路在音频、视频、通信、传感器等领域有着广泛的应用。
以下是模拟电路基础知识的详细介绍:1. 模拟信号与数字信号模拟信号是连续变化的信号,可以是电压、电流或温度等物理量的变化。
数字信号则是离散的,通常以二进制形式表示,即0和1的序列。
2. 基本电子元件模拟电路中的基本电子元件包括电阻器、电容器、电感器、二极管、晶体管和运算放大器。
这些元件在电路中扮演着不同的角色,如电阻器用于限制电流,电容器用于储存电荷,电感器用于储存磁能,二极管用于整流,晶体管用于放大和开关,运算放大器用于信号处理。
3. 放大器放大器是模拟电路中的核心组件之一,它能够增加信号的幅度。
运算放大器是一种高增益、高输入阻抗、低输出阻抗的放大器,广泛应用于信号放大、滤波、信号整形等。
4. 滤波器滤波器用于从信号中提取或抑制特定频率的分量。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
这些滤波器可以根据需要设计成有源或无源。
5. 振荡器振荡器是一种能够产生周期性信号的电路。
它在通信、时钟信号生成等领域有着重要应用。
常见的振荡器类型有RC振荡器、LC振荡器和晶体振荡器。
6. 调制与解调调制是将信息信号转换为适合传输的形式的过程,而解调则是将接收到的调制信号恢复为原始信息信号的过程。
模拟调制技术包括幅度调制(AM)、频率调制(FM)和相位调制(PM)。
7. 电源管理电源管理是模拟电路设计中的一个重要方面,它涉及到将电源电压转换为电路所需的电压水平,并确保电源的稳定性和效率。
8. 信号处理模拟信号处理包括信号的放大、滤波、整形、调制、解调等过程。
这些处理过程对于信号的传输和接收至关重要。
9. 噪声与干扰在模拟电路中,噪声和干扰是不可避免的。
噪声可以来源于热效应、电磁干扰、电源波动等。
模电教案:从零开始学习模拟电路设计
摘要:本文介绍模拟电路设计的基础知识,从电路原理、电路元件和器件、电路分析和设计基本方法等方面进行详细讲解。
针对初学者,书写通俗易懂、逻辑严谨,帮助读者掌握模拟电路设计的基础知识,为深入学习提供基础。
引言:模拟电路设计是电子工程学科体系中的重要组成部分,是电子工程师必须要掌握的核心技能。
模拟电路在电子系统中占据着重要的地位,常见的放大器、滤波器、振荡器等都是模拟电路的应用。
因此,对于学习电子工程或从事电子工程相关的工作人员来说,熟练掌握模拟电路设计技术是必不可少的。
本文将从以下几个方面进行详细讲解:电路原理、电路元件和器件、电路分析和设计基本方法等。
一、电路原理1.1 电路和电子元件的基本概念电路是由电子元件组成的,用于实现一定功能的电器系统。
电子元件则指与电路关联并用来完成特定电工功能的基本器件。
电路和电子元件是理解模拟电路设计的关键基础。
1.2 电路定理电路定理是电路分析中最基本的工具之一,包括基尔霍夫定律、欧姆定律、毕奥萨伐尔定理、叠加原理和戴维南定理等等。
这些定理是描述电路中电流、电压和电阻等基本关系的工具,也是分析和设计电路的基础。
二、电路元件和器件2.1 电阻电阻是最常见的电子元件之一,是一种限制电流流经路径的器件。
本章将介绍电阻的基本概念、参数和常见用途。
2.2 电容器电容器是一种能够储存电荷的器件,常用于存储或放电用途。
本章将介绍电容器的基本概念、参数和常见用途。
2.3 电感器电感器是一种与电流和磁场关联的器件,用于存储和释放电能。
本章将介绍电感器的基本概念、参数和常见用途。
三、电路分析和设计基本方法3.1 电路分析技术电路分析是模拟电路设计中最基本和重要的技术之一,可以对电路进行描述和求解。
本章将介绍电路分析的基本技术和常用方法。
3.2 电路设计技术电路设计是根据要求,设计合适的电路结构和参数,实现一定的功能。
本章将介绍电路设计的基本过程和要点,以及常见的电路设计方法和技巧。
3.3 应用案例本章将通过具体的案例对电路分析和设计进行展示和应用。
模电基本知识点总结
模电基本知识点总结一、基本电子元件在模拟电子技术中,常用的基本电子元件包括电阻、电容、电感和二极管、晶体管等。
下面我们来介绍一下这些基本电子元件的特性和应用。
1. 电阻电阻是用来限制电流的一种电子元件,它的电阻值用欧姆(Ω)来表示。
电阻的大小取决于材料的电阻率和尺寸。
在实际电路中,电阻通常用来分压、限流、接地等。
电阻的连接方式有串联和并联两种。
2. 电容电容是用来存储电荷的一种电子元件,它的容量用法拉得(F)来表示。
电容的存储能力取决于材料的介电常数和结构。
在实际电路中,电容通常用来滤波、隔直、储能等。
电容的连接方式有串联和并联两种。
3. 电感电感是用来储存能量的一种电子元件,它的电感值用亨利(H)来表示。
电感的大小取决于线圈的匝数和磁芯的材料。
在实际电路中,电感通常用来滤波、隔交、振荡等。
电感的连接方式有串联和并联两种。
4. 二极管二极管是一种非线性元件,它的特性是只允许电流单向通过。
二极管的主要作用是整流、限流、反向保护等。
常见的二极管有硅二极管、锗二极管、肖特基二极管等。
5. 晶体管晶体管是一种半导体器件,它主要有三个端子:发射极、基极和集电极。
晶体管有两种类型:NPN型和PNP型。
晶体管可以作为信号放大、开关、振荡等。
常见的晶体管有通用型晶体管、场效应晶体管、双极型晶体管等。
二、放大器放大器是模拟电子电路中起放大作用的重要器件,其作用是放大输入信号的幅度,以便驱动负载。
根据放大器的工作方式和放大电路的结构,放大器大致可以分为三类:电压放大器、电流放大器和功率放大器。
1. 电压放大器电压放大器是将输入信号的电压放大到较大的幅度,以便驱动负载。
常见的电压放大器有共射放大器、共集放大器、共源放大器等。
这些电压放大器基本上由晶体管、耦合电容、电阻等元件组成。
2. 电流放大器电流放大器是将输入信号的电流放大到较大的幅度,以便驱动负载。
常见的电流放大器有共基放大器、共漏放大器、共栅放大器等。
这些电流放大器基本上由晶体管、耦合电容、电阻等元件组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲:电荷........................................1楼第二讲:电流、电压、电阻和欧姆定律...................2楼第三讲:电阻器的认识.................................14楼第四讲:电容器.......................................21楼第五讲:信号(一)...................................25楼信号(二)..................................34楼第六讲:半导体的基础知识.............................41楼第七讲:PN结的形成...................................56楼第八讲:PN结的机理...................................65楼第九讲:PN结的单向导电性.............................73楼第十讲:PN结的参数及使用要点.........................87楼第十一讲:三极管的结构................................95楼第十二讲:三极管的工作机理............................104楼第十三讲:三极管的特性曲线............................122楼第十四讲三极管基本放大电路的演变.....................134楼第十五讲:基本放大电路直流通路分析....................181楼第一讲电荷一、正电荷和负电荷初中的时候我们学习过的物理和化学里有有关自然界中的物质的定义是:物质由分子组成,分子由原子组成,原子由原子核和核外电子组成。
原子核带正电,核外电子带负电。
元素的序号就是一个原子中原子核内正电荷的数目,核外电子的数目与核内正电荷的数目相等,正电荷和负电荷相互抵消而呈电中性。
所以,正常情况下物质是电中性的,即不带电的。
当原子获得一定的能量后,其核外电子容易摆脱原子核的束缚而挣脱出来,叫做自由电子。
任何元素都有其自身的化合价,化合价有表达能够摆脱原子核束缚的自由电子数目多少的特征。
如,硅原子的序号是14,表示有14个核外电子,14个核内正电荷。
但是化合价是4,即可能最多有4个核外电子摆脱原子核的束缚而成为自由电子,其余10个永远被原子核束缚,不得挣脱。
核外电子在原子核周围是按层次有规律的飞旋运转的。
正电荷和负电荷有相互吸引的作用,同种电荷有互相排斥的作用。
二、物质带电当我们设法把正电荷和负电荷分开,物质就带电了。
例如,物质的一头带正电荷,另一头带负电荷。
或者我们把某物质的某种电荷移走一部分,这个物质就剩下与移走的电荷的反电荷,数量相同,这个物质也就带电了。
通常的方法是摩擦起电或感应起电或接触起电。
摩擦起电:用丝绸摩擦玻璃棒,玻璃棒上就产生了正电荷。
感应起电:用一个带某种电荷的物体,靠近另一个电中性的物体,这个电中性的物体的异种电荷被带电物体吸引,靠近带电物体,同种电荷被排斥到另一头。
接触起点:一个带电物体接触一电中性的物体,带电物体所带的电荷移动一部分到电中性的物体,电中性的物体也带电了。
如果我们把物质的某种电荷移走,但是该物质能源源不断的补充这种电荷,这叫电源。
第二讲电流、电压、电阻和欧姆定律一、电流电荷的定向移动,形成电流。
为什么要加上“定向”呢?因为物质里面的电荷是无时无刻的在运动着,但不定向自由运动,就不能形成电流。
二、电压电压是形成电流的要素,一根导体两端如果有电压,这根导体上就产生了电流。
上一讲谈到的电源,有电压的电源,也有电流的电源,他们是可以相互转换的。
三、电阻阻碍电流通过的物体是电阻,任何有形物质都具有电阻的特征。
只是阻碍电流能力的强弱而已。
如铜棒,木棒,水,空气。
任何物质都有其特定的电阻率,电阻率是描述一个物质单位截面积、单位长度所表现出来的电阻的大小的一个参量。
如铜的电阻率比铁的电阻率小,则铜比铁更容易导电,阻碍电流的能力也小。
四、欧姆定律电流、电压和电阻三者之间的关系,称欧姆定律。
电流与电压成正比,与电阻成反比。
如果用I表示电流,U表示电压,R表示电阻,则其中电流I的单位是安培,简称安,用A表示;还有毫安培,用mA表示,简称毫安;以及微安培,用uA表示,简称微安。
1A=1000mA;1mA=1000uA;另外,电压U的单位是伏特,简称伏,用V表示;还有毫伏特,用mV表示,简称毫伏;以及微伏特,用uV表示,简称微伏。
1V=1000mV;1mV=1000uV;还有电阻R,单位是欧姆,简称欧,用Ώ表示;还有千欧姆,用KΏ表示,简称千欧;以及兆欧姆,用MΏ表示,简称兆欧。
1MΏ=1000 KΏ;1 KΏ =1000Ώ;欧姆定律可以描述为1V的电压与1Ώ的电阻的比值就是1A的电流。
在电子技术领域,用到千安培、千伏特和毫欧姆等单位的比较少见。
第三讲电阻器的认识导线的电阻很小,如1m长度1mm2的铜线器电阻不到0.1Ω。
而电子技术中有时需要用到较大的电阻,那需要很长的导线,不但价格贵,安装也不方便。
所以人们设法用廉价物质通过刻槽的方法制造出电阻器,所需的阻值可以任意刻出来,批量造价不到1分钱,这就给使用电阻带来了方便。
制造出来的电阻器简称电阻。
1.电阻的符号和表示方法:R1表示电阻的序号,即这是图中的第1个电阻;1.2KΩ表示这个电阻的阻值,也可简写为1.2K或1K2。
2.电阻的标称值国际标准标称电阻采用E24系列,即把1-10之间的电阻分为不等份24份,如:1,1.1,1.2,1.3,1.5,1.6,1.8,2,2.2,2.4,2.7,3,3.3,3.6,3.9,4.3,4.7,5.1,5.6,6.2,6.8,7.5,8.2,9.1;以及上述这些标称值乘以10的n次方,包括10的-1次方(0.1~0.91),10的0次方(上述数字本身),一直到10的6次方(1M~9.1M)。
3.电阻的色环表示代电子产品体积较小,电阻上不能印刷文字来表示阻值,用一圈圈不同的颜色来表示,参见相关书籍。
4.电阻的串联R总= R1 + R2 = 12K + 1K2 =13K212KΩ可以简写为12K,1.2KΩ可以简写为1K2。
串联电阻总的阻值为若干个电阻的和问答题:1)两个相同的电阻串联,总的阻值是?2)1个很大阻值的电阻和一个很小阻值的电阻串联,总阻值由哪一个占主导?5.电阻的并联并联电阻总阻值的倒数为各电阻倒数的和1/R总=1/ R1 +1/ R2 = 1/12K + 1/1K2或并联电阻总的阻值为若干个电阻的乘积除以若干个电阻的和。
问答题:1)两个相同的电阻并联,总的阻值是?2)1个很大阻值的电阻和一个很小阻值的电阻并联,总阻值由哪一个占主导?课后可多设置一些电阻串联、并联和混合联(本文从略)计算以加深印象。
第四讲电容器顾名思义,电容器就是盛电的容器,简称电容,他是由两块平行板相隔一定的距离,引出两根引线而形成的,根据平行板的面积和间距决定这个电容器能盛多少的电,电就是电荷,电容器的大小在一定程度上(如保持一定的电压时)就是指能盛电荷量的多少。
电容器的大小与平行板的面积成正比,与平行板的距离成反比。
电容器的符号与他的定义很形象,如下图,用Cx来表示序号,下方0.1u F指的是其容量值的大小。
电容器量纲的基本单位是法拉,简称法,用F表示,由于这个量纲表达的电容很大,所以电子技术中不用法拉做单位,而是用微法拉作单位,或者用皮法拉做单位,一个微法拉是10的-6次方法拉。
一个皮法拉是10的-6次方微法拉。
微法拉用uF表示,皮法拉用PF表示。
近年来,又相应推出了纳法拉(nF)和毫法拉(mF)做单位。
即:1F=1000mF1F=1000000uF1uF=1000nF1uF=1000000PF电容器上的电荷是被慢慢的充电充进去的,一个特定容量的电容器,所充进去的电荷数目越多,其两端的电压就越高,但是不能高于该电容器额定的电压值,每一个电容器除了标注有电容量外,还标注有限制电压,称耐压,普通小容量(1uF)的耐压往往在50V以上,且不分电压极性,可以两端对调使用;而大容量的(称电解电容)的耐压往往达到25V以上的,有电压极性的标注,使用时,我们不能接反。
1uF以上的大容量电容器往往是铝电解电容器,还有钽(tan)电解和铌(ni)电解电容器,后两种损耗低漏电小价格高。
一般我们见到的电解电容器都是铝电解电容器。
电容器上所加的电压如果超过限定值,就有爆炸的可能,电容量越大,爆炸的威力也大,使用时要小心。
电解电容器接反时,容量严重减小,耐压大大降低,损耗严重。
电解电容器的的符号比普通电容器多了个“正”号,有“正”号的那边是正极,另一边是负极。
如下图。
图中63V是限定电压,即耐压,指外电路只能加入比63V小一些的电压。
电容器的主要特性是能通过交流电,而阻挡住直流电。
电容器的容量越大,就越能通过频率高的交流电。
所谓交流电,是指大小能随时间交变变化的电源,也叫交流信号,每秒钟交变的次数称为交流电的频率,单位为赫兹(Hz),如1000Hz是指这个交流电信号每秒交变1000次第五讲信号一、直流电源1.直流电压源典型的直流电源是干电池,还有各种蓄电池,可以用来表示,属于直流电源的一种,上面长横线是正极,下面短横线是负极,用E表示,右侧可注明电池的压,两个以上相同的电池串联称电池组。
还有可以从高压交流220V转换来的电源,广义的直流电压源符号为直流电压源用于向外提供电压能量,以便使各种电子电路正确的工作。
直流电压源在一定的条件下其两端的电压是相对稳定的。
任何电压源都有其自身内阻的特性,一般较小,所以往往在分析计算时被忽略。
2.直流电流源直流电流源向外提供稳定的直流电流,其广义的符号为所示。
我们认为,电流源的内阻一般较大,计算时其内阻往往被也忽略。
电压源和电流源之间可以相互转换,可参考相关书籍,关于戴维南定理和诺顿定理章节。
二、交流电源交流电源是指正负端随时间交替变化的电源,一般我们按正弦规律变化的来分析。
第五讲(二)继续0.5V直流电和0.5V有效值交流电如果接入相同的电阻,其电阻上产生的热量是相同的。
文中,电压源内阻较小时,缺一个“阻”字0.5V直流电和0.5V有效值交流电如果接入相同的电阻,其电阻上产生的热量是相同的。
第六讲半导体的基础知识物质导电能力的大小是用导体和绝缘体来表征的,导体的导电能力强,绝缘体的导电能力弱;导电能力介于导体和绝缘体之间的物质,就称为半导体;常见的半导体有硅(Si)和锗(Ge),这是单质半导体;还有化合物半导体砷化镓(GaAs)和磷化镓(GaP);当半导体受热、光、杂质的影响后,其导电能力急剧上升,这是和导体、绝缘体有所不同的;完全纯净的且晶格完整的(晶格,物质结构专有名词,这里不展开讲述)半导体称本征半导体;本征半导体在绝对0°K(自然环境不存在)和无光照的情况下,和绝缘体是相近的,是不导电的;当掺入杂质后,导电能力才急剧上升。