微波技术基础

合集下载

微波技术基础课程学习知识要点

微波技术基础课程学习知识要点

《微波技术基础》课程学习知识要点第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。

微波波段对应的频率范围为: 3×108Hz ~3×1012Hz 。

在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽10000倍。

一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。

2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。

3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。

4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。

一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。

第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。

微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。

传输线方程是传输线理论中的基本方程。

2. 均匀无耗传输线方程为()()()()d U z dz U z d I z dzI z 2222220-=-=ββ 其解为 ()()()U z A e A e I z Z A e A e j z j zj z j z=+=---120121ββββ 对于均匀无耗传输线,已知终端电压U 2和电流I 2,则:对于均匀无耗传输线,已知始端电压U 1和电流I 1,则:()()⎪⎭⎪⎬⎫+=+= sin cos sin cos 022022Z z jU z I z I z Z jI z U z U ββββ其参量为 Z L C 000=,βπλ=2p ,v v p r =0ε,λλεp r=03. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态: (1) 当Z Z L =0时,传输线工作于行波状态。

《微波技术基础》课件

《微波技术基础》课件
微波具有高频率、短波长、高传输速率、穿透力强等特点。这些特性使得微 波在通信、雷达和射频领域有着广泛的应用。
微波技术的应用领域
பைடு நூலகம்
通信
微波技术在无线通信领域发挥重要作用,包 括移动通信、卫星通信和无线局域网等。
医疗诊断
微波医疗设备可用于乳腺癌检测、皮肤病诊 断等,具有无创、高分辨率的特点。
雷达
微波雷达广泛应用于气象预测、航空导航、 智能交通等领域,实现目标探测与跟踪。
循环器
循环器是一种用于控制信号方向流动的微波器 件,常用于无线通信和雷达系统中。
微波电路的设计原则
1 匹配
保证信号的最大能量传输,减少反射损耗。
2 稳定性
设计电路时考虑温度、供电和尺寸等因素,保持稳定的工作性能。
3 带宽
设计宽带电路以满足不同频率范围的应用需求。
微波技术的未来发展趋势
未来,随着5G通信、物联网和人工智能等技术的快速发展,微波技术将在更 多领域展示出巨大潜力,为人类社会的进步和创新提供支撑。
工业加热
微波加热技术广泛应用于食品加工、材料烧 结等领域,具有快速、节能的特点。
常见的微波器件
波导
波导是一种用于传输和导向微波的金属管道, 常用于通信、雷达等高频电路中。
功分器
功分器用于将一个输入信号分成两个或多个输 出信号,常用于天线阵列和无线通信系统。
微波滤波器
微波滤波器用于选择性地传输或屏蔽特定频率 的信号,常用于通信和雷达系统中。
结论和要点
微波技术是一门重要的学科,应用广泛且前景广阔。深入了解微波技术的基 础知识对于我们掌握相关领域的应用和发展趋势至关重要。
微波技术基础
本PPT课件将带你深入了解微波技术的基础知识,包括微波技术的定义、物 理特性、应用领域、常见器件、电路设计原则以及未来发展趋势。

精选微波技术基础知识

精选微波技术基础知识
本课内容
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线

微波技术基础

微波技术基础

《微波技术基础》复习要求第一章引言1.微波的工作频段2.微波的主要特点第二章微波传输线理论1.微波传输线与低频传输线的对比2.均匀传输线的电报方程(时域形式、频域形式)和波动方程3.已知负载的解型(无损形式)4.传输特性参数:特性阻抗、传播常数、相速、波长5.输入阻抗和反射系数:定义、公式和关系第二章微波传输线理论(续)6.无损传输线的工作状态分析7.传输功率(重点),功率容量和效率(一般)8.掌握阻抗圆图和导纳圆图的基本构成原理、圆图的主要特性(圆图作题不要求)9.阻抗匹配:三种阻抗匹配问题(重点)、阻抗匹配方法及其特点(一般)10.时域分析方法:时空图解法第三章金属规则波导1.规则波导的纵向场法公式(TE和TM)、波动方程和边界条件、波型分类等。

2.矩形波导:场的求解过程、下标含义和范围、场结构简易绘制方法的原理、传输特性(三种波长、截止条件、简并概念、主模、相速和群速、波阻抗等)3.圆波导:纵向场的求解形式、下标含义和范围,三种主要模式的基本特点第三章金属规则波导(续)4.同轴线:主模的特性、设计原则5.激励与耦合的主要方法和举例6.损耗问题:导体损耗(微扰思想)、介质损耗和消失波衰减第四章微波集成传输线1.增量电感法:基本思想和物理解释、解题方法2.对称耦合传输线的奇偶模分析:对称耦合传输线的奇偶模分解(场特性)奇偶模分析的主要特点奇偶模分析的主要结果(偶模阻抗、奇模阻抗、K等参数的关系)第五章介质波导1.介质波导的工作原理:H平面波和E平面波以及独立方程组;两种平面波的反射系数;全反射、全折射的形成条件及其证明;两种基本波型(表面波和辐射模)。

2.圆形介质波导:主要工作模式和主模、截止条件和含义相速度特性第五章介质波导(续)3.平板介质波导:TE和TM的色散方程、基本模式的对称场分布、路的求解方法4.矩形介质波导:EDC方法与马氏方法的主要区别EDC方法的求解(分区、拉伸方向、电场与介质交界面的关系、波阻抗、横向谐振条件、有效介电常数等)第六章微波谐振器1.微波谐振器的基本特性:三个特性;基本参数(谐振波长和品质因数,p值的选取范围)2.金属波导谐振器:矩形谐振腔(波动方程和边界条件、纵向场法公式、下标的含义和范围、主模等)圆形谐振腔(下标的含义和范围、主模、模式图、虚假模式及其定义等)第六章微波谐振器(续)3.传输线谐振腔:横向谐振条件4.非传输线谐振腔(一般)5.谐振腔的微扰理论:基本公式介质微扰(重点是有损情况)腔壁微扰(谐振频率与储能变化的关系)第七章微波网络基础1.微波网络与低频网络的主要不同2.网络阻抗和反射系数与损耗、储能的关系3.[Z]和[Y]的定义、元素含义和主要性质4.[S]的定义、元素含义和主要性质5.[A]和[T]的定义、元素含义和主要性质。

微 波 技 术 基 础

微 波 技 术 基 础
L L
U - UL 其中 += L ,IL =IL Z0 Z0
两个行波之和不一定是行波!
§1.3 长线的参量
一. 特性参量
指由长线的结构、尺寸、填充的媒质及工作频率决定 的参量。(和负载无关)

特性阻抗Z0


传播常数γ
相速Vp与波长λ
§1.3 长线的参量
1. 特性阻抗Z0
将传输线上行波电压与行波电流之比定义为传输线的 特性阻抗,亦即入射波电压与电流复量之比或反射波电 压与电流复量之比的负值,用 Z 来表示, 其倒数称为 0 特性导纳, 用 Y0 来表示。根据定义有:
第一章 传输线的基本理论

在微波技术的研究中,传输线理论具有基础性和 极大的重要性。传输线是能量和信息的载体及传 播工具,而且是构成各种微波元件和电路的基础。
低频下,电路尺寸远小于波长,因此可认为稳定状态的电 压和电流是在电路各处同时建立起来的,元件参量既不依 赖于时间、也不依赖于空间——“集总”电路分析观点。 基尔霍夫定律能圆满的解决实际问题。 微波电路的特点是波长短,与电路尺寸在同一量级,这意 味着电路一点到另一点电效应的传播时间与微波信号的振 荡周期可比拟,元件的性质也不再认为是集总的,必须该 用与器件有关的电场与磁场来进行分析。
三. 分析方法
1.场的方法:以E、H为研究对象,从麦克斯韦尔方程出发, 解满足边界条件的波动方程, 得出传输线上电场和磁场 的解, 进而研究传输特性的横向分布及纵向传输特性。 该方法较为严格, 但数学上比较繁琐。
2. 路的方法:在一定的条件下,以U、I为对象,从传输线 方程出发, 求出满足边界条件的电压、 电流波动方程的 解, 分析电压波和电流波随时间和空间的变化规律,即用 电路理论来研究纵向传输特性。本质上是化场为路。该 方法有足够的精度, 数学上较为简便, 因此被广泛采用。 长线理论就是研究TEM波传输线的分布参数的电路理论。

微波技术基础

微波技术基础

微波技术基础第一篇:微波技术基础微波技术是指在微波频段内进行无线电波传输和工作的技术。

微波频段的频率范围为300MHz至300GHz,是一种高频电磁波。

微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。

本篇文章主要介绍微波技术的基础知识。

1、微波的特点微波的特点是波长短、频率高、传输能力强、穿透力强、反射和绕射能力弱。

由于微波波长短,具有高频率和短时间间隔,相应的能量高,因此可以携带大量信息。

微波具有很强的穿透力,可以穿透一些物质。

但它对金属等导电材料的反射和绕射能力非常弱。

2、微波的应用微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。

其中,通信是微波技术应用最广的领域。

无线电视也用到了微波技术,它具有大带宽和高清晰度等优点。

雷达是一种利用微波波段特殊频率特性进行目标侦察和跟踪的技术。

医疗成像是微波技术的另一个应用领域,例如计算机断层扫描,实现肿瘤发现和诊断。

3、微波的发射方式微波发射方式包括波束走向和波束展宽两类。

波束走向是指将微波束对准目标以达到传送信息的目的。

波束展宽是指通过微波辐射,以实现信息的传输。

微波发射方式的选择应根据不同的应用场景来确定,例如在通信中应选择波束走向,而在雷达中应选择波束展宽。

4、微波的传输损耗微波在传输过程中会发生一定的损耗。

导致这种损耗的原因主要包括传输路径的衰减、反射和绕射效应、电磁波散射等。

传输路径的衰减是微波传输损耗最主要的原因。

它可以通过加强发射功率、缩短传输距离、采用大口径天线等措施来降低影响。

5、微波天线天线是微波技术的重要组成部分,它能将高频率的电磁波转换成物理信号,实现信息的传输。

微波天线种类繁多,包括Horn天线、微带天线、反射天线、缝隙天线等。

微波天线的使用应根据具体应用需求来选择。

例如,在雷达中,反射天线和缝隙天线可以实现高精度的指向和定位,而微带天线则可以被制成很小的尺寸,方便安装和使用。

6、微波放大器微波放大器的作用是放大微波信号,以便在传输中降低信号衰减。

《微波技术基础》题集

《微波技术基础》题集

《微波技术基础》题集一、选择题(每题2分,共20分)1.微波是指频率为()的电磁波。

A. 300MHz-300GHzB. 300Hz-300MHzC. 300GHz-300THzD. 300kHz-300MHz2.微波在真空中的传播速度与()相同。

A. 光速B. 声速C. 电场传播速度D. 磁场传播速度3.微波的主要特性不包括()。

A. 直线传播B. 穿透性强C. 反射性D. 绕射能力强4.微波传输线主要包括()。

A. 同轴电缆和光纤B. 双绞线和同轴电缆C. 光纤和波导D. 双绞线和波导5.在微波通信中,常用的天线类型是()。

A. 偶极子天线B. 抛物面天线C. 环形天线D. 螺旋天线6.微波谐振腔的主要作用是()。

A. 储存微波能量B. 放大微波信号C. 转换微波频率D. 衰减微波信号7.微波加热的原理是()。

A. 微波与物体内部的分子振动相互作用B. 微波使物体表面温度升高C. 微波直接转化为热能D. 微波引起物体内部化学反应8.微波在介质中的传播速度与介质的()有关。

A. 密度B. 介电常数C. 磁导率D. 温度9.微波通信中,为了减少信号的衰减,通常采取的措施是()。

A. 增加信号频率B. 减小信号功率C. 使用中继站D. 改用光纤通信10.微波测量中,常用的仪器是()。

A. 示波器B. 微波功率计C. 万用表D. 频谱分析仪(部分功能重叠,但更专用于频率分析)二、填空题(每题2分,共20分)1.微波的频率范围是_________至_________。

2.微波在真空中的传播速度约为_________m/s。

3.微波的_________特性使其在雷达和通信系统中得到广泛应用。

4.微波传输线中,_________具有宽频带、低损耗的特点。

5.微波天线的作用是将微波能量转换为_________或相反。

6.微波加热过程中,物体吸收微波能并将其转化为_________。

7.微波在介质中的衰减主要取决于介质的_________和频率。

微波技术基础

微波技术基础

一、简答题:1、电磁波频段划分与使用研究?隐形飞机的隐形原理?核潜艇的对外界通信方式及分析?答:无线电频段和波段的划分:序号频段名称频段范围波段名称波长范围主要用途1 甚低频(VLF) 3~30kHz 甚长波10~1万米音频电话、长距离导航、时标2 低频(LF) 30~300kHz 长波10~1千米船舶通信、信标、导航3 中频(MF) 300~3000kHz 中波1000~100米广播、船舶通信、飞行通信、船港电话4 高频(HF) 3~30MHz 短波100~10米短波广播、军事通信5 甚高频(VHF) 30~300MHz 米波10~1米电视、调频广播、雷达、导航6 特高频(UHF) 300~3000MHz 分米波10~1分米电视、雷达、移动通信7 超高频(SHF) 3~30GHz 厘料波10~1厘米雷达、中继、卫星通信8极高频(EHF) 30~300GHz 毫米波10~1毫米射电天文、卫星通信、雷达隐形飞机的隐形原理:通过降低飞机的电、光、声这些可探测特征,使雷达等防空探测器不能够早期发现来实现的。

为了减弱飞机电、光、声这些可探测特征,这种飞机在外形设计上采用了非常规布局,消除小于或等于90°的外形夹角,发动机进气口置于机身背部或机翼上面,采用矩形设计并朝上翻。

2个垂直尾翼均向外斜置,机身与机翼融为一体,使飞机对所有雷达波形成镜面反射,减小雷达回波。

在材料使用上,大量采用宽波段吸波性轻质耐热复合材料,并在表面涂覆放射性同位素涂层,通过同位素放射高能粒子,使周围空气形成等离子屏障。

在离子与电磁波相互作用过程中,吸收雷达波和红外辐射,整机雷达反射面降到1平方米以下。

即使这一点反射,也因通过等离子体的绕射、散射而造成雷达测量上的误差,从而达到“隐身”的效果。

核潜艇的对外界通信方式:利用无线电波传输分析:潜艇要遂行军事任务必须要与外界有安全可靠的通信方式,短波在水中不能使用,因为短波在水中衰减得太快,为了解决此问题,可以采用浮标天线或浮力天线,即把天线通过一根长长的绳索施放到水面,这样潜艇在水下也可发射信号。

微波技术基础

微波技术基础

微波技术基础微波技术是现代通信和雷达系统中不可或缺的技术之一。

它广泛应用于无线通信、卫星通信、雷达探测等领域。

掌握微波技术的基础知识对于从事相关领域的技术人员来说至关重要。

本文将介绍微波技术的基础知识,帮助读者更好地理解和应用微波技术。

一、微波技术的定义和特点微波技术是指利用微波(300MHz-300GHz)进行信息传输和探测的技术。

微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,能够提供较大的带宽,实现高速数据传输。

2. 穿透力强:微波具有很强的穿透力,可以穿透大气层,适用于远距离通信和雷达探测。

3. 直线性好:微波的传播路径近似直线,适合于直线传播的应用场景。

4. 天线尺寸小:与低频通信相比,微波通信所需的天线尺寸较小,便于集成和应用。

二、微波技术的关键组件微波技术的关键组件包括:1. 微波振荡器:微波振荡器是微波技术中的核心部件,它能够产生稳定的微波信号。

2. 微波放大器:微波放大器用于放大微波信号,提高信号的传输功率。

3. 微波混频器:微波混频器用于实现微波信号与其他信号(如射频信号)的混合,实现信号的调制和解调。

4. 微波天线:微波天线用于发射和接收微波信号,是微波通信和雷达探测的关键组件。

三、微波技术在通信领域的应用微波技术在通信领域的应用广泛,包括:1. 无线通信:微波技术是无线通信技术的重要组成部分,如4G、5G等通信标准都采用了微波技术。

2. 卫星通信:微波技术是卫星通信的关键技术,可以实现全球范围内的通信覆盖。

3. 深空通信:微波技术是实现深空通信(如火星探测、月球探测等)的重要手段。

四、微波技术在雷达探测领域的应用微波技术在雷达探测领域也有广泛应用,包括:1. 雷达探测:微波技术可以用于雷达系统的发射和接收部分,实现目标的探测和跟踪。

2. 气象雷达:微波技术是气象雷达的关键技术,用于气象观测和天气预报。

3. 航空雷达:微波技术在航空雷达中也有广泛应用,如空中交通管制、飞行器探测等。

微波技术基础

微波技术基础
0 0 1 情况1: S S 1 0 0 R 0 1 0
0 1 0 情况2: S S 0 0 1 R 1 0 0
第8章 常用微波元件

性质3:无耗互易三端口网络的任意两个端口可以实现 匹配。 证明:假定端口1和2为匹配端口,则其S矩阵可以写成
可以选择输出线的特性阻抗和来获得不同的功率分配比。 50Ohm等功分器,接100Ohm并联
第8章 常用微波元件
a.矩形波导T形接头 矩形波导工作在主模工作TE10,分E-T和H-T接头:
E-T接头
H-T接头
判断依据:1、枝节的宽边所在的平面与XX场平行—
—就叫做XX-T接头。
第8章 常用微波元件
S
i 1
n
2 ij
Sij Sij 1
* i 1
n
Sis Sir * 0 s r
i 1
n
若网络也是无耗的,由散射矩阵的幺正/酉正性可得: 2 2 * S12 S13 1 S13 S23 0 2 2 * S12 S23 1 S23 S12 0 2 2 * S13 S23 1 S12 S13 0 可见:三个参数 S12 , S23 , S13 中至少有两个必须为零,但又 不能成立,这说明一个三端口网络不可能做到无耗、互易 和完全匹配。
思考题 ——T形节串并联等效电路的由来??
E-V
E-T接头
H-I
H-T接头
E-V
结合串联和 并联电路的 电压电流关 系思考
H-I
第8章 常用微波元件
b.对称Y分支 矩形波导对称Y分支结构及其等效电路图如图所示,分为 E面分支和H面分支;前者为串联分支,后者为并联分支。

西电微波技术基础Ch

西电微波技术基础Ch
(1-4)
(1-5)
02
03
04
在Maxwell方程中还存在另一对矛盾对抗,即
和 构成一对矛盾,在时域中
方程(1-2)右边两项,而方程(1-3)右边一项,这就构成了Maxwell方程本质的不对称性。尽管为了找其对称性而一直在探索磁流 的存在,但到目前为止始终未果。
(1-6)
05
Maxwell方程组的物理意义
[例4]两种半无限大媒质的反射情况
场的方法向路的方法转化
(1-9)
利用z=0的边界条件,电场切向分量和磁场切向分量必须连续,有 (1-8)
采用 时谐因子
也即
补充:已经知道电场通解的表达形式 代入 得到
令 ,或 称为波阻抗,即


三、场的方法向路的方法转化
1
写出Maxwell方程组 上面这两个方程也称为均匀平面波的传播方程。
2
三、场的方法向路的方法转化
其中, 正好是光速,这也是光的电磁学说的重要依据。
再次求导
三、场的方法向路的方法转化
采用时谐形式, 即设的时间因子,可得
思考问题:在式(1-7)中哪一项表示向z方向的入射波?哪一项表示向-z方向的反射波?
(1-2)
(1-3)
这里,首先让我们来探讨一下上面方程内含的哲学思想:
这两个方程左边物理量为磁(或电),而右边物理量则为电(或磁)。这中间的等号深刻揭示了电与磁的相互转化,相互依赖,相互对立,共存于统一的电磁波中。正是由于电不断转换为磁,而磁又不断转成为电,才会发生能量交换和贮存。
图 1-2
1
三、场的方法向路的方法转化
图 1-10 均匀平面波传播
三、场的方法向路的方法转化

微波技术基础

微波技术基础
(2) 阻抗相等条件 波导的波型阻抗为:
Z w Et H t
等效双线传输线的等效特性阻抗为: Z e U e I e 根据阻抗相等条件,波导等效为双线时, Ze=Zw,即
Et U ( z ) et (u, v) Ue Ze Ie Ht I ( z ) ht (u, v) et (u, v) ht (u, v)
1. 阻抗参量与导纳参量
设参考面T1处的电压和电流分别为U1和I1,而参考面 T2处电压和电流分别为U2、I2,并规定电流I1和I2流入网络 时为正。连接T1、T2端的广义传输线的特性阻抗分别为Zc1 和Zc2。 (1)阻抗参量
现取I1、I2为自变量, U1、U2为因变量, 对线性网络有
U1=Z11I1+Z12I2
x x
§5.2 等效传输线
为确定式中的任意常数K,将上式代人归一化条件式中, 则得:
K 2 ab
因此模式矢量函数为: 2 2 et sin x y ht sin ab ab a a 再根据TE10模的横向场量Et和Ht表达式:
x x
网络模型的优点包括: 大量减少元件数目,避开电路的复杂性和非线性效应; 简化网络输入输出特性的关系; 其实最重要的是不必了解系统内部的结构就可以通过实验 确定网络输入、输出参数。
§5.1 引言
§5.1 引言
一个微波网络模型由一个通常称之为“黑箱”的N及其 与外部相连接的若干端口构成。 “黑箱”表示不均匀性,端 口是它与外界相联系的“窗口”,电信号由端口输入或输出, 并可在端口处进行电压、电流、反射系数和衰减等量的测量。 一个端口由两个端子构成,对两个端子而言,流入一个 端子的瞬时电流必须与另一端子流出的电流相等 网络的 端口条件。 每一端口都应施加一对信号量:电压 电流,或者,入 射波 反射波的场强复振幅。 利用微波网络模型,就可以利用电路和传输线理论求出 各端口信号量之间的关系,即信号通过网络后其幅度、相位 的变化情况(外部特性),从而避免了对不均匀性结构复杂 的内部场分布计算。

微波技术基础及应用教学设计

微波技术基础及应用教学设计

微波技术基础及应用教学设计引言微波技术以其高频、高速、高精度的特点,广泛应用于通信、雷达、天文、医学等领域。

因此,在电子信息工程及相关专业的教学中,微波技术作为重要的课程之一,扮演着不可替代的角色。

本文旨在介绍微波技术基础及应用教学设计,以期提高学生对微波技术相关知识的学习理解和实践能力。

教学内容1. 微波技术基础微波技术基础包括了微波器件、微波电路、微波天线等知识点。

在教学中,应注重梳理微波技术的基本概念和原理,引导学生掌握微波领域的重要研究方向,如:微波通信、微波雷达、微波辐射、微波医学等。

同时,通过上课和实验的结合,加深学生对微波频率和波长等概念的理解,帮助学生理解电磁波的性质及微波技术在实际应用中的重要性。

2. 微波功率合成器设计微波功率合成器在微波技术中有着广泛的应用,如在无线通信设备、微波雷达和微波光学等方面。

通过微波功率合成器的设计,可以深入了解微波技术的一些基本概念及原理,掌握微波电路的设计和分析方法。

在设计实践中,需要学生了解微波功率合成器的基本原理、常用设计技巧、设计流程等,同时辅以一定的仿真和实验操作,帮助学生加深对微波电路设计和微波信号处理的理解。

3. 微波天线及辐射微波天线及辐射是微波技术中的重点领域。

通过微波天线的设计和分析,可以帮助学生深入理解天线辐射的基本原理和方程,掌握天线参数选取的基准和方法,并且了解基本的微波辐射特性和波束控制技术。

在此基础上,通过实验操作和数据收集,可深刻了解微波辐射和天线性能的关系,以及微波天线在通信、雷达和卫星导航等领域的应用实践。

教学方法在微波技术基础及应用教学中,采用多种教学方法,如教学讲解,实验演示,系统性学习和独立解决问题等资料以加深学生对于微波技术的理解及其实际应用。

其中,实验环节是深入学习和理解微波技术的重要环节。

通过实验操作,学生可以将理论知识变为实际操作的技能,同时加深对微波电路和分析方法的认识。

教学目标本文的微波技术基础及应用教学目标主要包括:1.提高学生对于微波技术的基本概念、原理及其实际应用的理解;2.培养学生的微波电路设计、仿真分析和实验操作的能力;3.提升学生的微波信号处理和天线辐射技术能力;4.开发学生的学习兴趣和开拓思路,提高其对微波技术的研究能力;5.在微波技术的应用实践中,培养学生的创新意识和实践能力。

微波技术基础(目录大纲)

微波技术基础(目录大纲)

课程详情:微波技术基础(64讲)-西安电子科技大学梁昌洪等国家级精品课程“微波技术基础”简介“微波技术基础”课程在西安电子科技大学是早已闻名的精品课程。

60年代初在我校毕德显教授的有力指导和系统策划下,出现了蒋同泽的《长线》和吕海寰的《超高频技术》,这是全国最早的同类教材,对多所高校均有大的影响,只是当时军校的原因,没有正式出版。

文革结束后,廖承恩编写的《微波技术基础》一直是国内多所高校引用和执教的教材。

1988年梁昌洪的《计算微波》获全国优秀教材奖,同时实践的需要也希望把微波集成电路的进展,网络的统一思想,计算机的应用以及CAI的先进手段融入教学。

90年代后期根据上述思想,推出了《简明微波》作为教学改革和课程发展的一次有益尝试。

目前的“微波技术基础”是电子信息专业微波方向学生的骨干课程,其讲授的内容涵盖了微波技术所涉及的各个方面的基础知识,信息量大。

为该课程配套的电子工程学院实验中心微波实验室和国家电工电子基地条件优良,实验设备从传统微波实验的测量线到现代的网络分析仪一应俱全,并建设了微波技术虚拟实验室,学生可以在虚拟实验室中进行有效的工程实际经验的训练。

总的来说,西安电子科技大学的“微波技术基础”在长期教学实践和学科发展中,已经逐步形成了自身的特色。

总结起来主要有:(1)现代性在内容、方法讲述和实施等环节都要体现跟上时代的潮流。

在内容选择上紧密结合通信等学科的发展,引入微波集成电路,光纤、开腔等实践需求的领域和内容;在方法上复频率法,统一传输线理论,特性阻抗的微扰理论等等,都是梁昌洪教授和同事们在教学科研结合上的创新体会;讲述和实施的CAI和虚拟实验使教材的现代性有所增色。

(2)简明性本课程在简明扼要,通俗易懂上狠下功夫,使内容尽量集中于发展主线,脉络清晰,在教学上强调。

统一性传输线和波导的统一;圆波导和矩形波导的统一;网络理论对于微波技术基础的主线统一。

主题性在本课程执教过程中,大胆实施分讲制,每一讲都有一个主题,有一个“戏核”,每5-6讲为一个单元,每个单元都有一个脉络一个系统,整个课程有一条主线,即把网络方法和场论方法的有机结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、微波的主要特性
• 微波和低频的无线电波、可见的和不可见的光波、 X 射线、γ 射线一样,本质上都是随时间和空间变 化的、呈波动状态的电磁波。尽管它们的表现各 不相同,例如可见光可以被人眼所感觉而其他波 段则不能;X 射线、γ 射线具有穿透导体的能力而 其他波段则不具有这种能力;无线电波可以穿又 透浓又厚的云雾而光波则不能等,但它们都是电 磁波。之所以出现这么多不同的表现,归根结底 是因为它们的频率不同即波长不同。
Garage door openers, alarms
Cordless analog phones Baby monitors
~40 MHz
40-50 MHz 49 MHz
System Frequency range Radio controlled airplanes ~72 MHz Radio controlled cars ~75 MHz Remote keyless entry (RKE) systems, 315 or 433 MHz tire pressure monitoring systems (TPMS) RFID UHF 433 MHz UHF television (channels 14-83) 470 to 890 MHz Wildlife tracking collars, bank money dye packs not a frequency you want 215 to 220 MHz to transmit... Personal Locator Beacons and other 406 MHz emergency beacons. 864 to 868 MHz Cordless phones 944 to 948 MHz Industrial, medical & scientific (ISM) 866-870MHz band Europe including RFID Cell phones (GSM) 824 to 960 MHz
RFID systems
AM radio (United States) Short wave radio Citizen's band (CB) radio (40 channels) Radio controlled airplanes Broadcast television channels 2-6 FM radio Broadcast television, channels 7-13
D
110 to 170 GHz
R
220 to 325 GHz
家用电器也有“波段”
• 无线电通信与广播(频道) • 电视频道
• 无线电委员会已经将有限的频率资源划分 了各自的应用领域。以免系统之间的相互 干扰。 • 各频段典型的应用如下表所示。
System
Frequency range 125 to 134 kHz 13.56 MHz UHF (400 to 930 MHz) 2.45 GHz 5.8 GHz 535 kHz to 1.7 MHz 5.9 to 26.1 MHz 26.96 to 27.41 MHz 27.255 MHz (shared with CB channel 23) 54 to 88 MHz 88 to 108 MHz 174 to 220 MHz
类型 米波
米波 分米波 分米波 分米波 分米波 分米波 厘米波 厘米波 厘米波 厘米波 毫米波 毫米波
波长[cm] 频率[GHz] <0.25
0.25-0.5 30-60 15-30 30-60 15-30 7.5-15 4-5 3-4 1.5-3 0.75-1.5 0.5-0.75 0.3-0.5 0.5-1 1-2 2-3 3-4 4-6 6-8 8-10 10-20 20-40 40-60 60-100
电磁频谱分布图
2、微波波段划分
• 源于第二次世界大战期间,为了保密,用大写英文字母表 示工作雷达的工作波段。 • 德国标准、美国标准和欧洲标准。 • 中国有自己的雷达波段标准,而且不同于其他国家的划分, 似乎是界于美国与德国的标准之间。
欧洲新标准下的部分波段表
波段 A
B C D E F G H I J K L M
Band P L S C X Ku
Frequency Range 250 to 1000 MHz 1 to 2 GHz 2 to 4 GHz 4 to 8 GHz 8 to 12 GHz 12 to 18 GHz
Origin of Name 由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩 写,即英语“以往”的字头)。 最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语 Long的字头),后来这一波段的中心波长变为22cm。 当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字 头,意为比原有波长短的电磁波)。 短波通信的“短” (3-30MHz). 为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达, 该波段被称为C波段(C即Compromise,英语“结合”一词的字头)。
2402 to 2495 MHz
2450 MHz
System Satellite radio downlink XM Satellite Sirius Satellite
Frequency range 2330 to 2345 MHz 2332.50 to 2,345.00 MHz 2320.00 to 2,332.50 MHz
1、微波的定义
• 定义:波长在1m ~ 0.1mm的电磁波,对应 频率范围为300MHz ~ 3000GHz。 • • • • • 波段细分: 分米波: 300MHz~3GHz, 1m~10cm 厘米波: 3GHz~30GHz, 10cm~1cm 毫米波: 30GHz~300GHz, 1cm~1mm 太赫兹波:300GHz~3THz, 1mm~0.1mm
960 to 1215 MHz
1227.6 MHz (L2 band, 20 MHz wide) 1575.42 MHz (L1 band, 20 MHz wide)
Globalstar satellite phone downlink Globalstar satellite phone uplink
Direct broadcast satellite TV downlink 11.7 to 12.5 GHz (Europe) Direct broadcast satellite TV downlink (US) 12.2 to 12.7 GHz for example, Echostar's Dish Network
K
18 to 26 GHz
Ka
Q U V E W F
26 to 40GHz
30 to 50 GHz 40 to 60GHz 50 to 75 GHz 60 to 90 GHz 75 to 110 GHz 110 to 140 GHz G
Ka for “kurz-above”. 避开吸收峰。
V for "very" high frequency band (not to be confused with VHF) W follows V in the alphabet 140 to 220 GHz
Frequency range 14-14.5 GHz 24 GHz 57 to 64 GHz 76 to 77 GHz
E-band (new FCC-approved ultra-high speed 71 to 76 GHz, 81 to 86 GHz data communications band) and 92 to 95 GHz 防撞雷达,导引雷达,机场跑道异物监测 机场安检,高速通信,生物检测 94 GHz THz
System Satellite Transmission uplink (news trucks, etc) in United States (thanks Chris!) Automotive radar, distance sensors Unlicensed wireless GigaBit, ("WiGig", aportmanteau). Gibabit Wireless Alliance is covered by IEEE802.11ac standard. Automotive radar, adaptive cruise control
Clear (Sprint) 4G
Radio altimeters 802.11a wireless local area network (WLAN) Industrial, medical & scientific (ISM) band Satellite radio uplink Police radar
微波技术基础
詹铭周 mzzhan@ 科研楼C305:61831021
第1课
• • • • • • • • 绪论P1~P5 内容: 1、微波的定义(频率或波长的范围); 2、微波频段的划分(波段代号); 3、微波的特性; 4、微波的应用; 5、微波辐射的危害与标准; 6、微波技术基础关注的内容。
System
Frequency range
Industrial, medical & scientific (ISM) 902 to 928 MHz band United States including RFID
Air traffic control radar
Global positioning system (GPS)
Deep space radio communications: 2290 to 2300 MHz,ku/W-band Industrial, medical & scientific (ISM) 2400 to 2483.5 MHz band Shared wireless data protocols (Bluetooth, 802.11b): Microwave ovens
相关文档
最新文档