数字图像处理几种边缘检测算子的比较

合集下载

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。

实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。

3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。

通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。

2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

基于Matlab的图像边缘检测算法的实现及应用汇总

基于Matlab的图像边缘检测算法的实现及应用汇总

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。

图像处理中的边缘检测算法分析与优化

图像处理中的边缘检测算法分析与优化

图像处理中的边缘检测算法分析与优化随着数字图像处理技术的不断发展,边缘检测在计算机视觉、模式识别和图像分割等领域中扮演着重要的角色。

边缘是图像中灰度变化较大的区域,通过检测边缘,我们可以提取图像的形状和结构信息,从而实现图像分析和理解。

本文将对常用的图像处理边缘检测算法进行分析,并探讨优化策略。

一、边缘检测算法概述1.1 Sobel算法Sobel算法是一种基于梯度的边缘检测算法,它通过计算图像梯度的大小和方向来确定边缘位置。

Sobel算法具有计算简单、鲁棒性较高的优点,但对噪声比较敏感,在图像边缘不够明显或存在噪声时容易引入误检。

1.2 Canny算法Canny算法是一种经典的边缘检测算法,它通过多个步骤来实现高效的边缘检测。

首先,通过高斯滤波器对图像进行平滑处理,以减少噪声的影响。

然后,计算图像的梯度幅值和方向,并进行非极大值抑制,以精确地定位边缘。

最后,通过滞后阈值法来进行边缘的连接和细化。

Canny算法具有良好的边缘定位能力和抗噪能力,在实际应用中被广泛使用。

1.3 Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算子,它通过计算图像的二阶导数来检测图像中的边缘。

Laplacian算子具有对灰度变化较大的边缘敏感的优点,但对噪声比较敏感,容易产生边缘断裂和误检。

为了提高Laplacian算子的效果,常常与高斯滤波器结合使用,以减少噪声的干扰。

二、边缘检测算法优化2.1 参数选择在边缘检测算法中,参数的选择对于最终的结果具有重要的影响。

例如,对于Canny算法来说,高斯滤波器的大小和标准差的选择直接影响到边缘的平滑程度和定位精度。

因此,在优化边缘检测算法时,需要根据具体的应用场景和图像特点选择合适的参数。

2.2 非极大值抑制非极大值抑制是Canny算法中的一种重要步骤,用于精确地定位边缘位置。

然而,在进行非极大值抑制时,会产生边缘断裂和不连续的问题。

为了解决这个问题,可以考虑使用像素邻域信息进行插值,从而减少边缘的断裂,并得到更连续的边缘。

LOG与Canny边缘检测比较

LOG与Canny边缘检测比较
数字图像出技术的迅猛发展,使其应用前景的得到了不可限量的扩展。如今 各行各业都在积极发展与图像相关的技术,数字图像处理逐渐凸显出其魅力。其 应用如医学影像,航天航空,无人驾驶,自动导航,工业控制,导弹制导,文化 艺术等。 边缘检测技术在图像处理和计算机视觉等领域起着重要的作用,是图像 分析,模式识别,目标检测与分割等的前期处理。前期边缘检测的好坏,直接影 响后期更高级处理的精度。 一.图像边缘检测概述 1. 边缘的含义 在数字图像中, 边缘是指图像局部变化最显著的部分,边缘主要存在于目标 与目标,目标与背景之间,是图像局部特性的不连续性,如灰度的突变、纹理结 构的突变、颜色的突变等。尽管图像的边缘点产生的原因各不相同,但他们都是 图形上灰度不连续或灰度急剧变化的点, 图像边缘分为阶跃状、 斜坡状和屋顶状。 2. 边缘检测的基本方法 一般图像边缘检测方法主要有如下四个步骤: (1) 图像滤波: 传统边缘检测算法主要是基于图像强度的一阶和二阶导数, 但导数的计算对噪声很敏感, 因此必须使用滤波器来改善与噪声有关的边缘检测 器的性能。 需要指出的是, 大多数滤波器在降低噪声的同时也造成了边缘强度的 损失,因此,在增强边缘和降低噪声之间需要一个折衷的选择。 (2)图像增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强 算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过 计算梯度的幅值来完成的。 (3)图像检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的 应用领域中并不都是边缘, 所以应该用某种方法来确定哪些点是边缘点。最简单 的边缘检测判断依据是梯度幅值。 (4)图像定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在 子像素分辨率上来估计,边缘的方位也可以被估计出来。 3.边缘检测算子 边缘检测算子有许多种,在这里我们只讨论 LOG 边缘检测算子和 CANNY 边缘检测算子。 边缘检测算子是一组用于亮度函数中定位变化的非常重要的局部图像预处 理方法,边缘是亮度函数发生急剧变化的位置。 边缘是赋给单个像素的性质, 用图像函数在该像素一个邻域处的特性来计算。 它是一个具有幅值(强度)和方向的矢量。边缘的幅值是梯度的幅值,边缘的方 向是梯度方向旋转—90 度的方向。梯度方向是函数最大增长的方向。 (1)LOG 边缘检测算子 在 20 世纪 70 年代,Marr 理论根据神经生理学实验得出了以下结论:物体 的边界是将亮度图像与其解释连接起来的最重要线索。 边缘检测技术在当时是基 于很小邻域的卷积, 只对特殊图像效果好。这些边缘检测子的主要缺点是它们依

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。

常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。

本文将对这几种算法进行比较。

1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。

2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。

3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。

Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。

4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。

Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。

但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。

综上所述,不同的边缘检测算法具有各自的优缺点。

若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。

如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。

另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。

最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。

拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理

拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理

《数字图像处理作业》图像的锐化处理---拉普拉斯算子、prewitt算子、sobel算子性能研究对比一、算法介绍1.1图像锐化的概念在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。

一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。

这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。

为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。

图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。

从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。

但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。

考察正弦函数,它的微分。

微分后频率不变,幅度上升2πa倍。

空间频率愈高,幅度增加就愈大。

这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。

最常用的微分方法是梯度法和拉普拉斯算子。

但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。

图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。

图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

边缘检测可分为两大类基于查找一类和基于零穿越的一类。

基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。

基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

图像边缘检测方法比较研究

图像边缘检测方法比较研究

图像边缘检测方法比较研究作者:关琳琳孙媛来源:《现代电子技术》2008年第22期摘要:边缘检测在数字图像处理中有着重要的作用。

系统分析目前具有代表性的边缘检测方法,并用IDL6.3软件实现各种算法。

实验结果表明,各种方法均有各自的优缺点和适用条件,在做图像边缘检测之前,应对图像进行分析,针对图像的特点和应用需求选用合适的方法。

关键词:边缘检测;检测算子;高通滤波;小波变换中图分类号:TP391文献标识码:A文章编号:1004-373X(2008)22-096-03Comparison of Image Edge Detection MethodsGUAN Linlin1,SUN Yuan2(1.Department of Resource Science and Technology,Beijing NormalUniversity,Beijing,100875,China;2.96656 Unit of Second Artillery F orces,Chinese People′s LiberationArmy,Beijing,100820,China)Abstract:Edge detection plays an important role in digital image processing.This paper comprehensively analyze the representative methods of edge detection at present,and realizes each algorithm with the IDL6.3 software.Results indicate that each method has some advantages and limitations.It should be carefully selected according to the characteristics of the image as well as application needs before conducting edge detection.Keywords:edge detection;detective operators;high-pass filtering;wavelet transform1 引言边缘检测技术是图像特征提取中的重要技术之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础。

边缘检测五种算法的比较与分析

边缘检测五种算法的比较与分析

边缘检测五种算法的比较与分析随着计算机技术的发展,边缘检测作为图像处理最为重要的一门技术得到了越来越多的重视,它是图像分割、图像识别的前提。

文章就边缘检测的五种算子进行了比较与分析,得出了最佳边缘检测算法。

标签:边缘;检测算子;图像分割近年来,由于计算机技术的不断发展,图像处理在各个领域都得到了广泛应用。

边缘检测作为一种最为重要的图像处理技术也得到了重视,所谓边缘,就是指图像中恢复变化明显的区域,它是边界检测的基础,也是外形检测的基础,是图像分割所依赖的重要特征,而梯度是函数变化的一种度量,一幅图像可以看作是图像强度连续函数的取样点序列。

通过梯度的计算,我们能了解到图像灰度变化最大的点进而找出图像的边缘所在,边缘检测就是在有噪声背景的图像中确定出目标物边界的位置,可以把图像最显著的特征表示出来,减少工作量,提升效率。

经典的边缘检测算法有Roberts、sobel、canny、log、prewitt五种算法,文章将就这五种经典算法进行比较与分析。

在了解边缘检测之前,我们有必要知道图像的有关知识,图像主要分为模拟图像和数字图像。

模拟图像是通过某种物理量的强弱变化来记录图像上各点的亮度信息的,例如模拟电视图像;而数字图像则完全是用数字来记录图像亮度信息的。

数字图像的基本单位是像素,它是像素的集合,并且可以用一个矩阵来表示,矩阵的列数代表了图像的高,行数代表着图像的宽,矩阵元素对应图像像素,矩阵元素的值就是像素的灰度值。

灰度图像是数字图像的最基本的表达形式,它可以从黑白照片数字化得到,也可以通过彩色照片去色处理得到,因此,灰度图像只有亮度信息而没有颜色信息,所以每个像素点都只有一个量化的灰度级,如果用一个字节来存储灰度值的话,则取值范围有0-255共256个灰度级来表示图像的亮度。

彩色图像的数据不仅包括亮度信息,还包括颜色信息,主要通过RGB 模型来表示,即每个像素包括RGB三基色数据,每个基色用一个字节表示,则共有3个字节,也就是24位,我们说的24位真彩色就是这样得出来的。

各种边缘检测的比较

各种边缘检测的比较

各类边缘检测算子的比较摘要:边缘检测是图像处理和计算机视觉中的基本问题,其目的标识数字图像中亮度变化明显的点。

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于搜索和基于零交叉。

基于搜索的边缘检测算子有:Roberts算子,Prewitt算子,Sobel算子,Canny算子,罗盘算子。

基于零交叉的边缘检测算子有Marr-Hildreth边缘检测器。

本篇论文分析了各种检测算子的特点,并对各种边缘检测算法的检测结果进行了比较。

关键词:边缘检测;图像处理;算子0 引言图像边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图像处理中一个重要的环节。

然而,图像边缘受很多因素的影响。

这些包括(i)深度上不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。

目前,常用的边缘检测算法没有哪一种具有绝对的优越性。

因此,对各种边缘检测算子的性能进行比较分析,根据图像边缘的特征选择比较合理的边缘检测显得尤为重要。

1 基于搜索的边缘检测算子基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模;然后,用计算估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。

1.1 Roberts算子Roberts算子【1】是一种利用局部差分算子寻找边缘的算子,它由下式给出 :g ( x , y) = [ f ( x , y) - f ( x + 1 , y + 1) ]2 +[ f ( x + 1 , y) - f ( x , y + 1) ]2(1)其中 f ( x , y ) 、 f ( x + 1 , y ) 、 f ( x , y + 1) 和 f ( x + 1 , y + 1) 分别为 4领域的坐标,且是具有整数像素坐标的输入图像。

Roberts算子是2X 2 算子模板。

数字图像处理中的边缘检测算法研究

数字图像处理中的边缘检测算法研究

数字图像处理中的边缘检测算法研究一、引言边缘检测在数字图像处理中是一个非常重要的问题,其主要任务是检测图像中物体的边缘信息,为后续的图像分割、目标跟踪、模式识别等处理提供基础。

目前,数字图像处理领域中常用的边缘检测算法主要包括基于梯度的算法、基于模板的算法和基于机器学习的算法,这些算法各有特点,适用于不同的应用场景。

本文将介绍几种经典的边缘检测算法及其特点,以期对数字图像处理领域的研究有所帮助。

二、基于梯度的边缘检测算法基于梯度的边缘检测算法是最为常见的一种边缘检测算法,其主要思路是通过对图像做梯度运算,来检测图像中的边缘信息。

经典的基于梯度的边缘检测算法包括Sobel算法、Prewitt算法、Roberts算法、Canny算法等。

下面我们将依次介绍这几种算法的特点及其优缺点。

1. Sobel算法Sobel算法是一种常见的基于梯度的边缘检测算法,其主要思想是对图像进行一阶梯度运算。

Sobel算子可以分为水平滤波器和垂直滤波器两个部分,分别用于检测图像中水平和垂直方向的边缘信息。

Sobel算法不仅能够提取较为精确的边缘信息,而且计算速度也较快,在实际应用中得到了广泛的应用。

2. Prewitt算法Prewitt算法也是一种基于梯度的边缘检测算法,其内核包括水平和垂直方向的两个模板。

与Sobel算法相比,Prewitt算法更加注重增强图像的垂直边缘信息,因此在一些需要检测线状目标的应用场景中,效果更加明显。

3. Roberts算法Roberts算法是一种基于梯度的边缘检测算法,它通过对图像做两阶梯度运算,来检测图像中的边缘信息。

Roberts算法在边缘检测的过程中可以检测到细节较为丰富的边缘,但是它所检测到的边缘信息相对于其他算法而言较为稀疏。

4. Canny算法Canny算法是一种经典的基于梯度的边缘检测算法,其主要思路是先将图像做高斯滤波,之后再计算图像的梯度值,通过非极大值抑制和双阈值分割等处理,最终得到准确的边缘信息。

图像增强与边缘检测

图像增强与边缘检测

数字图像处理作业----第三次1、 什么是图像增强?常见算法有哪些?典型算法的程序实现,其优缺点?结果对比。

1.1图像增强的定义为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。

一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。

图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。

图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。

但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。

传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。

这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。

1.2 图像增强的分类及方法图像增强可分成两大类:频率域法和空间域法。

前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。

采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。

具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。

基于Matlab图像边缘检测算法效果对比

基于Matlab图像边缘检测算法效果对比

基于Matlab图像边缘检测算法效果对比
杨先花;黎粤华
【期刊名称】《机电产品开发与创新》
【年(卷),期】2010(023)002
【摘要】边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的课题.文章具体考察了5种经典常用的边缘检测算子以及最小二乘支持向量机提取边缘检测算子,并运用Matlab进行图像处理结果比较.梯度算子简单有效,LOG算法和Canny边缘检测器能产生较细的边缘.最小二乘支持向量机结合图像的梯度和零交叉信息,选取一定的参数条件,可以获得比Canny 方法更好的性能.
【总页数】3页(P129-131)
【作者】杨先花;黎粤华
【作者单位】东北林业大学,黑龙江,哈尔滨,150040;东北林业大学,黑龙江,哈尔滨,150040
【正文语种】中文
【中图分类】TP23
【相关文献】
1.基于MATLAB的数字图像边缘检测算子的实验对比研究 [J], 农海啸
2.基于对比度增强的彩色图像边缘检测算法 [J], 王建卫
3.基于MATLAB的图像边缘检测算法的比较与分析 [J], 高美欢;刘玉梅;王刚
4.基于MATLAB数字图像边缘检测算法的研究 [J], HAN Lili;TIAN Yimin;QI Qianhui;ZHANG Tianying
5.基于matlab的彩色石材图像边缘检测算法研究 [J], 洪天平
因版权原因,仅展示原文概要,查看原文内容请购买。

数字图像处理实验

数字图像处理实验

数字图像处理实验实验总学时:10学时实验目的:本实验的目的是通过实验进一步理解和掌握数字图像处理原理和方法。

通过分析、实现现有的图像处理算法,学习和掌握常用的图像处理技术。

实验内容:数字图像处理的实验内容主要有三个方面:(1) 对图像灰度作某种变换,增强其中的有用信息,抑制无用信息,使图像的视在质量提高,以便于人眼观察、理解或用计算机对其作进一步的处理。

(2) 用某种特殊手段提取、描述和分析图像中所包含的某些特征和特殊的信息,主要的目的是便于计算机对图像作进一步的分析和理解,经常作为模式识别和计算机视觉的预处理。

这些特征包括很多方面,例如,图像的频域特性、灰度特征、边界特征等。

(3) 图像的变换,以便于图像的频域处理。

实验一图像的点处理实验内容及实验原理:1、灰度的线性变换灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换。

该线性灰度变换函数是一个一维线性函数:灰度变换方程为:其中参数为线性函数的斜率,函数的在y轴的截距,表示输入图像的灰度,表示输出图像的灰度。

要求:输入一幅图像,根据输入的斜率和截距进行线性变换,并显示。

2、灰度拉伸灰度拉伸和灰度线性变换相似。

不同之处在于它是分段线性变换。

表达如下:其中,(x1,y1)和(x2,y2)是分段函数的转折点。

要求:输入一幅图像,根据选择的转折点,进行灰度拉伸,显示变换后的图像。

3、灰度直方图灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(象素的个数)。

要求:输入一幅图像,显示它的灰度直方图,可以根据输入的参数(上限、下限)显示特定范围的灰度直方图。

4、直方图均衡:要求1 显示一幅图像pout.bmp的直方图;2 用直方图均衡对图像pout.bmp进行增强;3 显示增强后的图像。

实验二:数字图像的平滑实验内容及实验原理:1.用均值滤波器(即邻域平均法)去除图像中的噪声;2.用中值滤波器去除图像中的噪声3. 比较两种方法的处理结果 实验步骤:用原始图象lena.bmp 或cameraman.bmp 加产生的3%椒盐噪声图象合成一幅有噪声的图象并显示;1. 用均值滤波器去除图像中的噪声(选3x3窗口);2. f (x 0,y 0)=Med {f (x,y )∨x ∈[x 0−N,x 0+N ],y ∈[y 0−N,y 0+N ]}用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波);3. 将两种处理方法的结果与原图比较,注意两种处理方法对边缘的影响。

遥感——数字图像处理名词解释及简单整理

遥感——数字图像处理名词解释及简单整理

Unit 11、图像是对客观存在的物体的一种相似性的、生动的写真或描述。

2、图像处理的内容它是研究图像的获取、传输、存储、变换、显示、理解与综合利用的一门崭新学科。

根据抽象程度不同可分为三个层次:狭义图像处理、图像分析和图像理解。

Unit 21、图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

2、将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

3、将像素灰度转换成离散的整数值的过程叫量化。

4、表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

5、一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)6、数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

7、对比度是指一幅图象中灰度反差的大小。

对比度=最大亮度/最小亮度8、清晰度由图像边缘灰度变化的速度来描述。

9、灰度直方图反映的是一幅图像中各灰度级像素出现的频率。

以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。

10、简述灰度直方图的应用。

1).数字化参数(判断量化是否恰当)。

2). 边界阈值选取(确定图像二值化的阈值)。

3). 利用直方图统计图像中物体的面积。

4). 计算图像信息量H(熵)。

5). 利用直方图分析图像的特性。

6). 利用直方图进行图像增强。

11、对于任一像素(i,j),该像素周围的像素构成的集合{(i+p,j+q),p、q取合适的整数},叫做该像素的邻域。

12、对输入图像IP(i,j)处理时,某一输出像素JP(i,j)值由输入图像像素(i,j)及其邻域N(IP(i,j))中的像素值确定。

这种处理称为局部处理。

13、在局部处理中,当输出值JP(i,j)仅与IP(i,j)有关,则称为点处理。

14、在局部处理中,输出像素JP(i,j)的值取决于输入图像大范围或全部像素的值,这种处理称为大局处理。

用于图像分割的边缘检测技术研究和分析

用于图像分割的边缘检测技术研究和分析

用于图像分割的边缘检测技术研究和分析摘要:图像分割在数字图像处理技术中占据重要地位,属于机器运算的视觉技术,在图像理论研究及实际图像处理中得到了广泛重视。

图像分割没有唯一的标准和方法,应该按照不同种类的图像应用不同的分割技术。

现在的图像,基本已经有相应的分割方法可以对其进行分割,在大多数通用方法的情况下,也有些特殊的图像需要用到特殊技术。

讲述了边缘检测应用于图像分割比较常用的3种算法,并对基于边缘检测的图像分割方法进行了研究和分析,指出了图像分割技术未来的发展方向。

关键词:图像分割;边缘检测;数字图像处理0引言数字图像处理技术又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

早期图像处理是为了改善图像质量,它以适应人的视觉效果需求为目的的,而现在的图像处理涉及多个领域。

随着科学技术的发展,图像处理已经成为一门重要的研究学科,在现代拥有多种通用处理方法的情况下,新兴的特殊的处理方法也层出不穷,带来的效应主要是体现在视觉上的感知。

图像作为视觉的基础,对其进行去噪、增强、还原、分割、取征等处理的需求不断增长。

图像分割技术是为后续工作有效进行而将图像划分为若干个有意义的区域的技术。

区域的内部是连通的,在同一区域内部具有高相似度,其特性可以是灰度、颜色、纹理等等,基于图论的图像分割技术是将图像映射为带权的无向图,把像素当作节点,进行点对聚类。

本文将对基于边缘检测的图像分割方法进行研究及分析,并着重介绍基于此方法的图像分割方法。

1边缘检测的分割方法及三种算子边缘检测是图像处理和计算机视觉中的基本问题,其目的是标识图像中各种参数变化明显的点。

所谓边缘(edge)是指图像局部特性的不连续性,边缘总是以强度突变的形式出现,例如,灰度突变、颜色突变、纹理等,这可以看做是一个区域和另一个区域的边界,所以可以对图像进行边缘检测后进行区域的抽取,即可以对图像以基于边缘检测的办法进行分割,以一般突变来说,边缘粗略分为两种:一种是阶跃状的,其边缘位于两边的像素有明显不同的节点处;另一种是屋顶状的,其边缘位于其值从增加到减少或减少到增加的转折处。

边缘检测原理(内含三种算法)

边缘检测原理(内含三种算法)

边缘检测原理的论述摘要数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。

图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。

边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。

目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。

图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。

阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。

【关键字】图像边缘数字图像边缘检测小波变换背景图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。

图像处理方法有光学方法和电子学方法。

从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。

计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。

(2)希望能由计算机自动识别和理解图像。

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。

边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。

所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。

数字图像处理---图像分割

数字图像处理---图像分割

数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。

边缘检测算法比较分析

边缘检测算法比较分析
中图分类 号 :T 3 1 P 9 文献 标识 码 :A 文章编 码 :17 - 2 1 2 1 )6 0 3 — 3 6 2 6 5 ( 0 2 0 — 0 1 0
Co pa io m rs n Anay i o l ss f Edg t ci n Al o t e De e to g r hm i
K e r s lg rtm n y i;e g ee t n; g rtm o a s n y wo d :a o i h a a ss d ed tci a oih c mp r o l o l i
边缘 是指图像 中某 区域像 素灰度值有 明显变化 的 像 素点集合【 1 1 。边缘检测技术是 图形处理领域 的基本技 术 ,对 图像 中感兴趣 目标进行边 缘检测 .是进 行特征 提取 等其 他处理 的开始 。边缘检 测的实质是采 用某种
f,有 : (y x)
G [
( +], ,一 )}2 一 12(y m +『 ( ) )+川 ) 1 ) l I , 2
R b r算子是 2 2 oe t x 算子 ,其模板 为 :
算法来提取 出图像 中对象 与背 景间 的交界线 。边缘检
测 的方法可概括 为 :首先检测 出图像局部特性 的不连
CHEN Yue u y
(' at n fMaa e e tC l g h g igJa tn nvri ,C o g ig 4 0 7 ) De r p me to n g m n ol e C a qn ioo g U i st h nqn 0 0 4 e n e y
A b t a t n t i pe,t loih a d meh d o h d e d t cin o a iu y e fo e aoswee f sl e c b d, ih sr c :I h spa r heag rtm n to ft ee g ee to fv ro stp so p rtr r rty d sr e whc i i wa c mmo l u e i dgt i g e r c si g ncu i te frt r e fee t o eao , te e o s o n y s d n ii l a ma p o e sn ,i l dng h s -od r di r ni i f l a p rtr h s c nd- r e dfee ta o d r ifrn il o eao n h b ss f te p ic pe f te me o n te t o n c n f e c o r tr n d he e ce c o a h p rtr o te a i o h rn il o h t d a d h n he prs a d o s o a h peao a t f in y f e c h i o r tr nd i c u a y we e a ay e ,a l a h p rtrs e i ie n t y fi g .By te c mp io nay i,t peao ,a t a c r c r l z d swel s te o eao p ca z d i hetpeo ma e s n l o a sn a l ss he h r

数字图像处理-边缘检测算子与锐化算子(含MATLAB代码)

数字图像处理-边缘检测算子与锐化算子(含MATLAB代码)

数字图像处理实验五15生医一、实验内容对某一灰度图像,进行如下处理:(1)分别用Roberts、Prewitt和Sobel边缘检测算子进行边缘检测;(2)将Roberts、Prewitt和Sobel边缘检测算子修改为锐化算子,对原图像进行锐化,同屏显示原图像、边缘检测结果和锐化后图像,说明三者之间的关系。

一灰度图像的二值化。

二、运行环境MATLAB R2014a三、运行结果及分析运行结果如图所示:可以观察出原图像、边缘检测结果和锐化后图像三者之间的关系为:原图像+边缘检测结果=锐化后图像四、心得体会通过MATLAB编程更加熟悉了课本上关于锐化与边缘检测的相关知识点,对二者的关系也有了具体的认识。

同时,对MATLAB图像导入函数、图像边缘检测函数、锐化窗口矩阵卷积函数的调用及实现机理也有所掌握,比如后边附的程序中会提到的“%”标注的思考。

五、具体程序size=512;Img_rgb=imread('E:\lena.jpg'); %读取图像Img_gray=rgb2gray(Img_rgb); %进行RGB到灰度图像的转换(虽然原来在网上下载的lena就是黑白图像,但是这一步必须要有!否则处理结果不正确)figure(1);subplot(2,3,1);imshow(Img_gray);title('原图像');Img_edge=zeros(size);a={'roberts','prewitt','sobel'};for i=1:3Img_edge=edge(Img_gray,a{i});figure(1);subplot(2,3,i+1);imshow(Img_edge);axis image;title(a(i));endA=imread('E:\lena.jpg');B=rgb2gray(A);B=double(B);Window=[-1-1-1;-19-1;-1-1-1]; %八邻域拉普拉斯锐化算子(α取1)C=conv2(B,Window,'same');Img_sharp=uint8(C);subplot(2,3,5);imshow(Img_sharp);title('sharp');THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理
几种边缘检测算子的比较
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图
像中亮度变化明显的点。

图像属性中的显著变化通常反映了属性的重要事件和变化。

这些包括:深度上的不连续、表面方向不连续、物质属性变化和场景照明变化。

边缘
检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

图像边缘检测
大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结
构属性。

有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一
类和基于零穿越的一类。

基于查找的方法通过寻找图像一阶导数中的最大和最小值
来检测边界,通常是将边界定位在梯度最大的方向。

基于零穿越的方法通过寻找图
像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过
零点。

人类视觉系统认识目标的过程分为两步:首先,把图像边缘与背景分离出来;然后,才能知觉到图像的细节,辨认出图像的轮廓。

计算机视觉正是模仿人类视觉的这个过程。

因此在检测物体边缘时,先对其轮廓点进行粗略检测,然后通过链接规则把原来
检测到的轮廓点连接起来,同时也检测和连接遗漏的边界点及去除虚假的边界点。


像的边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图
象处理中一个重要的环节。

然而,边缘检测又是图象处理中的一个难题,由于实际景
物图像的边缘往往是各种类型的边缘及它们模糊化后结果的组合,且实际图像信号存
在着噪声。

噪声和边缘都属于高频信号,很难用频带做取舍。

这就需要边缘检测来进行解决的问题了。

边缘检测的基本方法有很多,一阶的有Roberts Cross算子,Prewitt算子,Sobel算子,Canny算子, Krisch算子,罗盘算子;而二阶的还有Marr-Hildreth,在梯度方向的二阶导数过零点。

现在就来
简单介绍一下各种算子的算法
Roberts 算子
Roberts 算子是一种利用局部差分算子寻找边缘的算子,它有下式给出: g(x,y)=[√f(x,y)−√f(x +1,y +1)]2+[√f (x,y +1)−√f (x +1,y )]2
其中f(x,y)、f(x +1,y)、f (x,y +1)和 f(x +1,y +1) 分别为4领域的坐标,且是具有整数像素坐标的输人图像;其中的平方根运算使得该处理类似于人类视觉系统中发生的过程。

Roberts 算子是2X2算子模板。

图1所示的2个卷积核形成了Roberts 算子。

图象中的每一个点都用这2个核做卷积。


Sobel 算子
Sobel 算子是一种一阶微分算子,它利用像素邻近区域的梯度值来计算1个像素的梯度,然后根据一定的绝对值来取舍。

它由下式给出:
S =√(dx 2+dy 2)
Sobel 算子是3*3算子模板。

图2所示的2个卷积核dx 、 dy 形成Sobel 算子。

一个核对通常的垂直边缘响应最大,而另一个核对水平边缘响应最大。

2个卷积的最大值作为该点的输出值。

运算结果是一幅边缘幅度图像。

图2 Sobel 算子
Prewitt 算子
Prewitt 算子由下式给出:
Sp =√(dx 2+dy 2) Prewitt 算子是3*3算子模板。

图3所示的2个卷积核dx ,不要形成了Prewitt 算子。

与Sobel 算子的方法一样,图像中的每个点都用这2个核进行卷积,取最大值作为输出值。

Prewitt 算子也产生一幅边缘幅度图像。

LOG 滤波器又称Marr-Hildreth 模板或算子
∇G (x,y )=ð2G
ð2x +ð2G ð2y =1πð4(x 2+y 2σ2−1)exp (−x 2+y 22σ2)
式中:G(x,y)是对图像进行处理时选用的平滑函数(Gaussian 函数);x ,y 为整数坐标; σ为高斯分布的均方差。

对平滑后的图像fs(fs=f(x,y)*G(x,y))做拉普拉斯变换,得:
h(x,y)=∇2fs (x,y )=∇2[f (x,y )∗G (x,y )]=f (x,y )∗∇2G(x,y)
即先对图象平滑,后拉氏变换求二阶微分,等效于把拉氏变化作用于平滑函数,得到1个兼有平滑和二阶微分作用的模板,再与原来的图像进行卷积。

用Marr-
Hildreth 模板与图像进行卷积的优点在于,模板可以预先算出,实际计算可以只进行卷积。

LOG 滤波器有以下特点:
(1)通过图象平滑,消除了一切尺度小于σ的图像强度变化;
(2)若用其它微分法,需要计算不同方向的微分,而它无方向性,因此可以节省计算量
;
(3)它定位精度高,边缘连续性好,可以提取对比度较弱的边缘点。

LOG滤波器也有它的缺点:当边缘的宽度小于算子宽度时,由于过零点的斜坡融合将会丢失细节。

LOG滤波器有无限长的拖尾,若取得很大尺寸,将使得计算不堪重负。

但随
着:r=√x2+y2的增加,LOG滤波器幅值迅速下降,当r大于一定程度时,可以忽略模板的作用,这就为节省计算量创造了条件。

实际计算时,常常取n* n大小的LOG滤波器,近似n=3σ。

另外,LOG滤波器可以近似为两个指数函数之差,即DOG
( Difference Of two Gaussians functions):
DOG(σ1,σ2)=1
2πσ12exp (−x2+y2
2σ12
)-1
2πσ22
exp (−x2+y2
2σ22
)
当σ1/σ2=1.6时,DOG代替LOG减少了计算量。

Canny算子
Canny算子是是一阶算子。

其方法的实质是用1个准高斯函数作平滑运算
fs=f(x,y)*G(x,y),然后以带方向的一阶微分算子定位导数最大值。

平滑后fs(x,y)的梯度可以使用2*2的一阶有限差分近似式:
P[i,j]≈(fs[i,j+1]-fs[i,j]+fs[i+1,j+1]-fs[i+1,j])/2
Q[i,j] ≈(fs[i,j]-fs[i+1,j]+fs[i,j+1]-fs[i+1,j+1])/2
在这个2x2正方形内求有限差分的均值,便于在图像中的同一点计算二和y的偏导数梯度。

幅值和方向角可用直角坐标到极坐标的坐标转化来计算:
M[i,j]=√P[i,j]2+Q[i,j]2
θ[i,j]=tan−1(Q[i,j]/P[i,j])
M[i,j]反映了图象的边缘强度; θ[i,j]反映了边缘的方向。

使得M}i,j}取得局部最大值的方向角θ[i,j],就反映了边缘的方向。

Canny算子也可用高斯函数的梯度来近似,在理论上很接近4个指数函数的线性组合形成的最佳边缘算子。

在实际工作应用中编程较为复杂且运算较慢。

几种算子的比较
Robert算子定位比较精确,但由于不包括平滑,所以对于噪声比较敏感。

Prewitt 算子和Sobel算子都是一阶的微分算子,而前者是平均滤波,后者是加权平均滤波且检测的图像边缘可能大于2个像素。

这两者对灰度渐变低噪声的图像有较好的检测效果,但是对于混合多复杂噪声的图像,处理效果就不理想了。

LOG滤波器方法通过检测二阶导数过零点来判断边缘点。

LOG滤波器中的a正比于低通滤波器的宽度,a越大,平滑作用越显著,去除噪声越好,但图像的细节也损失越大,边缘精度也就越低。

所以在边缘定位精度和消除噪声级间存在着矛盾,应该根据具体问题对噪声水平和边缘点定位精度要求适当选取。

讨论和比较了几种常用的边缘检测算子。

梯度算子计算简单,但精度不高,只能检测出图像大致的轮廓,而对于比较细的边缘可能会忽略。

Prewitt 和Sobel 算子比Roberts 效果要好一些。

LOG 滤波器和Canny 算子的检测效果优于梯度算子,能够检测出图像较细的边缘部分。

不同的系统,针对不同的环境条件和要求,选择合适的算子来对图像进行边缘检测。

相关文档
最新文档