Matlab数学实验一2015答案版

合集下载

Matlab实验第一次实验答案

Matlab实验第一次实验答案

实验一Matlab使用方法和程序设计一、实验目的1、掌握Matlab软件使用的基本方法;2、熟悉Matlab的数据表示、基本运算和程序控制语句3、熟悉Matlab绘图命令及基本绘图控制4、熟悉Matlab程序设计的基本方法二、实验内容:1、帮助命令使用help命令,查找sqrt(开方)函数的使用方法;解:sqrtSquare rootSyntaxB = sqrt(X)DescriptionB = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results.RemarksSee sqrtm for the matrix square root.Examplessqrt((-2:2)')ans =0 + 1.4142i0 + 1.0000i1.00001.41422、矩阵运算(1)矩阵的乘法已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B解:A=[1 2;3 4 ];B=[5 5;7 8 ];A^2*B(2)矩阵除法已知A=[1 2 3;4 5 6;7 8 9];B=[1 0 0;0 2 0;0 0 3];A\B,A/B解:A=[1 2 3;4 5 6;7 8 9 ];B=[1 0 0;0 2 0;0 0 3 ];A\B,A/B(3)矩阵的转置及共轭转置已知A=[5+i,2-i,1;6*i,4,9-i];求A.', A'解:A=[5+1i,2-1i,1;6*1i,4,9-1i ];A1=A.',A2=A'(4)使用冒号表达式选出指定元素已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3列前2个元素;A 中所有列第2,3行的元素;方括号[]解:A=[1 2 3;4 5 6;7 8 9 ];B=A([1,2],[3]),C=A(2:end, : )用magic 函数生成一个4阶魔术矩阵,删除该矩阵的第四列3、多项式(1)求多项式42)(3--=x x x p 的根解:A=[1 0 -2 -4];B=roots(A)(2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征多项式;解:A=[1.2 3 5 .9 ; 5 1.7 5 6 ;3 9 0 1 ;1 2 3 4];A=poly(A);A=poly2sym(A)把矩阵A作为未知数代入到多项式中;4、基本绘图命令(1)绘制余弦曲线y=cos(t),t∈[0,2π]解:t=0:.1:2*pi;y=cos(t);plot(t,y),grid(2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π]t=0:.1:2*pi;y1=cos(t-0.25);y2=sin(t-0.25);plot(t,y1,t,y2)grid5、基本绘图控制绘制[0,4π]区间上的x1=10sint曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)坐标轴控制:显示范围、刻度线、比例、网络线(3)标注控制:坐标轴名称、标题、相应文本;t=0:.01:4*pi;y=10*sin(t);plot(t,y,'-.',t,y,'r')grid6、基本程序设计(1)编写命令文件:计算1+2+…+n<2000时的最大n值;解法1:s=0;i=0;while(s<2000) i=i+1;s=s+i; ends=s-i,i=i-1解法2:s=0;for i=1:1000; s=s+i;if(s>2000) ,break;endends=s-i,i=i-1(2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。

数学实验(MATLAB)课后习题答案

数学实验(MATLAB)课后习题答案

数学实验练习2.1画出下列常见曲线的图形。

(其中a=1,b=2,c=3)1、立方抛物线3xy=解:x=-5:0.1:0;y=(-x).^(1/3);y=-y;x=0:0.1:5;y=[y,x.^(1/3)];x=[-5:0.1:0,0:0.1:5];plot(x,y)2、高斯曲线2x e=y-解:fplot('exp(-x.^2)',[-5,5])3、笛卡儿曲线)3(13,1333222axy y x t at y t at x =++=+=解:ezplot('x.^3+y.^3-3*x*y',[-5,5])xyx.3+y.3-3 x y = 0或t=-5:0.1:5; x=3*t./(1+t.^2); y=3*t.^2./(1+t.^2); plot(x,y)4、蔓叶线)(1,1322322xa x y t at y t at x -=+=+=解:ezplot('y.^2-x.^3/(1-x)',[-5,5])xyy.2-x.3/(1-x) = 0或t=-5:0.1:5; x=t.^2./(1+t.^2); y=t.^3./(1+t.^2); plot(x,y)5、摆线)cos 1(),sin (t b y t t a x -=-= 解:t=0:0.1:2*pi;x=t-sin(t); y=2*(1-cos(t)); plot(x,y)6、星形线)(sin ,cos 32323233a y x t a y t a x =+== 解:t=0:0.1:2*pi; x=cos(t).^3; y=sin(t).^3;plot(x,y)或ezplot('x.^(2/3)+y.^(2/3)-1',[-1,1])xyx.2/3+y.2/3-1 = 07、螺旋线ct z t b y t a x ===,sin ,cos 解:t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z) grid on8、阿基米德螺线θa r = 解:x =0:0.1:2*pi; r=x; polar(x,r)902701809、对数螺线θa e r = 解:x =0:0.1:2*pi; r=exp(x); polar(x,r)90270180010、双纽线))()((2cos 22222222y x a y x a r -=+=θ 解:x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-(x.^2-y.^2)',[-1,1]) grid onxy(x.2+y.2).2-(x.2-y.2) = 011、双纽线)2)((2sin 222222xy a y x a r =+=θ 解:x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-2*x*y',[-1,1]) grid onxy(x.2+y.2).2-2 x y = 012、心形线)cos 1(θ+=a r 解:x =0:0.1:2*pi; r=1+cos(x); polar(x,r)90270练习2.21、求出下列极限值。

数学实验第一次测验选题答案(08)

数学实验第一次测验选题答案(08)

数学实验第一次测验题及参考答案一、写出下列MATLAB命令的运算结果.1. a=[1 2 3 4].\ [2 1 3 2], b=[1 2 3 4].* [2 1 3 2]a =2.0000 0.5000 1.0000 0.5000b =2 2 9 82. A=[1 2; 3 4]; a=A(2, :) , b=A(: , 2), c=A(:)'a =3 4b =24c =1 32 43. a=linspace(0, 10, 5), b=0:2.5:10a =0 2.5000 5.0000 7.5000 10.0000b =0 2.5000 5.0000 7.5000 10.00004. A=[1,2,3; 4,5,6]; b=A(2, 3), c=A([1 2], [1,3]) , d=size(A)b =6c =1 34 6d =2 35. x=7.1; [fix(x), floor(x) ceil(x) round(x)]ans = 7 7 8 7x=-7.1; [fix(x), floor(x) ceil(x) round(x)]ans = -7 -8 -7 -76. syms x y, z='x^2+x*y-y'; zx=diff(z, x), zy=diff(z, y)zx =2*x+yzy =x-17. syms t, x=[exp(t), cos(t), sin(t)]; dx=diff(x, t)dx =[ exp(t), -sin(t), cos(t)]8. syms x y, f=x*y; y=x^2; f1=subs(f, 'y', y)f =x^39. a=[1 2 3]; b=[4 5 6]; x=dot(a, b), y=cross(a, b)x = 32y = -3 6 -310. v=[1, 2, 3, 4]; A=diag(v); det(A)ans =24二、写出下列MATLAB 命令的实验目的. 1. f=inline('sum(1./(1:n).^2)', 'n'); f(10) 求∑=nk k121当10=n 时的值.2. syms x, limit(sin(x)/x, x, 0) 求极限xxx sin lim0→.3. x=0: 0.1: 5; y=zeros(1, length(x)); plot(x, y, 'r')画出函数0=y ,50≤≤x 的图形.4. syms x, f=3*x^2-x+2; c=roots([3, -1, 2]) 求多项式方程0232=+-x x 的解.syms x, x=-3:0.1:3; f=inline('x.^2 -4*x-10'); c1=fzero(f, [-3,0]) 求函数1042--x x 在区间]0,3[-的零点.5. f='x/(1+x.^2)'; [xmin, ymin]=fminbnd(f, -10,10) 求函数21x xf +=在区间]10,10[-的最小值.6. syms x, int('x^2*sin(x)', x, 0,1) 计算定积分⎰12sin xdx x 的值.syms x, quad('sin(x)./x', 0.001, 1) 求定积分⎰10sin dx x x的近似值.7. ezplot3('cos(t)', 'sin(t)', 't', [0, 8*pi])作出空间曲线⎪⎩⎪⎨⎧===t z t y t x sin cos 当]8,0[π∈t 时的图形.8. [x,y]=meshgrid(-2:0.1:2, -2:0.1:2); z=x.^2-y.^2; contour(x, y, z, 20) 作函数22y x z -=的等高线.9. s= solve( 'x^2 + x*y + y = 3', 'x^2 - 4*y + 3 = 0'), [s.x, s.y]求方程组 ⎩⎨⎧=+-=++034322y x y xy x 的解.10. syms x y; int( int(x*y^2, y, 0, x), x, 0, 1) 计算重积分⎰⎰1002xdx dy xy 的值.dblquad(inline('sin(exp(x.*y))'), 0, 1, 0, 1) 求重积分⎰⎰101)sin(dx dy exy的近似值.三、为下列实验目的写MATLAB 指令.1. 作出星形线t x 3cos 2=,t y 3sin 2=(π20≤≤t )的图形.ezplot('2*cos(t)^3','2*sin(t)^3',[0,2*pi])作出摆线)sin (2t t x -=, )cos 1(2t y -=(π40≤≤t )的图形.ezplot('2*(t-sin(t))','2*(1-cos(t))',[0,4*pi])2. 用极坐标命令, 作出五叶玫瑰线θρ5sin 4=的图形.theta=0:0.1:2*pi; rho=4*sin(5*theta); polar(theta,rho)用隐函数命令作出椭圆322+=+xy y x 的图形和双曲线3322+=+xy y x 的图形. ezplot('x^2+y^2-x*y-3',[-3,3,-3,3])ezplot('x^2+y^2-3*x*y-3',[-10,10,-10,10]) 3. 求!100的近似值. prod(1:100) 求∑=101!1n n 的近似值. s=0;for n=1:10s=s+prod(1./(1:n)); end s4. 求极限 1512lim 33++∞→n n n .syms nlimit((2*n^3+1)/(5*n^3+1),n,inf)5. 求函数x x x f 3cos sin )(=的一阶导数. 并求)1(f '. syms xdaoshu=diff('sin(x)*cos(3*x)') x=1;daoshuzhi=eval(daoshu)求由方程0122222=++++-y x y xy x 确定的隐函数的导数. 并求)1(f '. syms x yz=2*x^2-2*x*y+y^2+x+2*y+1; daoshu=-diff(z,x)/diff(z,y) x=1;daoshuzhi=eval(daoshu)6. 求由参数方程⎩⎨⎧==ty tx 33sin cos 确定的函数的导数. syms t x=cos(t)^3; y=sin(t)^3;daoshu=diff(y,t)/diff(x,t) daoshu=simple(daoshu)求由参数方程⎪⎩⎪⎨⎧+=+=3231616t t y t t x 确定的函数的导数. syms tx=6*t/(1+t^3); y=6*t^2/(1+t^3);daoshu=diff(y,t)/diff(x,t)7. 求⎰)(cos 02)(x dx x w dxd .diff(int('w(x)',0,(cos(x))^2))8. 求⎰-ππ2222sin xdx ex.syms xint('exp(2*x)*sin(2*x)^2',x,-pi,2*pi)9. 绘制曲面22y x z +=的图形 x=-2:0.1:2; y=-2:0.1:2;[x,y]=meshgrid(x,y); z=x.^2+y.^2; surf(x,y,z)作出空间曲线t t x cos =,t t y sin =,t z 2=(π60≤≤t )的图形. ezplot3('t*cos(t)','t*sin(t)','2*t',[0,6*pi])10. 作双曲抛物面4122y x z -=的图形,其中66≤≤-x ,1414≤≤-y . x=-6:0.1:6;y=-14:0.1:14;[x,y]=meshgrid(x,y); z=x.^2-y.^2./4; mesh(x,y,z)11. 设y xy z )1(+=,求x z ∂∂,yz ∂∂. syms x yz='(1+x*y)^y'; diff(z,x),diff(z,y)设),(y xy f z =,求22x z ∂∂,22y z ∂∂,yx z∂∂∂2.syms x y z='f(x*y,y)'; zxx=diff(z,x,2) zyy=diff(z,y,2)zxy=diff(diff(z,x),y)12. 求级数∑∞=12k kk的和.syms k;s1=symsum(k/(2^k),k,1,inf) 求级数∑∞=-12)12(1k k 的和. syms k;s2=symsum(1/((2*k-1)^2),k,1,inf)13. 求函数)1ln()1(x x ++的6阶麦克劳林多项式. clear; syms xser3=taylor((1+x)*log(1+x),7)四、为下列实验目的编写MATLAB 程序.1. 作出分段函数⎪⎩⎪⎨⎧>≤<--≤+=1,11,11,23)(2x x x x x x f 的图形.y=[];for x=-3:0.1:3; if x<=-1y=[y, 3+2*x]; elseif x<=1y=[y, 1]; elsey=[y, x^2]; end endx=-3:0.1:3; plot(x,y)作出分段函数⎩⎨⎧>≤+=0,0,sin 1)(x e x x x h x 的图形.y=[ ];for x=-4:0.1:4 if x<=0y=[y, 1+sin(x)]; elsey=[y, exp(x)]; end endx=-4:0.1:4; plot(x, y)2. 设D 为由2=+y x ,y x =,2=y 所围成的有界区域.(1) 作出区域D 的图形;(2) 根据图形确定积分限. 先对x 后对y 积分计算⎰⎰Ddxdy xy2.x=0:0.01:2; y1=2-x; y2=x.^2; y3=2;plot(x, y1,'r-', x, y2,'b-', x, y3,'k-') syms x y;int(int(x*y^2, x, 2-y, sqrt(y)), y, 1,2) 3. 计算⎰⎰+-Dy x dxdy e )(22, 其中D 为122≤+y x .提示:用极坐标变换 22y x r +=,⎰⎰⎰⎰-+-=πθ201)(222rdrd e dxdy er Dy xtheta=0:0.1:2*pi; x=cos(theta); y=sin(theta);plot(x,y,'r-')clear;syms r theta; f=exp(-(r^2))*r ;int(int(f,r,0,1),theta,0,2*pi)4. 求曲线x x x g 2sin )(=)0(π≤≤x 与x 轴所围成的图形分别绕x 轴, y 轴旋转所成的旋转体体积,并写出作该旋转体的图形的指令. (1) 在图形绕x 轴旋转时,体积dx x g v ⎰=ππ02)(.syms xv=int('pi*(x*sin(x)^2)^2', x, 0, pi)v= 1/8*pi^4-15/64*pi^2 即)86415(22ππ+-=v .(2) 图形绕y 轴旋转时,体积 dx x xg v ⎰=ππ0)(2syms xquad('2*pi*x.^2*sin(x).^2', 0, pi) 则得到体积的近似值为 ans = 27.5349(3) 绕x 轴旋转所得旋转体图形的作图指令 r=0:0.1:pi; t=-pi:0.1:pi; [r, t]=meshgrid(r,t); x=r;z=r.*sin(t).*sin(r).^2; y=r.*cos(t).*sin(r).^2; surf(x,y,z)title('绕x 轴旋转');xlabel('x 轴'); ylabel('y 轴'); zlabel('z 轴')(4) 绕y 轴旋转所得旋转体图形的作图指令 r=0:0.1:pi; t=-pi:0.1:pi; [r, t]=meshgrid(r,t); x=r.*cos(t); z=r.*sin(t); y=r.*sin(r).^2; surf(x,y,z)title('绕y 轴旋转');xlabel('x 轴'); ylabel('y 轴'); zlabel('z 轴')5. 作出抛物柱面2y x =和平面1=+z x 相交的图形.u=-2:0.1:2; v=-2:0.1:2; [u,v]=meshgrid(u,v); x=u.^2; y=u; z=v;mesh(x,y,z) hold onx1=-2:0.1:2; y1=-2:0.1:2; [x1,y1]=meshgrid(x1,y1); z1=1-x1;mesh(x1,y1,z1) hold off6. 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形.解:提示:柱面1)1(22=+-y x 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛=+=z z t t t y t t x 2cos 2sin 2sin 2cos 2)cos(12t=0:0.1:pi; r=0:0.1:2*pi;[r,t]=meshgrid(r,t); x=2*sin(t).*cos(r); y=2*sin(t).*sin(r); z=2*cos(t); mesh(x,y,z) hold onu=-pi/2:0.1:pi/2; v=-3:0.1:3;[u,v]=meshgrid(u,v); x1=2*cos(u).^2; y1=sin(2*u); z1=v;mesh(x1,y1,z1) hold off 7. 求⎰Lds z y x f ),,(,其中y x z y x f 10301),,(2++=,路径L 为: t x =,2t y =,23t z =,20≤≤t .解:首先把曲线积分化为定积分. 因为dt z y x ds t t t 222++=,clear; syms t;x= t; y=t^2; z= 3*t^2; f=sqrt(1+30*x^2+10*y);f1=f*sqrt(diff(x,t)^2+diff(y,t)^2+diff(z,t)^2); s=int(f1,t,0,2)8. 计算曲面积分⎰⎰∑++ds zx yz xy )(,其中∑为锥面22y x z +=被柱面 x y x 222=+所截得的有限部分.解:因为面积微元dxdy z z ds y x 221++=,根据曲面积分化作二重积分的计算公式, 并采用极坐标计算重积分. 注意到投影曲线x y x 222=+的极坐标方程为t r cos 2=,22ππ≤≤-t .clear;syms x y z r t f=x*y+y*z+z*x; z= sqrt(x^2+y^2); f=subs(f, 'z ', z);mj=sqrt(1+diff(z,x)^2+diff(z,y)^2); x= r*cos(t); y = r*sin(t); f=eval(f); mj=eval(mj); f1=f*mj*r;int(int(f1, r, 0, 2*cos(t)), t,-pi/2,pi/2) 输出为64/15*2^(1/2).五.其它练习1. 作函数2470722234++-+=x x x x y 及其二阶导函数在区间]7,8[-上的图形,并求函数的凹凸区间和拐点.syms xddf=diff(x^4+2*x^3-72*x^2+70*x+24,x,2) ddf =12*x^2+12*x-144>>ezplot('x^4+2*x^3-72*x^2+70*x+24',[-8,7])>>ezplot('12*x^2+12*x-144',[-8,7])>> x=-8:0.1:8;y1=x.^4+2*x.^3-72*x.^2+70.*x+24;y2=12*x.^2+12.*x-144;y3=zeros(1,length(x));plot(x,y1,'r',x,y2,'b',x,y3,'g')ddf=inline('12*x^2+12*x-144');c1=fzero(ddf,[-8,0])c2=fzero(ddf,[0,7])c1 =-4c2 =3>> ddf=inline('12*x^2+12*x-144')>> zhi1=ddf(-5),zhi2=ddf(0),zhi3=ddf(4)zhi1 =96zhi2 =-144zhi3 =96>> f=inline('x^4+2*x^3-72*x^2+70*x+24','x'); zhi4=f(-4),zhi5=f(3)zhi4 =-1280zhi5 =-279函数的下凸(向上凹)区间为[-8,-4],[3,+∞],下凹(向上凸)区间为[-4,3];拐点(-4,-1280), (3,-279).2. 设⎪⎭⎫ ⎝⎛=-πx e x f x cos )(162,45sin )(23+=x x g . 作它们在区间],0[π上的图形. 并求方程)()(x g x f =在该区间内的近似根.x=0:0.1:pi;y1=exp(-x.^2/16).*cos(x./pi);y2=sin(x.^(3/2))+5/4; plot(x,y1,'r',x,y2,'b')clear; syms xf=inline('exp(-x^2/16)*cos(x/pi)-(sin(x^(3/2))+5/4)');x0=fzero(f,2.5)x0 =2.5411>> x0=fzero(f,3)x0 =2.9746 为所求近似根.3. 求曲面14),(22++=y x y x k 在点)2164,21,41(处的切平面方程,并把曲面和它的切平面作在同一图形里.syms x y zF='4/(x^2+y^2+1)-z';f=diff(F,x);g=diff(F,y);h=diff(F,z);x=1/4;y=1/2;z=64/21;a=eval(f);b=eval(g);c=eval(h);x=-1:0.1:1;y=-1:0.1:1;[x,y]=meshgrid(x,y);z1=a*(x-1/4)+b*(y-1/2)+64/21;z2=4*(x.^2+y.^2+1).^(-1);mesh(x,y,z1)hold onmesh(x,y,z2)4. 求函数22y x z +=在条件0122=-+++y x y x 下的极值.syms x y rg=x^2+y^2;h=x^2+y^2+x+y-1;la=g+r*h;lx=diff(la,x)ly=diff(la,y)lr=diff(la,r)输出lx = 2*x+r*(2*x+1)ly = 2*y+r*(2*y+1)lr = x^2+y^2+x+y-1输入solve('2*x+r*(2*x+1)=0', '2*y+r*(2*y+1)=0', 'x^2+y^2+x+y-1=0','x,y,r')得到输出ans =r: [2x1 sym]x: [2x1 sym]y: [2x1 sym]再分别输入rxy得到r =[ -1+1/3*3^(1/2)][ -1-1/3*3^(1/2)]x =[ 1/2*3^(1/2)-1/2][ -1/2-1/2*3^(1/2)]y =[ 1/2*3^(1/2)-1/2][ -1/2-1/2*3^(1/2)]即有解:1(33r =--,1(12x =-,1(12y =--;1(33r =-+,1(12x =-+,1(12y =-+. 因此有两个极值可疑点. 再输入x = 1/2*3^(1/2)-1/2;y = 1/2*3^(1/2)-1/2;f1=eval(g)x = -1/2-1/2*3^(1/2);y = -1/2-1/2*3^(1/2);f2=eval(g)得到输出0.26793.7321即得到两个可能是条件极值的函数值{2+3,2-3}. 但是否真的取到条件极值呢?可利用等高线作图来判断:输入[x,y]=meshgrid(-2:0.1:2,-2:0.1:2);z=x.^2+y.^2;contour(x,y,z,30)hold onezplot('x^2+y^2+x+y-1')5. 求∑∞=+-021)3(4n nn n x 的收敛域与和函数. clear;syms n x;a1=4^(2*n)*(x-3)^n/(n+1);a2=subs(a1, n, n+1);p=limit(a2/a1, n, inf)输出为p =16*x-48注意这里对a2和a1都没有加绝对值. 因此上式的绝对值小于1时,幂级数收敛,大于1时发散. 为了求出收敛区间的端点,输入x=solve('abs(16*x-48)=1')输出为x =[ 49/16][ 47/16] 由此可知16491647<<x 时收敛,1647<x 或1649>x 时发散. 为了判断端点的敛散性,输入 simplify(subs(a1, 'x', 49/16))得到x 为右端点时幂级数的一般项为ans =1/(n+1), 因此当1649=x 时发散. 再输入 simplify(subs(a1, 'x', 47/16))输出结果为ans =1/(n+1)*(-1)^n, 因此当4716x =时, 级数收敛. 也可以在收敛域内求得这个级数的和函数. 输入clear;syms n xs4=symsum(4^(2*n)*(x-3)^n/(n+1), n, 0, inf )输出为 s4 =-1/(16*x-48)*log(49-16*x)。

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)第⼀次练习教学要求:熟练掌握Matlab 软件的基本命令和操作,会作⼆维、三维⼏何图形,能够⽤Matlab 软件解决微积分、线性代数与解析⼏何中的计算问题。

补充命令vpa(x,n) 显⽰x 的n 位有效数字,教材102页fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形在下⾯的题⽬中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin limx mx mx x →-与3sin lim x mx mxx →∞-syms xlimit((902*x-sin(902*x))/x^3) ans =366935404/3limit((902*x-sin(902*x))/x^3,inf)//inf 的意思 ans = 0 1.2 cos1000xmxy e =,求''y syms xdiff(exp(x)*cos(902*x/1000),2)//diff 及其后的2的意思 ans =(46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算221100x y edxdy +??dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)//双重积分 ans = 2.13941.4 计算4224x dx m x +? syms xint(x^4/(902^2+4*x^2))//不定积分 ans =(91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求//⾼阶导数syms xdiff(exp(x)*cos(902*x),10) ans =-356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 0x =的泰勒展式(最⾼次幂为4).syms xtaylor(sqrt(902/1000+x),5,x)//泰勒展式 ans =-(9765625*451^(1/2)*500^(1/2)*x^4)/82743933602 +(15625*451^(1/2)*500^(1/2)*x^3)/91733851-(125*451^(1/2)*500^(1/2)*x^2)/406802 + (451^(1/2)*500^(1/2)*x)/902 +(451^(1/2)*500^(1/2))/500 1.7 Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4,)n n n x x x n --=+=⽤循环语句编程给出该数列的前20项(要求将结果⽤向量的形式给出)。

MATLAB实验及答案详解

MATLAB实验及答案详解

>> C3
C3 =
9 22 2
8 19 -6
36 88 3
>> D1
D1 =
2 -2 3
655
16 -10 3
>> D2
D2 =
0.5000 -2.0000 0.3333
0.6667 5.0000 0.2000
1.0000 -10.0000 3.0000
>> D3
D3 =
141
4 25 1
16 100 9
5.0000 - 5.0000i 6.0000 - 6.0000i
②求矩阵的逆矩阵
>> B=[1 2;3 4];
>> B1=inv(B) 运行后显示:
B1 = -2.0000 1.0000 1.5000 -0.5000
>> B2=B^(-1) 运行后显示: B2 =
-2.0000 1.0000 1.5000 -0.5000 ③关于矩阵求幂 >>A=[1 2;3 4]; B=[ 2 1;3 2]; >>A.^B 运行后显示: ans =
>>A=[1,2,3;4,5,6] 运行后显示: A= 123 456
在命令窗口输入:
>>b=A(1,2)
运行后显示:b =2
在命令窗口输入:
>>A(2,3)=-3
运行后显示:A =
123
4 5 -3
矩阵的操作
>>A=[1,2,3;4,5,6;7,8,9]
>>B=diag(A) %X 为矩阵时,V=diag(X,k)得到列向量 V,它取自 X 的第 K 个对角

重庆大学数学实验一 matlab的基本应用 参考答案

重庆大学数学实验一 matlab的基本应用 参考答案

《数学实验》第一次上机实验1. 设有分块矩阵⎥⎦⎤⎢⎣⎡=⨯⨯⨯⨯22322333S O R E A ,其中E,R,O,S 分别为单位阵、随机阵、零阵和对角阵,试通过数值计算验证⎥⎦⎤⎢⎣⎡+=22S 0RS R E A 。

程序及结果:E=eye(3); %创建单位矩阵E% R=rand(3,2); %创建随机矩阵R% O=zeros(2,3); %创建0矩阵% S=diag(1:2); %创建对角矩阵% A=[E,R;O,S]; %创建A 矩阵%B=[E,(R+R*S);zeros(2,3),S^2] %计算等号右边的值%A^2 %计算等号左边的值%运行结果:B =1.00 0 0 1.632.74 0 1.00 0 1.81 1.90 0 0 1.00 0.25 0.29 0 0 0 1.00 0 0 0 0 0 4.00 ans =1.00 0 0 1.632.740 1.00 0 1.81 1.90 0 0 1.00 0.25 0.29 0 0 0 1.00 0 0 0 0 0 4.002.某零售店有9种商品的单件进价(元)、售价(元)及一周的销量如表1.1,问哪种商品的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该10种商品的总收入和总利润。

表1.11)程序:a=[7.15 8.25 3.20 10.30 6.68 12.03 16.85 17.51 9.30]; b=[11.10 15.00 6.00 16.25 9.90 18.25 20.80 24.15 15.50]; c=[568 1205 753 580 395 2104 1538 810 694];s=sum((b-a).*c)i=b.*cmax((b-a).*c)min((b-a).*c)[m,n]=sort(b.*c)2)运行结果:s =4.6052e+004i =1.0e+004 *0.6305 1.8075 0.4518 0.9425 0.3911 3.8398 3.1990 1.95621.0757ans =1.3087e+004ans =1.2719e+003m =1.0e+004 *0.3911 0.4518 0.6305 0.9425 1.0757 1.8075 1.9562 3.1990 3.8398n =5 3 1 4 9 2 8 7 63. 近景图将x的取值范围局限于较小的区间内可以画出函数的近景图,用于显示函数的局部特性。

matlab实验指导答案详解(非常详细正确)

matlab实验指导答案详解(非常详细正确)

matlab实验指导答案详解(⾮常详细正确)实验⼀ MATLAB ⼯作环境熟悉及简单命令的执⾏⼀、实验⽬的:熟悉MATLAB 的⼯作环境,学会使⽤MATLAB 进⾏⼀些简单的运算。

⼆、实验内容:MATLAB 的启动和退出,熟悉MATLAB 的桌⾯(Desktop ),包括菜单(Menu )、⼯具条(Toolbar )、命令窗⼝(Command Window)、历史命令窗⼝、⼯作空间(Workspace)等;完成⼀些基本的矩阵操作;学习使⽤在线帮助系统。

三、实验步骤:1、启动MATLAB ,熟悉MATLAB 的桌⾯。

2、在命令窗⼝执⾏命令完成以下运算,观察workspace 的变化,记录运算结果。

(1)(365-52?2-70)÷3 >>(365-52*2-70)/3 ans = 63.6667(2)>>area=pi*2.5^2 area = 19.6350(3)已知x=3,y=4,在MATLAB 中求z :()232y x y x z -= >>x=3 >>y=4>>z = x ^2 * y ^3 / (x - y) ^2 z = 576(4)将下⾯的矩阵赋值给变量m1,在workspace 中察看m1在内存中占⽤的字节数。

m1=11514412679810115133216 执⾏以下命令>>m1 =[16 2 3 13 ; 5 11 10 8 ; 9 7 6 12 ; 4 14 15 1 ] >>m1( 2 , 3 ) ans = 10 >>m1( 11 ) ans = 6>>m1( : , 3 ) ans =3 10 6 15>>m1( 2 : 3 , 1 : 3 ) ans =5 11 10 9 7 6>>m1( 1 ,4 ) + m1( 2 ,3 ) + m1( 3 ,2 ) + m1( 4 ,1) ans = 34(5)执⾏命令>>help abs查看函数abs 的⽤法及⽤途,计算abs( 3 + 4i ) (6)执⾏命令>>x=0:0.1:6*pi; >>y=5*sin(x); >>plot(x,y)(6)运⾏MATLAB 的演⽰程序,>>demo ,以便对MATLAB 有⼀个总体了解。

MATLAB实验一:参考--答案

MATLAB实验一:参考--答案

7. 写出下列函数的作用: clc Clear ones det triu fliplr zeros cat
清除命令窗口的记录 清除已声明的变量和函数的记录 生成全 1 矩阵 求一个方阵的行列式 取一个矩阵的上三角 对矩阵进行左右旋转 产生一个零矩阵 拼接两个数组或者矩阵
8. 建立如下矩阵
0 0 2015 2015 0 0 (1) 0 0 2015 1010
3.
计算 1.369 sin
2
7 26.48 2.9 的值(输入程序) 10
1.369^2+sin(7/10*pi)*26.48^(1/2)/2.9
4.
1 3 3 1 1 2 输入矩阵 A 4 4 6 , B 2 2 2 ,指出下列命令的含义 6 8 9 3 3 3
实验一:MATLAB 软件环境及基本操作
实验目的:
1、熟悉 MATLAB 软件的工作环境; 2、熟悉 MATLAB 基本命令与操作; 3、掌握数组(矩阵)的算术运算、逻辑运算和关系运算的方法
实验内容
MATLAB 基本命令与实际操作、矩阵运算
实验要求
1、学生在实验操作过程中自己动手独立完成,1 人为 1 组。 2、完成实验报告:按照试验的每个题目的具体要求完成。
评语:
教师签字:
日期:



(1)A=2015*eye(10) (2)A=8*(ones(8)-eye(8))
0 8 (2) 8
8 0 8Leabharlann 8 8 0 88
9. 设有分块矩阵 A
E33 O23

Matlab实验指导书(含答案)

Matlab实验指导书(含答案)

实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境。

2.学习使用图形函数计算器命令funtool及其环境。

二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。

求下列函数的符号导数(1) y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1) y=cos(x);(2) y=1/(1+x^2);(3) y=1/sqrt(1-x^2);(4) y=(x-1)/(x+1)/(x+2);求反函数(1) y=(x-1)/(2*x+3);(2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1) (x+1)*(x-1)*(x-2)/(x-3)/(x-4);(2) sin(x)^2+cos(x)^2;(3) x+sin(x)+2*x-3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。

从y=x^2通过参数的选择去观察下列函数的图形变化(1) y1=(x+1)^2(2) y2=(x+2)^2(3) y3=2*x^2(4) y4=x^2+2(5) y5=x^4(6) y6=x^2/23.两个函数之间的操作求和(1) sin(x)+cos(x)(2) 1+x+x^2+x^3+x^4+x^5乘积(1) exp(-x)*sin(x)(2) sin(x)*x商(1) sin(x)/cos(x);(2) x/(1+x^2);(3) 1/(x-1)/(x-2);求复合函数(1) y=exp(u) u=sin(x)(2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x)(4) y=sinh(u) u=-x三、设计提示1.初次接触Matlab应该注意函数表达式的文本式描述。

MATLAB数学实验100例题解

MATLAB数学实验100例题解

一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧.初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势. 解:程序代码:>> x=linspace(0,2*pi,600); t=sin(x)./(cos(x)+eps);plot(x,t);title('tan(x)');axis ([0,2*pi,-50,50]); 图象:程序代码:>> x=linspace(0,2*pi,100); ct=cos(x)./(sin(x)+eps);plot(x,ct);title('cot(x)');axis ([0,2*pi,-50,50]); 图象:4在区间]1,1[-画出函数xy 1sin =的图形. 解:程序代码:>> x=linspace(-1,1,10000);y=sin(1./x); plot(x,y);axis([-1,1,-2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>> t=linspace(0,2*pi,100);plot(cos(t).*cos(5*t),sin(t).*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:>> t=0:0.01:2*pi; r=exp(t/10);polar(log(t+eps),log(r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形. 解:程序代码:>> x=linspace(-100,100,10000); y=sign(x); plot(x,y);axis([-100 100 -2 2]);函数性质的研究12研究函数)3(log 3)(35x e x x f x -++=在区间]2,2[-上图形的特征. 解:程序代码:>> x=linspace(-2,2,10000);y=x.^5+3*exp(x)+log(3-x)/log(3); plot(x,y); 图象:实验2 极限与连续(基础实验)实验目的 通过计算与作图, 从直观上揭示极限的本质,加深对极限概念的理解. 掌握用 Matlab 画散点图, 以及计算极限的方法. 深入理解函数连续的概念,熟悉几种间断点的图形 特征,理解闭区间上连续函数的几个重要性质.作散点图14分别画出坐标为)10,,2,1(),4,(),,(3222 =+i i i i i i 的散点图, 并画出折线图. 解:散点图程序代码: >> i=1:10; plot(i,i.^2,'.')或:>> x=1:10;y=x.^2;for i=1:10;plot(x(i),y(i),'r')hold onend折线图程序代码:>> i=1:10;plot(i,i.^2,'-x')程序代码:>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'.')>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'-x')数列极限的概念16通过动画观察当∞→n 时数列21n a n =的变化趋势.解:程序代码: >> n=1:100; an=(n.^2); n=1:100; an=1./(n.^2); n=1:100; an=1./(n.^2); for i=1:100plot(n(1:i),an(1:i)),axis([0,100,0,1]) pause(0.1) end 图象:函数的极限18在区间]4,4[-上作出函数xx xx x f --=339)(的图形, 并研究 )(lim x f x ∞→ 和 ).(lim 1x f x →解:作出函数x x xx x f --=339)(在区间]4,4[-上的图形 >> x=-4:0.01:4;y=(x.^3-9*x)./(x.^3-x+eps); plot(x,y)从图上看,()f x 在x →1与x →∞时极限为0两个重要极限 20计算极限⎪⎭⎫⎝⎛+→x x x x x sin 11sin lim )1(0 x x e x 2lim )2(+∞→30sin tan lim )3(xx x x -→ x x x 0lim )4(+→ x xx ln cot ln lim )5(0+→ x x x ln lim )6(20+→ xx xx x x sin cos sin lim)7(20-→ 125523lim )8(323+++-∞→x x x x x xx x e e x x x sin 2lim )9(0----→ xx x x cos 110sin lim )10(-→⎪⎭⎫ ⎝⎛ 解:(1)>> limit(x*sin(1/x)+1/x*sin(x))ans =1(2) >> limit(x^2/exp(x),inf) ans = 0(3) >> limit((tan(x)-sin(8))/x^3) ans =NaN(4) >> limit(x^x,x,0,'right') ans =1(5) >> limit(log(cot(x))/log(x),x,0,'right') ans =-1(6) >> limit(x^2*log(x),x,0,'right') ans =0(7) >> limit((sin(x)-x.*cos(x))./(x.^2.*sin(x)),x,0) ans =1/3(8) >> limit((3*x.^3-2*x.^2+5)/(5*x.^3+2*+1),x,inf) ans =3/5(9) >> limit((exp(x)-exp(-x)-2*x)./(x-sin(x))) ans =2(10) >> limit((sin(x)/x).^(1/(1-cos(x)))) ans =exp(-1/3)实验3 导数(基础实验)实验目的 深入理解导数与微分的概念, 导数的几何意义. 掌握用Matlab 求导数与高 阶导数的方法. 深入理解和掌握求隐函数的导数, 以及求由参数方程定义的函数的导数的方法. 导数概念与导数的几何意义22作函数71232)(23+-+=x x x x f 的图形和在1-=x 处的切线. 解:作函数71232)(23+-+=x x x x f 的图形程序代码: >> syms x;>> y=2*x^3+3*x^2-12*x+7; >> diff(y) ans =6*x^2+6*x-12 >> syms x;y=2*x^3+3*x^2-12*x+7; >> f=diff(y) f =6*x^2+6*x-12 >> x=-1;f1=6*x^2+6*x-12 f1 = -12>> f2=2*x^3+3*x^2-12*x+7 f2 = 20>> x=linspace(-10,10,1000);y1=2*x.^3+3*x.^2-12*x+7; y2=-12*(x+1)+20; plot(x,y1,'r',x,y2,'g')求函数的导数与微分24求函数bx ax x f cos sin )(=的一阶导数. 并求.1⎪⎭⎫⎝⎛+'b a f解:求函数bx ax x f cos sin )(=的一阶导数程序代码: >> syms a b x y;y= sin(a*x)*cos(b*x); D1=diff(y,x,1) 答案:D1 =cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b求.1⎪⎭⎫ ⎝⎛+'b a f程序代码: >> x=1/(a+b);>> cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b 答案:ans =cos(a/(a+b))*a*cos(b/(a+b))-sin(a/(a+b))*sin(b/(a+b))*b 拉格朗日中值定理26对函数),2)(1()(--=x x x x f 观察罗尔定理的几何意义. (1) 画出)(x f y =与)(x f '的图形, 并求出1x 与.2x 解:程序代码:>> syms x;f=x*(x-1)*(x-2); f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-10,10,1000); y1=x.*(x-1).*(x-2);y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); plot(x,y1,x,y2)(2)画出)(x f y 及其在点))(,(11x f x 与))(,(22x f x 处的切线. 程序代码:>> syms x; >> f=x*(x-1)*(x-2); >> f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-3,3,1000); >> y1=x.*(x-1).*(x-2);>> y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); >> plot(x,y1,x,y2) >> hold on>> x=1+1/3*3^(1/2); >> yx1=x*(x-1)*(x-2) yx1 =-0.3849>> x=1-1/3*3^(1/2); >> yx2=x*(x-1)*(x-2) yx2 =0.3849x=linspace(-3,3,1000); yx1 =-0.3849*x.^0; yx2 =0.3849*x.^0; plot(x,yx1,x,yx2)28求下列函数的导数:(1) 31+=x e y ; 解:程序代码:>> syms x y; y=exp((x+1)^3); D1=diff(y,1) 答案:D1 =3*(x+1)^2*exp((x+1)^3)(2) )]42ln[tan(π+=x y ;解:程序代码:>> syms x;y=log(tan(x/2+pi/4)); D1=diff(y,1) 答案:D1 =(1/2+1/2*tan(1/2*x+1/4*pi)^2)/tan(1/2*x+1/4*pi)(3) x x y sin ln cot 212+=;解:程序代码:>> syms x;y=1/2*(cot(x))^2+log(sin(x)); D1=diff(y,1) 答案:D1 =cot(x)*(-1-cot(x)^2)+cos(x)/sin(x) (4) xy 2arctan21=. 解:程序代码:>> syms x;>> y=sqrt(2)*atan(sqrt(2)/x); >> D1=diff(y,1) 答案:D1 =-2/x^2/(1+2/x^2)一元函数积分学与空间图形的画法实验4 一元函数积分学(基础实验)实验目的 掌握用Matlab 计算不定积分与定积分的方法. 通过作图和观察, 深入理解定积分的概念和思想方法. 初步了解定积分的近似计算方法. 理解变上限积分的概念. 提高应用 定积分解决各种问题的能力.不定积分计算30求.)1(532⎰-dx x x解:程序代码:>> syms x y;>> y=x^2*(1-x^3)^5; >> R=int(y,x) 答案:R =-1/18*x^18+1/3*x^15-5/6*x^12+10/9*x^9-5/6*x^6+1/3*x^332求.arctan 2⎰xdx x解:程序代码:>> syms x y;>> y=x^2*atan(x); >> R=int(y,x) 答案:R =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1)定积分计算34 求.)(102⎰-dx x x解:程序代码:>> syms x y; >> y=x-x^2;>> R=int(y,x,0,1) 答案: R =1/6变上限积分 36 画出变上限函数⎰x dt t t 02sin 及其导函数的图形.解:程序代码:>> syms x y t; >> y=t*sin(t^2); >> R=int(y,x,0,x) 答案:R =t*sin(t^2)*x 再求导函数 程序代码:>> DR=diff(R,x,1) 答案:DR =t*sin(t^2)实验5 空间图形的画法(基础实验)实验目的 掌握用Matlab 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.一般二元函数作图38作出函数2214y x z ++=的图形.解:程序代码:>> x=linspace(-5,5,500); [x,y]=meshgrid(x); z=4./(1+x.^2+y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')40作出函数)94cos(22y x z +=的图形. 解:程序代码:>> x=-10:0.1:10;[x,y]=meshgrid(x);z=cos(4*x.^2+9*y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')讨论:坐标轴选取范围不同时,图形差异很大,对本题尤为明显,如右图为坐标轴[-1,1]二次曲面42作出单叶双曲面1941222=-+z y x 的图形.(曲面的参数方程为 ,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u ))解:程序代码:>> v=0:pi/100:2*pi; >> u=-pi/2:pi/100:pi/2; >> [U,V]=meshgrid(u,v); >> x=sec(U).*sin(V); >> y=2*sec(U).*cos(V); >> z=3*tan(U); >> surf(x,y,z)44 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.解:程序代码:>> x=-2:0.01:2;[x,y]=meshgrid(x); >> z=x.*y;>> mesh(x,y,z);46 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π 的图形.解:程序代码:>> v=0.001:0.001:2; >> u=0:pi/100:4*pi;>> [U,V]=meshgrid(u,v); >> x=cos(U).*sin(V); >> y=sin(U).*sin(V);>> z=cos(V)+log(tan(V/2)+U/5); >> mesh(x,y,z);空间曲线48 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形. 解:程序代码:>> syms t;ezplot3(t*cos(t),t*sin(t),2*t,[0,6*pi])-1010-20-100100xx = t cos(t), y = t sin(t), z = 2 tz50绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形.解:程序代码:>> t=-2*pi:pi/100:2*pi;x=cos(t).*cos(t);y=1./(1+2*t);z=atan(t); plot3(x,y,z);grid;xlabel('x'),ylabel('y'),zlabel('z')xyz多元函数微积分实验6 多元函数微分学(基础实验)实验目的 掌握利用Matlab 计算多元函数偏导数和全微分的方法, 掌握计算二元函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.求多元函数的偏导数与全微分52设),(cos )sin(2xy xy z +=求.,,,222yx zx z y z x z ∂∂∂∂∂∂∂∂∂解:程序代码:>> syms x y;S=sin(x*y)+(cos(x*y))^2; D1=diff(S,'x',1); D2=diff(S,'y',1); D3=diff(S,'x',2); D4=diff(S,'y',2); D1,D2,D3,D4答案: D1 = cos(x*y)*y-2*cos(x*y)*sin(x*y)*yD2 = cos(x*y)*x-2*cos(x*y)*sin(x*y)*xD3 =-sin(x*y)*y^2+2*sin(x*y)^2*y^2-2*cos(x*y)^2*y^2 D4 = -sin(x*y)*x^2+2*sin(x*y)^2*x^2-2*cos(x*y)^2*x^2实验7 多元函数积分学(基础实验)实验目的掌握用Matlab 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.计算重积分54计算,2dxdy xyD⎰⎰ 其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.解:程序代码:>> syms x y;int(int(x*y^2,x,2-y,sqrt(y)),y,1,2) 答案:ans =193/120 重积分的应用56求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 解:程序代码:>> int(2*pi*r,r,0,2) 答案: ans =4*pi无穷级数与微分方程实验8 无穷级数(基础实验) 实验目的观察无穷级数部分和的变化趋势,进一步理解级数的审敛法以及幂级数部分和对函数的 逼近. 掌握用Matlab 求无穷级数的和, 求幂级数的收敛域, 展开函数为幂级数以及展 开周期函数为傅里叶级数的方法.数项级数58(1) 观察级数∑∞=121n n的部分和序列的变化趋势.解:程序代码:for i=1:100 s=0; for n=1:i s=s+1/n^2; endplot(i,s,'.');hold on; end(2) 观察级数∑∞=11n n 的部分和序列的变化趋势.>> for i=1:100 s=0; for n=1:i s=s+1/n; endplot(i,s,'.'); hold on; end60 求∑∞=++123841n n n的值.解:程序代码:>> syms n;score=symsum(1/(4*n^2+8*n+3),1,inf) 答案: score =1/6函数的幂级数展开62求x arctan 的5阶泰勒展开式. >> syms x;>> T5=taylor(atan(x),6)答案:T5 =x-1/3*x^3+1/5*x^5实验9 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用 Matlab 求微分方程及方程组解的常用命令和方法.求解微分方程64求微分方程 22x xe xy y -=+'的通解. 解:程序代码:>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') 答案:y =(1/2*x^2+C1)*exp(-x^2)66求微分方程x e y y y x 2cos 52=+'-''的通解. 解:程序代码:>> y=dsolve('D2y-2*Dy+5*y=exp(x)*cos(2*x)','x') 答案: y =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/4*exp(x)*sin(2*x)*x68求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dxt 在初始条件0,100====t t y x 下的特解.解:程序代码:>> [x,y]=dsolve('Dx+x+2*y-exp(t)','Dy-x-y','x(0)=1','y(0)=0','t') 答案: x = cos(t)y = 1/2*sin(t)-1/2*cos(t)+1/2*exp(t)70求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 解:程序代码:>> syms x yy=dsolve('Dy-2*y/(x+1)-(x+1)^(5/2)','x') 答案:y =(2/3*(x+1)^(3/2)+C1)*(x+1)^2 做积分曲线 由>> syms x yx=linspace(-5,5,100); C=input('请输入C 的值:'); y=(2/3*(x+1).^(3/2)+C).*(x+1).^2; plot(x,y)例如对应有: 请输入C 的值:2 请输入C 的值:20矩阵运算与方程组求解实验10 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Matlab 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.矩阵A 的转置函数Transpose[A]72 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛411365243271的转置. 解:程序代码:>> A=[1,7,2;3,4,2;5,6,3;1,1,4]; >> Sove=A' 答案:Sove =1 3 5 1 7 4 6 12 234 矩阵线性运算 73设,291724,624543⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=B A 求.24,A B B A -+ 解:程序代码:>> A=[3,4,5;4,2,6]; B=[4,2,7;1,9,2];S1=A+BS2=4*B-2*A答案:S1 =7 6 125 11 8S2 =10 0 18-4 32 -474设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 解:程序代码:>> ma=[3,4,5,2;4,2,6,3];>> mb=[4,2,7;1,9,2;0,3,5;8,4,1];>> Sove=ma*mb答案:Sove =32 65 5642 56 65矩阵的乘法运算 75设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A解:程序代码:>> A=[4 2 7;1 9 2;0 3 5];B=[1;0;1];>> AB=A*BAB =1135>> BTA=B'*ABTA =4 5 12>> A3=A^3A3 =119 660 555141 932 44454 477 260求方阵的逆76 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 求.1-A 解:程序代码:>> A=[2,1,3,2;5,2,3,3;0,1,4,6;3,2,1,5];Y=inv(A)答案:Y =-1.7500 1.3125 0.5000 -0.68755.5000 -3.6250 -2.0000 2.37500.5000 -0.1250 0.0000 -0.1250-1.2500 0.6875 0.5000 -0.312577 设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B A 求.1B A - 解:程序代码:>> A=[3 0 4 4 ;2 1 3 3 ;1 5 3 4;1 2 1 5];B=[0 3 2 ;7 1 3;1 3 3 ;1 2 2];Solve=A'*B答案:Solve =16 16 1714 20 2225 26 2830 37 3978 解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x解:程序代码:>> A=[3 2 1;1 -1 3;2 4 -4];b=[7 6 -2];>> A\b'答案:ans =1.00001.00002.0000求方阵的行列式79 求行列式 .3351110243152113------=D 解:程序代码:>> A=[3,1,-1,2;-5,1,3,-4;2,0,1,-1;1,-5,3,-3];D=det(A)答案:D =4080求.11111111111122222222d d d d c c c c b b b b a a a a D ++++= 解:程序代码:>> syms a b c d;D=[a^2+1/a^2 a 1/a 1;b^2+1/b^2 b 1/b 1;c^2+1/c^2 c 1/c 1;d^2+1/d^2 d 1/d 1];det(D)答案:ans =-(-c*d^2*b^3+c^2*d*b^3-c^3*d^2*a+c^3*d*a^2*b^4+c*d^2*a^3-c^3*d^2*a*b^4-c^2*d*a^3-c*d^2*b^3*a^4+c^2*d*b^3*a^4+c^3*d^2*b*a^4-c^3*d*b^2*a^4-c^2*d^3*b*a^4+c*d^3*b^2*a^4+c*d ^2*a^3*b^4-c^2*d*a^3*b^4+c^3*d^2*b-c^3*d*b^2-c^2*d^3*b+c*d^3*b^2+c^3*d*a^2+c^2*d^3*a-c *d^3*a^2-b*d^2*a^3+b^2*d*a^3+b^3*d^2*a-b^3*d*a^2-b^2*d^3*a+b*d^3*a^2+b*c^2*a^3-b^2*c*a ^3-b^3*c^2*a+b^3*c*a^2+b^2*c^3*a-b*c^3*a^2+c^2*d^3*a*b^4-c*d^3*a^2*b^4-b*d^2*a^3*c^4+b ^2*d*a^3*c^4+b^3*d^2*a*c^4-b^3*d*a^2*c^4-b^2*d^3*a*c^4+b*d^3*a^2*c^4+b*c^2*a^3*d^4-b^2*c*a^3*d^4-b^3*c^2*a*d^4+b^3*c*a^2*d^4+b^2*c^3*a*d^4-b*c^3*a^2*d^4)/a^2/c^2/d^2/b^281 计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x 解:程序代码:>> syms x1 x2 x3 x4 x5; >> A=[1,1,1,1,1;x1,x2,x3,x4,x5;x1^2,x2^2,x3^2,x4^2,x5^2;x1^3,x2^3,x3^3,x4^3,x5^3;x1^4,x2^4,x3^4,x4^4,x5^4];>> DC=det(A);>> DS=simple(DC)答案:DS =(-x5+x4)*(x3-x5)*(x3-x4)*(-x5+x2)*(x2-x4)*(x2-x3)*(-x5+x1)*(x1-x4)*(x1-x3)*(x1-x2)82 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 解:程序代码:>> A=[3,7,2,6,-4;7,9,4,2,0;11,5,-6,9,3;2,7,-8,3,7;5,7,9,0,-6];>> D=det(A),T=trace(A),A3=A^3答案:D =11592T =3A3=726 2062 944 294 -3581848 3150 26 1516 2281713 2218 31 1006 4041743 984 -451 1222 384801 2666 477 745 -125向量的内积83 求向量}3,2,1{=u 与}0,1,1{-=v 的内积.解:程序代码:>> u=[1 2 3];v=[1 -1 0];solve=dot(u,v)答案:solve =-184设,001001⎪⎪⎪⎭⎫⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数).解:程序代码:>> syms r;>> A=[r,1,0;0,r,1;0,0,r];>> A^10答案:ans =[ r^10, 10*r^9, 45*r^8][ 0, r^10, 10*r^9][ 0, 0, r^10]85.求⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++a a a a a 1111111111111111111111111的逆.解:程序代码:>> syms aA=[1+a,1,1,1,1;1,1+a,1,1,1;1,1,1+a,1,1;1,1,1,1+a,1;1,1,1,1,1+a];solve=inv(A)答案:solve =[ 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5),-1/a/(a+5)] [ -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5),-1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5)] 实验11 矩阵的秩与向量组的极大无关组实验目的 学习利用Matlab 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 求矩阵的秩86 设,815073*********⎪⎪⎪⎭⎫ ⎝⎛-------=M 求矩阵M 的秩.解:程序代码:>> M=[3,2,-1,-3,-2;2,-1,3,1,-3;7,0,5,-1,-8];R=rank(M)答案:R=2向量组的秩87求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩.解:程序代码:>> A=[1,2,-1,1;0,-4,5,-2;2,0,3,0];R=rank(A)答案:R =288向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关?解:由>> A=[1 1 2 3;1 -1 1 1;1 3 4 5;3 1 5 7];rank(A)ans = 3即rank(A)=3 小于阶数489向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关?解:由>> A3=[2,2,7;3,-1,2;1,1,3];R=rank(A3)得 R = 3即rank(A3)=3 等于阶数3故向量组线性无关。

Matlab实验一答案

Matlab实验一答案

MATLAB 实验一答案1.3 先自定义一个变量,然后分别用8种不同的数字显示格式显示查看。

>> a=pia =3.1416>> format long>> aa =3.14159265358979>> format short>> aa =3.1416>> format short e>> aa =3.1416e+000>> format long e>> aa =3.141592653589793e+000>> format hex>> aa =400921fb54442d18>> format bank>> aa =3.14>> format +>> aa =+>> format rat>> aa =355/1131.4 下面的语句用于画出函数()0.22x y x e -=在[0,10]区间的值x = 0:0.1:10;y = 2*exp(-0.2*x);plot(x,y)1.5 用Matlab 编辑器创建一个m 文件,把上述语句写入这个m 文件并命名为“test1.m ”,保存在当前路径中,然后在命令窗中键入test1,观察结果和运行程序后工作空间的变化.工作空间和结果均与1.4一样1.6 如何清空工作区间数据?键入 clear ;如何关闭图像窗口?键入close ;除了在命令窗输入文件名,还可以怎样运行一个m 文件程序?点击file ,打开m 文件,点击Run 按钮,运行m 文件程序。

1.7 通过以下两种方式得到关于exp 函数的帮助:(1) 在命令窗中输入help exp 命令;(2) 运用帮助空间窗口。

思考,用什么指令可以直接打开帮助空间中关于exp 函数的说明?键入doc exp1.8 假设x =3,y = 4,用Matlab 计算下列表达式:(1) ()232x y x y - (2) 43x y (3) 24x x π- (4) 33x x x y- >> x=3,y=4;>> x^2*(y^3)/(x-y)^2ans =576>> 4*x/(3*y)ans =1>> 4/x*(pi*x^(-2))ans =0.4654>> x^3/(x^3-y^x)ans =-0.72971.9 在当前目录下创建一个m文件,键入以下程序并保存,先把文件保存为“2.m”,运行后观察结果,总结m文件的文件名(包括Matlab标识符)命名规则。

MATLAB全部实验及答案

MATLAB全部实验及答案

MATLAB全部实验及答案MATLAB全部实验及答案实验一、MATLAB基本操作实验内容及步骤4、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B 与A.*B?A*B就是线代里面的矩阵相乘A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2?(4)设a=[1 -2 3;4 5 -4;5 -6 7]请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全下标的形式),并将其单下标转换成全下标。

clear,clca=[1 -2 3;4 5 -4;5 -6 7];[x,y]=find(a<0);c=[];for i=1:length(x)c(i,1)=a(x(i),y(i));c(i,2)=x(i);c(i,3)=y(i);c(i,4)=(y(i)-1)*size(a,2)+x(i);endc(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那个是虚数矩阵,后面那个出错(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?a^2= 22 16 1625 26 2326 24 28a.^2=1 4 99 16 425 4 9(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) 转化为列向量(8)使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0方法一:clear,clcdata=[2 8 1 4 6];ir=[1 1 2 3 4 ];jc=[1 3 4 2 1];s=sparse(ir,jc,data,4,4);full(s)方法二:不用三元组法clear,clca=zeros(4,4);a(1,[1,3])=[2,8];a(2,4)=1;a(3,2)=4;a(4,1)=6;a(9)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B5、已知+?=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。

数学实验(MATLAB)课后习题答案

数学实验(MATLAB)课后习题答案

数学实验练习2.1画出下列常见曲线的图形。

(其中a=1,b=2,c=3)1、立方抛物线3xy=解:x=-5:0.1:0;y=(-x).^(1/3);y=-y;x=0:0.1:5;y=[y,x.^(1/3)];x=[-5:0.1:0,0:0.1:5];plot(x,y)2、高斯曲线2x e=y-解:fplot('exp(-x.^2)',[-5,5])3、笛卡儿曲线)3(13,1333222axy y x t at y t at x =++=+=解:ezplot('x.^3+y.^3-3*x*y',[-5,5])xyx.3+y.3-3 x y = 0或t=-5:0.1:5; x=3*t./(1+t.^2); y=3*t.^2./(1+t.^2); plot(x,y)4、蔓叶线)(1,1322322xa x y t at y t at x -=+=+=解:ezplot('y.^2-x.^3/(1-x)',[-5,5])xyy.2-x.3/(1-x) = 0或t=-5:0.1:5; x=t.^2./(1+t.^2); y=t.^3./(1+t.^2); plot(x,y)5、摆线)cos 1(),sin (t b y t t a x -=-= 解:t=0:0.1:2*pi;x=t-sin(t); y=2*(1-cos(t)); plot(x,y)6、星形线)(sin ,cos 32323233a y x t a y t a x =+== 解:t=0:0.1:2*pi; x=cos(t).^3; y=sin(t).^3;plot(x,y)或ezplot('x.^(2/3)+y.^(2/3)-1',[-1,1])xyx.2/3+y.2/3-1 = 07、螺旋线ct z t b y t a x ===,sin ,cos 解:t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z) grid on8、阿基米德螺线θa r = 解:x =0:0.1:2*pi; r=x; polar(x,r)902701809、对数螺线θa e r = 解:x =0:0.1:2*pi; r=exp(x); polar(x,r)90270180010、双纽线))()((2cos 22222222y x a y x a r -=+=θ 解:x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-(x.^2-y.^2)',[-1,1]) grid onxy(x.2+y.2).2-(x.2-y.2) = 011、双纽线)2)((2sin 222222xy a y x a r =+=θ 解:x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-2*x*y',[-1,1]) grid onxy(x.2+y.2).2-2 x y = 012、心形线)cos 1(θ+=a r 解:x =0:0.1:2*pi; r=1+cos(x); polar(x,r)90270练习2.21、求出下列极限值。

Matlab实验及答案-推荐下载

Matlab实验及答案-推荐下载
a.^2= 149 9 16 4 25 4 9
(7) 有一段指令如下,请思考并说明运行结果及其原因 clear
X=[1 2;8 9;3 6]; X( : ) 转化为列向量
>> clear >> X=[1,2;8,9;3,6]; >> X(:) ans =
1 8 3 2 9 6 (8) 使用 help 命令,明白什么是稀疏矩阵 sparse( ),并用采用两种方法创
实验一、MATLAB 基本操作
一、实验目的
2.学习使用图形函数计算器命令 funtool 及其环境。 3. 学习使用 help 命令进行帮助 4. 掌握向量与矩阵的创建以及矩阵的基本操作 5. 掌握数组与矩阵的概念 二、 实验内容
熟悉 Matlab 操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会 使用 format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入, 并进行简单的计算;掌握数组与矩阵的概念;学会使用 help 命令进行帮助;学 会使用 who 和 whos 命令查看内存变量信息;学会使用图形函数计算器 funtool;
Error: Unbalanced or misused parentheses or brackets. 前面那个是虚数矩阵,后面那个出错 (6) 请写出完成下列计算的指令:
a=[1 2 3;3 4 2;5 2 3],求 a^2=?,a.^2=?
a^2= 22 16 16 25 26 23 26 24 28
并将其单下标转换成全下标。
clear,clc
a=[1 -2 3;4 5 -4;5 -6 7];
b=find(a<0)
[x,y]=ind2sub(size(a),find(a<0))

东北大学MATLAB实验答案

东北大学MATLAB实验答案

东北大学《MATLAB语言与应用》实验东北大学MATLAB实验课习题答案第一部分MATLAB语言编程、科学绘图与基本数学问题求解2、>> A=[1,2,3,4;4,3,2,1;2,3,4,1;3,2,4,1]A =1 2 3 44 3 2 12 3 4 13 24 1B=[1+4j,2+3j,3+2j,4+1j;4+1j,3+2j,2+3j,1+4j;2+3j,3+2j,4+1j,1+4j;3+2j,2+3j,4+1j,1+4j]B =1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i 1.0000 + 4.0000i3.0000 + 2.0000i 2.0000 + 3.0000i4.0000 + 1.0000i 1.0000 + 4.0000i >> A(5,6)=5A =1 2 3 4 0 04 3 2 1 0 02 3 4 1 0 03 24 1 0 00 0 0 0 0 53、A=magic(8)A =64 2 3 61 60 6 7 579 55 54 12 13 51 50 1617 47 46 20 21 43 42 2440 26 27 37 36 30 31 3332 34 35 29 28 38 39 2541 23 22 44 45 19 18 4849 15 14 52 53 11 10 568 58 59 5 4 62 63 1 >> B=A(2:2:end,:)B =9 55 54 12 13 51 50 1640 26 27 37 36 30 31 3341 23 22 44 45 19 18 488 58 59 5 4 62 63 1 4.i=0:63;s=sum(2.^i)s =1.8447e+0195、(1) >> z=sin(1./t);Warning: Divide by zero.>> plot(t,z)-1-0.8-0.6-0.4-0.20.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.81(2)>> t=[-pi:0.05:-1.8,-1.799:.001:-1.2,-1.2:0.05:1.2,1.201:0.001:1.8,1.81:0.05:pi]; >> y=sin(tan(t))-tan(sin(t)); >> plot(t,y)-4-3-2-101234-3-2-11236.三视图>> surf(x,y,z),shading flat;zlim([0,15])>> xx=[-2:.1:-1.2,-1,1:0.02:-0.9,-0.8:0.1:0.8,0.9:0.02:1.1,1.2:0.1:2]; >> yy=[-1:0.1:-0.2,-0.1:0.02:0.1,0.2:.1:1];>> [x,y]=meshgrid(xx,yy);>> subplot(224),surf(x,y,z)>> subplot(221),surf(x,y,z),view(0,90);>> subplot(222),surf(x,y,z),view(90,0);>> subplot(223),surf(x,y,z),view(0,0);1-2-1012-1-0.500.51-1-0.500.510204060-2-11202040607.(1)>> syms x;f=(3.^x+9.^x)^(1./x);L=limit(f,x,inf) L = 9(2)>>syms x y;f=x*y/(sqrt(x*y+1)-1);L1=limit(limit(f,x,0),y,0) L1 = 2 (3)>> syms x y;>> f=(1-cos(x^2+y^2))/((x^2+y^2)*exp(x^2+y^2)); >> L=limit(limit(f,x,0),y,0) L = 08.先建立M文件:function result=paradiff(y,x,t,n)if mod(n,1)~=0,error('n should positive integer,please correct') elseif n==1,result=diff(y,t)/diff(x,t);else,result=diff(paradiff(y,x,t,n-1),t)/diff(x,t);end,end然后调用函数:>> syms t;x=log(cos(t));y=cos(t)-t*sin(t);>> f=paradiff(y,x,t,1);>> [n,d]=numden(f);>> F=simple(n)/simple(d)F =(2*sin(t)+t*cos(t))*cos(t)/sin(t)>> syms t;x=log(cos(t));y=cos(t)-t*sin(t);>> f=paradiff(y,x,t,1);>> syms t;x=log(cos(t));y=cos(t)-t*sin(t);>> f=paradiff(y,x,t,2);>> [n,d]=numden(f);>> F=simple(n)/simple(d)F =-cos(t)*(3*cos(t)^2*sin(t)+cos(t)^3*t-2*sin(t)-2*t*cos(t))/sin(t)^3 >> subs(F,t,pi/3)ans =1.53879.>> syms x y t;>> f=exp(-t^2);>> I=simple(int(f,t,0,x*y))I =1/2*pi^(1/2)*erf(x*y)>> F=x/y*diff(I,x,2)-2*diff(diff(I,x),y)+diff(I,y,2)F =2*x^2*y^2*exp(-x^2*y^2)-2*exp(-x^2*y^2)-2*x^3*y*exp(-x^2*y^2) >> K=simple(F)K =-2*exp(-x^2*y^2)*(-x^2*y^2+1+x^3*y)10.(1)>> syms n;>> S=symsum(1/((2*n)^2-1),n,1,inf)S =1/2(2)>> syms k n>> limit(n*symsum(1/(n^2+k*pi),k,1,n),n,inf)ans =111.(1)>> syms t;>> syms a positive;>> x=a*(cos(t)+t*sin(t));>> y=a*(sin(t)-t*cos(t));>> I=int((x^2+y^2)*sqrt(diff(x,t)^2+diff(y,t)^2),t,0,2*pi)I =2*a^3*pi^2+4*a^3*pi^4(2)>> syms t;>> syms a b c positive;>> x=c/a*cos(t);>> y=c/b*sin(t);>> F=[y*x^3+exp(y),x*y^3+x*exp(y)-2*y];>> ds=[diff(x,t);diff(y,t)];>> I=int(F*ds,t,pi,0)I =2/15*c*(-2*c^4+15*b^4)/a/b^412.首先编写M程序:function A=vander(v)n=length(v);v=v(:);A=sym(ones(n));for j=n-1:-1:1,A(:,j)=v.*A(:,j+1);end>> syms a b c d e;>> A=[a,b,c,d,e];>> V=vander(A)V =[ a^4, a^3, a^2, a, 1][ b^4, b^3, b^2, b, 1][ c^4, c^3, c^2, c, 1][ d^4, d^3, d^2, d, 1][ e^4, e^3, e^2, e, 1]>> det(V),simple(ans)ans =(c-d)*(b-d)*(b-c)*(a-d)*(a-c)*(a-b)*(-d+e)*(e-c)*(e-b)*(e-a) 13.>> A=[-2,0.5,-0.5,0.5;0,-1.5,0.5,-0.5;2,0.5,-4.5,0.5;2,1,-2,-2]; >> [V J]=jordan(sym(A))V =[ 0, 1/2, 1/2, -1/4][ 0, 0, 1/2, 1][ 1/4, 1/2, 1/2, -1/4][ 1/4, 1/2, 1, -1/4]J =[ -4, 0, 0, 0][ 0, -2, 1, 0][ 0, 0, -2, 1][ 0, 0, 0, -2]14.先编写M文件:function X=lyap(A,B,C)if nargin==2,C=B;B=A';end[nr,nc]=size(C);A0=kron(A,eye(nc))+kron(eye(nr),B');tryC1=C';x0=-inv(A0)*C1(:);X=reshape(x0,nc,nr)';catch,error('singular matrix found.'),end数值解为:>> A=[3,-6,-4,0,5;1,4,2,-2,4;-6,3,-6,7,3;-13,10,0,-11,0;0,4,0,3,4]; >> B=[3,-2,1;-2,-9,2;-2,-1,9];>> C=[-2,1,-1;4,1,2;5,-6,1;6,-4,-4;-6,6,-3];>> X=lyap(A,B,C)X =-4.0569 -14.5128 1.56530.0356 25.0743 -2.74089.4886 25.9323 -4.41772.6969 21.6450 -2.88517.7229 31.9100 -3.7634>> norm(A*X+X*B+C)ans =3.9870e-013解析解为:>> X=lyap(sym(A),B,C)X =[ -434641749950/107136516451, -4664546747350/321409549353, 503105815912/321409549353][ 3809507498/107136516451, 8059112319373/321409549353, -880921527508/321409549353][ 1016580400173/107136516451, 8334897743767/321409549353, -1419901706449/321409549353][ 288938859984/107136516451, 6956912657222/321409549353, -927293592476/321409549353][ 827401644798/107136516451, 10256166034813/321409549353, -1209595497577/321409549353]>> A*X+X*B+Cans =[ 0, 0, 0][ 0, 0, 0][ 0, 0, 0][ 0, 0, 0][ 0, 0, 0]15.(1)>> A=[-4.5,0,0.5,-1.5;-0.5,-4,0.5,-0.5;1.5,1,-2.5,1.5;0,-1,-1,-3];>> A=sym(A);syms t;>> expm(A*t)ans =[ 1/2*exp(-5*t)+1/2*exp(-3*t)-1/2*t*exp(-3*t)+1/2*t^2*exp(-3*t), t*exp(-3*t)-1/2*exp(-3*t)+1/2*exp(-5*t),1/2*t^2*exp(-3*t)+1/2*t*exp(-3*t),1/2*t^2*exp(-3*t)-1/2*t*exp(-3*t)-1/2*exp(-3*t)+1/2*exp(-5*t)][ -1/2*exp(-3*t)+1/2*exp(-5*t)+1/2*t*exp(-3*t), 1/2*exp(-5*t)+1/2*exp(-3*t),1/2*t*exp(-3*t),-1/2*exp(-3*t)+1/2*exp(-5*t)+1/2*t*exp(-3*t)][ 1/2*exp(-3*t)-1/2*exp(-5*t)+1/2*t*exp(-3*t), 1/2*exp(-3*t)-1/2*exp(-5*t),1/2*t*exp(-3*t)+exp(-3*t),1/2*exp(-3*t)-1/2*exp(-5*t)+1/2*t*exp(-3*t)][ -1/2*t^2*exp(-3*t), -t*exp(-3*t), -t*exp(-3*t)-1/2*t^2*exp(-3*t), exp(-3*t)-1/2*t^2*exp(-3*t)](2)编写M程序function F=funm(A,fun,x)[V,J]=jordan(A);v1=[0,diag(J,1)'];v2=[find(v1==0),length(v1)+1];for i=1:length(v2)-1v_lambda(i)=J(v2(i),v2(i));v_n(i)=v2(i+1)-v2(i);endm=length(v_lambda);F=sym([]);for i=1:mJ1=J(v2(i):v2(i)+v_n(i)-1,v2(i):v2(i)+v_n(i)-1);fJ=funJ(J1,fun,x);F=diagm(F,fJ);endF=V*F*inv(V);function fJ=funJ(J,fun,x)lam=J(1,1);f1=fun;fJ=subs(fun,x,lam)*eye(size(J));H=diag(diag(J,1),1);H1=H;for i=2:length(J)f1=diff(f1,x);a1=subs(f1,x,lam);fJ=fJ+a1*H1;H1=H1*H/i;endfunction A=diagm(A1,A2)A=A1;[n,m]=size(A);[n1,m1]=size(A2);A(n+1:n+n1,m+1:m+m1)=A2;>> A=[-4.5,0,0.5,-1.5;-0.5,-4,0.5,-0.5;1.5,1,-2.5,1.5;0,-1,-1,-3];>> syms x t;>> A1=funm(sym(A),sin(x*t),x)A1 =[ -1/2*sin(5*t)+1/2*sin(3*t)*t^2-1/2*cos(3*t)*t-1/2*sin(3*t), -1/2*sin(5*t)+cos(3*t)*t+1/2*sin(3*t),1/2*cos(3*t)*t+1/2*sin(3*t)*t^2,-1/2*sin(5*t)+1/2*sin(3*t)+1/2*sin(3*t)*t^2-1/2*cos(3*t)*t][ -1/2*sin(5*t)+1/2*cos(3*t)*t+1/2*sin(3*t), -1/2*sin(5*t)-1/2*sin(3*t),1/2*cos(3*t)*t, -1/2*sin(5*t)+1/2*cos(3*t)*t+1/2*sin(3*t)] [ 1/2*sin(5*t)+1/2*cos(3*t)*t-1/2*sin(3*t), 1/2*sin(5*t)-1/2*sin(3*t),-sin(3*t)+1/2*cos(3*t)*t,1/2*sin(5*t)+1/2*cos(3*t)*t-1/2*sin(3*t)][ -1/2*sin(3*t)*t^2, -cos(3*t)*t, -cos(3*t)*t-1/2*sin(3*t)*t^2, -sin(3*t)-1/2*sin(3*t)*t^2](3)>> A=[-4.5,0,0.5,-1.5;-0.5,-4,0.5,-0.5;1.5,1,-2.5,1.5;0,-1,-1,-3];>> syms x t;>> A1=funm(sym(A),exp(x*t)*sin(x^2*exp(x*t)*t),x)A1 =[ 1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t^2*exp(-3*t)*sin(9*exp(-3*t)*t)+t*exp(-3* t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*exp(-3* t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))^2+1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(2*exp( -3*t)*t-12*t^2*exp(-3*t)+9*t^3*exp(-3*t))-1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)-1/2*e xp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9* exp(-3*t)*t),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+t*exp(-3*t)*sin(9*exp(-3*t)*t)+exp(-3*t)*cos(9* exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*exp(-3*t)*t),1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)* t+9*t^2*exp(-3*t))+1/2*t^2*exp(-3*t)*sin(9*exp(-3*t)*t)+t*exp(-3*t)*cos(9*exp(-3 *t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))^2+1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(2*exp(-3*t)*t-12*t^2 *exp(-3*t)+9*t^3*exp(-3*t)),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)-1/2*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*t^2*exp(-3 *t)*sin(9*exp(-3*t)*t)+t*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3 *t))-1/2*exp(-3*t)*sin(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))^2+1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(2*exp(-3*t)*t-12*t^2*exp(-3*t)+9*t^3*exp(-3*t))-1/2*t*ex p(-3*t)*sin(9*exp(-3*t)*t)-1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2* exp(-3*t))][1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t) *cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*exp(-3*t) *t),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*exp(-3*t)*sin(9*exp(-3*t)*t),1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)* t+9*t^2*exp(-3*t)),1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))-1/2*exp(-3*t)*sin(9*exp(-3*t) *t)][-1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t )*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*exp(-3* t)*t),-1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*exp(-3*t)*sin(9*exp(-3*t)*t),exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t)*cos( 9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t)),-1/2*exp(-5*t)*sin(25*exp(-5*t)*t)+1/2*t*exp(-3*t)*sin(9*exp(-3*t)*t)+1/2*exp(-3*t )*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*exp(-3* t)*t)][-1/2*t^2*exp(-3*t)*sin(9*exp(-3*t)*t)-t*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t) *t+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))^2-1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(2*exp(-3*t)*t-12*t^2*exp(-3*t)+9*t^3*e xp(-3*t)),-t*exp(-3*t)*sin(9*exp(-3*t)*t)-exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2 *exp(-3*t)),-t*exp(-3*t)*sin(9*exp(-3*t)*t)-exp(-3*t)*cos(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2 *exp(-3*t))-1/2*t^2*exp(-3*t)*sin(9*exp(-3*t)*t)-t*exp(-3*t)*cos(9*exp(-3*t)*t)*(-6 *exp(-3*t)*t+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9* t^2*exp(-3*t))^2-1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(2*exp(-3*t)*t-12*t^2*exp(-3*t) +9*t^3*exp(-3*t)),exp(-3*t)*sin(9*exp(-3*t)*t)-1/2*t^2*exp(-3*t)*sin(9*exp(-3*t)*t)-t*exp(-3*t)*cos(9 *exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))+1/2*exp(-3*t)*sin(9*exp(-3*t)*t)*(-6*exp(-3*t)*t+9*t^2*exp(-3*t))^2-1/2*exp(-3*t)*cos(9*exp(-3*t)*t)*(2*exp(-3*t)*t-12*t^2*exp(-3*t)+9*t^3*exp(-3*t))]第二部分数学问题求解与数据处理1.(1)>> syms a t;>> f=sin(a*t)/t;laplace(f)ans =atan(a/s)(2)>> syms t a;f=t^5*sin(a*t);laplace(f)ans =60*i*(-1/(s-i*a)^6+1/(s+i*a)^6)(3)>> syms t a;>> f=t^8*cos(a*t);laplace(f)ans =20160/(s-i*a)^9+20160/(s+i*a)^92.(1)>> syms s a b;F=1/(s^2*(s^2-a^2)*(s+b));ilaplace(F)ans =1/2/a^3/b^2/(a^2-b^2)*(2*t*a*b^3+2*(1-exp(-b*t)-b*t)*a^3+( -2*a+exp(a*t)*(a-b)+exp(-a*t)*(a+b))*b^2)(2)>> syms a b s;F=sqrt(s-a)-sqrt(s-b);ilaplace(F)ans =1/2/t^(3/2)/pi^(1/2)*(exp(b*t)-exp(a*t))(3)>> syms a b s; F=log((s-a)/(s-b));ilaplace(F)ans =(exp(b*t)-exp(a*t))/t3(1)>> syms x;f=x^2*(3*sym(pi)-2*abs(x));F=fourier(f) F =-6*(4+pi^2*dirac(2,w)*w^4)/w^4>> ifourier(F)ans =x^2*(-4*x*heaviside(x)+3*pi+2*x)(2)>> syms t;f=t^2*(t-2*sym(pi))^2;F=fourier(f)F =2*pi*(dirac(4,w)-4*pi^2*dirac(2,w)+4*i*pi*dirac(3,w)) >> ifourier(F)ans =x^2*(-2*pi+x)^24.(1)>> syms k a T;f=cos(k*a*T);F=ztrans(f)(z-cos(a*T))*z/(z^2-2*z*cos(a*T)+1)>> f1=iztrans(F)f1 =cos(a*T*n)(2)>> syms k T a;f=(k*T)^2*exp(-a*k*T);F=ztrans(f)F =T^2*z*exp(-a*T)*(z+exp(-a*T))/(z-exp(-a*T))^3>> f1=iztrans(F)f1 =T^2*(1/exp(a*T))^n*n^2(3)>> syms a k T;f=(a*k*T-1+exp(-a*k*T))/a;>> F=ztrans(f)F =1/a*(a*T*z/(z-1)^2-z/(z-1)+z/exp(-a*T)/(z/exp(-a*T)-1)) >> iztrans(F)ans =(-1+a*T*n+(1/exp(a*T))^n)/a5.用数值方法求解(1)>> syms x;>> x1=solve('exp(-(x+1)^2+pi/2)*sin(5*x+2)')x1 =-2/5验证过程>> subs('exp(-(x+1)^2+pi/2)*sin(5*x+2)',x,x1)ans =(2)>> syms x;>> y1=solve('(x^2+y^2+x*y)*exp(-x^2-y^2-x*y)=0','y')y1 =(-1/2+1/2*i*3^(1/2))*x(-1/2-1/2*i*3^(1/2))*x验证过程>>y2=simple(subs('(x^2+y^2+x*y)*exp(-x^2-y^2-x*y)=0','y',y1)) y2 =(x^2+(-1/2+1/2*i*3^(1/2))^2*x^2+x^2*(-1/2+1/2*i*3^(1/2)))* exp(-x^2-(-1/2+1/2*i*3^(1/2))^2*x^2-x^2*(-1/2+1/2*i*3^(1/2) )) = 0(x^2+(-1/2-1/2*i*3^(1/2))^2*x^2+x^2*(-1/2-1/2*i*3^(1/2)))*e xp(-x^2-(-1/2-1/2*i*3^(1/2))^2*x^2-x^2*(-1/2-1/2*i*3^(1/2))) = 06.首先求出积分:>> syms x c;y=int((exp(x)-c*x)^2,x,0,1)y =-1/2-2*c+1/2*exp(2)+1/3*c^2编写一个出M文件:function y=new(c)y=-1/2-2*c+1/2*exp(2)+1/3*c^2;>> x=fminsearch('new',0)x =3.00007.编写M文件:function [c,ce]=f2(x);ce=[];c=[x(1)+x(2);x(1)*x(2)-x(1)-x(2)+1.5;-10-x(1)*x(2)];>> f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); >> A=[];B=[];Aeq=[];Beq=[];xm=[-10;-10];xM=[10;10];>> x0=(xm+xM)/2;>> ff=optimset;ff.TolX=1e-10;ff.TolFun=1e-20;>> x=fmincon(f,x0,A,B,Aeq,Beq,xm,xM,@f2,ff)Maximum number of function evaluations exceeded;increase OPTIONS.MaxFunEvals.x =0.41950.4195>> i=1;x=x0;>> while (1)[x,a,b]=fmincon('f',x,A,B,Aeq,Beq,xm,xM,'f2',ff);if b>0,break;endi=i+1;end>> x,ix =1.1825-1.7398i =58书上所描述的ipslv_mex下载地址已经失效了,其他网站上也没有这个函数的下载地址,所以这个题目没有找到该函数,运行失败。

(完整版)MATLAB)课后实验答案[1]

(完整版)MATLAB)课后实验答案[1]

实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。

解: M 文件如下;5. 下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程的解。

(2) 将方程右边向量元素b 3改为0.53再求解,并比较b 3的变化和解的相对变化。

(3) 计算系数矩阵A 的条件数并分析结论。

解: M 文件如下: 123d4e56g9实验三 选择结构程序设计1. 求分段函数的值。

2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。

MATLAB数学实验课后答案

MATLAB数学实验课后答案

数学实验MATLAB参考答案(重要部分)P20,ex1(5) 等于[exp(1),exp(2);exp(3),exp(4)](7) 3=1*3, 8=2*4(8) a为各列最小值,b为最小值所在的行号(10) 1>=4,false, 2>=3,false, 3>=2, ture, 4>=1,ture(11) 答案表明:编址第2元素满足不等式(30>=20)和编址第4元素满足不等式(40>=10)(12) 答案表明:编址第2行第1列元素满足不等式(30>=20)和编址第2行第2列元素满足不等式(40>=10)P20, ex2(1)a, b, c的值尽管都是1,但数据类型分别为数值,字符,逻辑,注意a与c相等,但他们不等于b(2)double(fun)输出的分别是字符a,b,s,(,x,)的ASCII码P20,ex3>> r=2;p=0.5;n=12;>> T=log(r)/n/log(1+0.01*p)T =11.5813P20,ex4>> x=-2:0.05:2;f=x.^4-2.^x;>> [fmin,min_index]=min(f)fmin =-1.3907 %最小值min_index =54 %最小值点编址>> x(min_index)ans =0.6500 %最小值点>> [f1,x1_index]=min(abs(f)) %求近似根--绝对值最小的点f1 =0.0328x1_index =24>> x(x1_index)ans =-0.8500>> x(x1_index)=[];f=x.^4-2.^x; %删去绝对值最小的点以求函数绝对值次小的点>> [f2,x2_index]=min(abs(f)) %求另一近似根--函数绝对值次小的点f2 =0.0630x2_index =65>> x(x2_index)ans =1.2500P20,ex5>> z=magic(10)z =92 99 1 8 15 67 74 51 58 4098 80 7 14 16 73 55 57 64 414 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 3417 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6679 6 13 95 97 29 31 38 45 7210 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59>> sum(z)ans =505 505 505 505 505 505 505 505 505 505 >> sum(diag(z))ans =505>> z(:,2)/sqrt(3)ans =57.157746.188046.765450.229553.693613.85642.88683.46416.928210.3923>> z(8,:)=z(8,:)+z(3,:)z =92 99 1 8 15 67 74 51 58 40 98 80 7 14 16 73 55 57 64 41 4 81 88 20 22 54 56 63 70 4785 87 19 21 3 60 62 69 71 2886 93 25 2 9 61 68 75 52 34 17 24 76 83 90 42 49 26 33 6523 5 82 89 91 48 30 32 39 6683 87 101 115 119 83 87 101 115 11910 12 94 96 78 35 37 44 46 5311 18 100 77 84 36 43 50 27 59P 40 ex1先在编辑器窗口写下列M函数,保存为eg2_1.m function [xbar,s]=ex2_1(x)n=length(x);xbar=sum(x)/n;s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));例如>>x=[81 70 65 51 76 66 90 87 61 77];>>[xbar,s]=ex2_1(x)xbar =72.4000s =12.1124P 40 ex2s=log(1);n=0;while s<=100n=n+1;s=s+log(1+n);endm=n计算结果m=37P 40 ex3clear;F(1)=1;F(2)=1;k=2;x=0;e=1e-8; a=(1+sqrt(5))/2;while abs(x-a)>ek=k+1;F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1); enda,x,k计算至k=21可满足精度P 40 ex4clear;tic;s=0;for i=1:1000000s=s+sqrt(3)/2^i;ends,toctic;s=0;i=1;while i<=1000000s=s+sqrt(3)/2^i;i=i+1;ends,toctic;s=0;i=1:1000000;s=sqrt(3)*sum(1./2.^i);s,tocP 40 ex5t=0:24;c=[15 14 14 14 14 15 16 18 20 22 23 25 28 ...31 32 31 29 27 25 24 22 20 18 17 16];plot(t,c)P 40 ex6(1)clear;fplot('x^2*sin(x^2-x-2)',[-2,2])x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2]) (2)参数方法t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t); plot(x,y)(3)x=-3:0.1:3;y=x;[x,y]=meshgrid(x,y);z=x.^2+y.^2;surf(x,y,z)(4)x=-3:0.1:3;y=-3:0.1:13;[x,y]=meshgrid(x,y);z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;surf(x,y,z)(5)t=0:0.01:2*pi;x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z)(6)theta=linspace(0,2*pi,50);fai=linspace(0,pi/2,20); [theta,fai]=meshgrid(theta,fai);x=2*sin(fai).*cos(theta);y=2*sin(fai).*sin(theta);z=2*cos(fai);surf(x,y,z)(7)x=linspace(0,pi,100);y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);plot(x,y1,x,y2,x,y3)page41, ex7x=-1.5:0.05:1.5;y=1.1*(x>1.1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);plot(x,y)page41,ex8分别使用which trapz, type trapz, dir C:\MATLAB7\toolbox\matlab\datafun\page41,ex9clear;close;x=-2:0.1:2;y=x;[x,y]=meshgrid(x,y);a=0.5457;b=0.7575;p=a*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1);p=p+b*exp(-y.^2-6*x.^2).*(x+y>-1).*(x+y<=1);p=p+a*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);mesh(x,y,p)page41, ex10lookfor lyapunovhelp lyap>> A=[1 2 3;4 5 6;7 8 0];C=[2 -5 -22;-5 -24 -56;-22 -56 -16]; >> X=lyap(A,C)X =1.0000 -1.0000 -0.0000-1.0000 2.0000 1.0000-0.0000 1.0000 7.0000Chapter 3%Exercise 1>> a=[1,2,3];b=[2,4,3];a./b,a.\b,a/b,a\bans =0.5000 0.5000 1.0000ans =2 2 1ans =0.6552 %一元方程组x[2,4,3]=[1,2,3]的近似解ans =0 0 00 0 00.6667 1.3333 1.0000%矩阵方程[1,2,3][x11,x12,x13;x21,x22,x23;x31,x32,x33]=[2,4,3]的特解Exercise 2(1)>> A=[4 1 -1;3 2 -6;1 -5 3];b=[9;-2;1];>> rank(A), rank([A,b]) %[A,b]为增广矩阵ans =3ans =3 %可见方程组唯一解>> x=A\bx =2.38301.48942.0213Exercise 2(2)>> A=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1]; >> rank(A), rank([A,b])ans =3ans =3 %可见方程组唯一解>> x=A\bx =-0.4706-0.2941Exercise 2(3)>> A=[4 1;3 2;1 -5];b=[1;1;1];>> rank(A), rank([A,b])ans =2ans =3 %可见方程组无解>> x=A\bx =0.3311-0.1219 %最小二乘近似解Exercise 2(4)>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1 2 3]';%注意b的写法>> rank(a),rank([a,b])ans =3ans =3 %rank(a)==rank([a,b])<4说明有无穷多解>> a\bans =110 %一个特解Exercise 3>> a=[2,1,-1,1;1,2,1,-1;1,1,2,1];b=[1,2,3]'; >> x=null(a),x0=a\bx =-0.62550.6255-0.20850.4170x0 =11%通解kx+x0Exercise 4>> x0=[0.2 0.8]';a=[0.99 0.05;0.01 0.95]; >> x1=a*x, x2=a^2*x, x10=a^10*x >> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> x0=[0.8 0.2]';>> x=x0;for i=1:1000,x=a*x;end,xx =0.83330.1667>> [v,e]=eig(a)v =0.9806 -0.70710.1961 0.7071e =1.0000 00 0.9400>> v(:,1)./xans =1.17671.1767 %成比例,说明x是最大特征值对应的特征向量Exercise 5%用到公式(3.11)(3.12)>> B=[6,2,1;2.25,1,0.2;3,0.2,1.8];x=[25 5 20]';>> C=B/diag(x)C =0.2400 0.4000 0.05000.0900 0.2000 0.01000.1200 0.0400 0.0900>> A=eye(3,3)-CA =0.7600 -0.4000 -0.0500-0.0900 0.8000 -0.0100-0.1200 -0.0400 0.9100>> D=[17 17 17]';x=A\Dx =37.569625.786224.7690%Exercise 6(1)>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a) ans =-94ans =0.2553 -0.0213 0.04260.1596 -0.1383 -0.22340.1809 -0.2234 -0.0532v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766%Exercise 6(2)>> a=[1 1 -1;0 2 -1;-1 2 0];det(a),inv(a),[v,d]=eig(a) ans =1ans =2.0000 -2.0000 1.00001.0000 -1.0000 1.00002.0000 -3.0000 2.0000v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i -0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i%Exercise 6(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> det(A),inv(A), [v,d]=eig(A)ans =1ans =68.0000 -41.0000 -17.0000 10.0000 -41.0000 25.0000 10.0000 -6.0000 -17.0000 10.0000 5.0000 -3.0000 10.0000 -6.0000 -3.0000 2.0000v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887%Exercise 6(4)、(以n=5为例)%关键是矩阵的定义%方法一(三个for)n=5;for i=1:n, a(i,i)=5;endfor i=1:(n-1),a(i,i+1)=6;endfor i=1:(n-1),a(i+1,i)=1;enda%方法二(一个for)n=5;a=zeros(n,n);a(1,1:2)=[5 6];for i=2:(n-1),a(i,[i-1,i,i+1])=[1 5 6];enda(n,[n-1 n])=[1 5];a%方法三(不用for)n=5;a=diag(5*ones(n,1));b=diag(6*ones(n-1,1));c=diag(ones(n-1,1));a=a+[zeros(n-1,1),b;zeros(1,n)]+[zeros(1,n);c,zeros(n-1,1)] %下列计算>> det(a)ans =665>> inv(a)ans =0.3173 -0.5865 1.0286 -1.6241 1.9489-0.0977 0.4887 -0.8571 1.3534 -1.62410.0286 -0.1429 0.5429 -0.8571 1.0286 -0.0075 0.0376 -0.1429 0.4887 -0.5865 0.0015 -0.0075 0.0286 -0.0977 0.3173 >> [v,d]=eig(a)v =-0.7843 -0.7843 -0.9237 0.9860 -0.9237 0.5546 -0.5546 -0.3771 -0.0000 0.3771 -0.2614 -0.2614 0.0000 -0.1643 0.0000 0.0924 -0.0924 0.0628 -0.0000 -0.0628 -0.0218 -0.0218 0.0257 0.0274 0.0257d =0.7574 0 0 0 00 9.2426 0 0 00 0 7.4495 0 00 0 0 5.0000 00 0 0 0 2.5505%Exercise 7(1)>> a=[4 1 -1;3 2 -6;1 -5 3];[v,d]=eig(a) v =0.0185 -0.9009 -0.3066-0.7693 -0.1240 -0.7248-0.6386 -0.4158 0.6170d =-3.0527 0 00 3.6760 00 0 8.3766>> det(v)ans =-0.9255 %v行列式正常, 特征向量线性相关,可对角化>> inv(v)*a*v %验算ans =-3.0527 0.0000 -0.00000.0000 3.6760 -0.0000-0.0000 -0.0000 8.3766>> [v2,d2]=jordan(a) %也可用jordanv2 =0.0798 0.0076 0.91270.1886 -0.3141 0.1256-0.1605 -0.2607 0.4213 %特征向量不同d2 =8.3766 0 00 -3.0527 - 0.0000i 00 0 3.6760 + 0.0000i>> v2\a*v2ans =8.3766 0 0.00000.0000 -3.0527 0.00000.0000 0.0000 3.6760>> v(:,1)./v2(:,2) %对应相同特征值的特征向量成比例ans =2.44912.44912.4491%Exercise 7(2)>> a=[1 1 -1;0 2 -1;-1 2 0];[v,d]=eig(a)v =-0.5773 0.5774 + 0.0000i 0.5774 - 0.0000i-0.5773 0.5774 0.5774-0.5774 0.5773 - 0.0000i 0.5773 + 0.0000id =1.0000 0 00 1.0000 + 0.0000i 00 0 1.0000 - 0.0000i>> det(v)ans =-5.0566e-028 -5.1918e-017i %v的行列式接近0, 特征向量线性相关,不可对角化>> [v,d]=jordan(a)v =1 0 11 0 01 -1 0d =1 1 00 1 10 0 1 %jordan标准形不是对角的,所以不可对角化%Exercise 7(3)>> A=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10]A =5 76 57 10 8 76 8 10 95 7 9 10>> [v,d]=eig(A)v =0.8304 0.0933 0.3963 0.3803-0.5016 -0.3017 0.6149 0.5286-0.2086 0.7603 -0.2716 0.55200.1237 -0.5676 -0.6254 0.5209d =0.0102 0 0 00 0.8431 0 00 0 3.8581 00 0 0 30.2887>> inv(v)*A*vans =0.0102 0.0000 -0.0000 0.00000.0000 0.8431 -0.0000 -0.0000-0.0000 0.0000 3.8581 -0.0000-0.0000 -0.0000 0 30.2887%本题用jordan不行, 原因未知%Exercise 7(4)参考6(4)和7(1), 略%Exercise 8 只有(3)对称, 且特征值全部大于零, 所以是正定矩阵. %Exercise 9(1)>> a=[4 -3 1 3;2 -1 3 5;1 -1 -1 -1;3 -2 3 4;7 -6 -7 0]>> rank(a)ans =3>> rank(a(1:3,:))ans =2>> rank(a([1 2 4],:)) %1,2,4行为最大无关组ans =3>> b=a([1 2 4],:)';c=a([3 5],:)';>> b\c %线性表示的系数ans =0.5000 5.0000-0.5000 1.00000 -5.0000%Exercise 10>> a=[1 -2 2;-2 -2 4;2 4 -2]>> [v,d]=eig(a)v =0.3333 0.9339 -0.12930.6667 -0.3304 -0.6681-0.6667 0.1365 -0.7327d =-7.0000 0 00 2.0000 00 0 2.0000>> v'*vans =1.0000 0.0000 0.00000.0000 1.0000 00.0000 0 1.0000 %v确实是正交矩阵%Exercise 11%设经过6个电阻的电流分别为i1, ..., i6. 列方程组如下%20-2i1=a; 5-3i2=c; a-3i3=c; a-4i4=b; c-5i5=b; b-3i6=0; %i1=i3+i4;i5=i2+i3;i6=i4+i5;%计算如下>> A=[1 0 0 2 0 0 0 0 0;0 0 1 0 3 0 0 0 0;1 0 -1 0 0 -3 0 0 0;1 -1 0 0 0 0 -4 0 0;0 -1 1 0 0 0 0 -5 0;0 1 0 0 0 0 0 0 -3;0 0 0 1 0 -1 -1 0 0;0 0 0 0 -1 -1 0 1 0;0 0 0 0 0 0 -1 -1 1];>>b=[20 5 0 0 0 0 0 0 0]'; A\b ans =13.34536.44018.54203.3274-1.18071.60111.72630.42042.1467>> A=[1 2 3;4 5 6;7 8 0];>> left=sum(eig(A)), right=sum(trace(A))left =6.0000right =6>> left=prod(eig(A)), right=det(A) %原题有错, (-1)^n应删去left =27.0000right =27>> fA=(A-p(1)*eye(3,3))*(A-p(2)*eye(3,3))*(A-p(3)*eye(3,3)) fA =1.0e-012 *0.0853 0.1421 0.02840.1421 0.1421 0-0.0568 -0.1137 0.1705>> norm(fA) %f(A)范数接近0ans =2.9536e-013roots([1 1 1])%Exercise 1(2)roots([3 0 -4 0 2 -1])%Exercise 1(3)p=zeros(1,24);p([1 17 18 22])=[5 -6 8 -5];roots(p)%Exercise 1(4)p1=[2 3];p2=conv(p1, p1);p3=conv(p1, p2);p3(end)=p3(end)-4; %原p3最后一个分量-4roots(p3)%Exercise 2fun=inline('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x'); fzero(fun,2)】%Exercise 3fun=inline('x^4-2^x');fplot(fun,[-2 2]);grid on;fzero(fun,-1),fzero(fun,1),fminbnd(fun,0.5,1.5)%Exercise 4fun=inline('x*sin(1/x)','x');fplot(fun, [-0.1 0.1]);x=zeros(1,10);for i=1:10, x(i)=fzero(fun,(i-0.5)*0.01);end;x=[x,-x]%Exercise 5fun=inline('[9*x(1)^2+36*x(2)^2+4*x(3)^2-36;x(1)^2-2*x(2)^2-20*x(3);1 6*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2]','x');[a,b,c]=fsolve(fun,[0 0 0])%Exercise 6fun=@(x)[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))]; [a,b,c]=fsolve(fun,[0.5 0.5])%Exercise 7clear; close; t=0:pi/100:2*pi;x1=2+sqrt(5)*cos(t); y1=3-2*x1+sqrt(5)*sin(t);x2=3+sqrt(2)*cos(t); y2=6*sin(t);plot(x1,y1,x2,y2); grid on; %作图发现4个解的大致位置,然后分别求解y1=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 1.5,2])y2=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 1.8,-2])y3=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 3.5,-5])y4=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[ 4,-4])%Exercise 8(1)clear;fun=inline('x.^2.*sin(x.^2-x-2)');fplot(fun,[-2 2]);grid on; %作图观察x(1)=-2;x(3)=fminbnd(fun,-1,-0.5);x(5)=fminbnd(fun,1,2);fun2=inline('-x.^2.*sin(x.^2-x-2)');x(2)=fminbnd(fun2,-2,-1);x(4)=fminbnd(fun2,-0.5,0.5);x(6)=2feval(fun,x)%答案: 以上x(1)(3)(5)是局部极小,x(2)(4)(6)是局部极大,从最后一句知道x(1)全局最小,x(2)最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab数学实验一——matlab初体验一、实验目的及意义[1] 熟悉MATLAB软件的用户环境;[2] 了解MATLAB软件的一般目的命令;[3] 掌握MATLAB数组操作与运算函数;通过该实验的学习,使学生能熟悉matlab的基础应用,初步应用MATLAB软件解决一些简单问题。

二、实验内容1.认识matlab的界面与基本操作2.了解matlab的数据输出方式(format)3、 MATLAB软件的数组(矩阵)操作及运算练习;三、实验任务根据实验内容与步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→原理→算法与编程→计算结果或图形→心得体会)完成如下题目,并按照实验报告格式与要求填写实验报告1.在command window中分别输入如下值,瞧它们的值等于多少,并用matlab的help中查询这些缺省预定义变量的含义,用中文写出它们的意义。

i j eps inf nan pi realmax realmin2.分别输入一个分数、整数、小数等,(如:a=1/9),观察显示结果,并使用format 函数控制数据的显示格式,如:分别输入format short、format long、format short e、format long g、format bank、format hex等,然后再在命令窗口中输入a,显示a的值的不同形式,并理解这些格式的含义。

3.测试函数clear、clc的含义及所带参数的含义(利用matlab的help功能)。

4、写出在命令窗口中的计算步骤与运行结果。

(1)计算1.2210(ln log)81eππ+-;>> (log(pi)+log(pi)/log(10)-exp(1、2))^2/81 >>ans =0、0348(2)>> x=2;y=4;>> z=x^2+exp(x+y)-y*log(x)-3z =401、6562(3)输入变量135.3,25a b⎡⎤==⎢⎥⎣⎦,在工作空间中使用who,whos,并用save命令将变量存入”D:\exe01、mat”文件。

测试clear命令,然后用load命令将保存的”D:\exe01、mat”文件载入>> a=5、3a =5、3000>> b=[1 3; 2 5]b =1 32 5>> whoYour variables are:a b>> whosName Size Bytes Classa 1x1 8 double arrayb 2x2 32 double arrayGrand total is 5 elements using 40 bytes>> save D:\exe01>> clear 清除内存中在全部变量>> load D:\exe015、 对矩阵,求其行列式(det)、逆矩阵(inv)、矩阵的特征值与特征向量(eig)、矩阵的秩(rank)、矩阵的行最简形(rref)、以该矩阵为系数矩阵的线性方程组Ax=0的通解(null);①已知422134305,203153211A B -⎛⎫⎛⎫ ⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,在MATLAB 命令窗口中建立A 、B 矩阵并对其进行以下操作: (1) 计算矩阵A 的行列式的值det()A>> A=[4,-2,2;-3,0,5;1,5,3];>> det(A)ans =-158(2) 分别计算下列各式:1122,*,.*,,,,T A B A B A B AB A B A A --->> A=[4,-2,2;-3,0,5;1,5,3];B=[1,3,4;-2,0,-3;2,-1,1];>> 2*A-Bans =7 -7 0-4 0 130 11 5>> A*Bans =12 10 247 -14 -7-3 0 -8>> A、*Bans =4 -6 86 0 -152 -5 3>> A*inv(B)ans =-0、0000 -0、0000 2、0000-2、7143 -8、0000 -8、14292、42863、0000 2、2857 >> inv(A)*Bans =0、4873 0、4114 1、00000、3671 -0、4304 0、0000-0、1076 0、2468 0、0000 >> A*Aans =24 2 4-7 31 9-8 13 36>> A'ans =4 -3 1-2 0 52 5 3②在MATLAB 中分别利用矩阵的初等变换及函数rank 、函数inv 求下列矩阵的秩:(1) 16323540,11124A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭求 rank(A)=?>> A=[1,-6,3,2;3,-5,4,0;-1,-11,2,4];>> rank(A)ans =3(2) 35011200,10201202B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭求1B -。

>> B=[3,5,0,1;1,2,0,0;1,0,2,0;1,2,0,2]>> inv(B)ans =2、0000 -4、0000 -0、0000 -1、0000-1、0000 2、5000 0、0000 0、5000-1、0000 2、0000 0、5000 0、50000 -0、5000 0 0、5000③在MATLAB 中判断下列向量组就是否线性相关,并找出向量组1(1132),T α= 234(1113),(5289),(1317)T T T ααα=--=-=-中的一个最大线性无关组。

>> a1=[1 1 3 2]'a2=[-1 1 -1 3]'a3=[5 -2 8 9]'a4=[-1 3 1 7]'A= [a1, a2 ,a3 ,a4] ;[R jb]=rref(A)a1 =1132a2 =-11-13a3 =5-289a4 =-1317R =1、0000 0 0 1、09090 1、0000 0 1、78790 0 1、0000 -0、06060 0 0 0jb =1 2 3>> A(:,jb)ans =1 -1 51 1 -23 -1 82 3 9④在MATLAB中判断下列方程组解的情况,若有多个解,写出通解。

(1)123412341234123442020 3720 31260 x x x xx x x xx x x xx x x x-+-=⎧⎪--+=⎪⎨++-=⎪⎪--+=⎩一:>> A=[1,-1,4,2;1,-1,-1,2;3,1,7,-2;1,-3,-12,6]; >> rank(A)ans =3>> rref(A)ans =1 0 0 00 1 0 -20 0 1 00 0 0 0二:>> A=[1,-1,4,2;1,-1,-1,2;3,1,7,-2;1,-3,-12,6]; >> format ratn=4;RA=rank(A)RA =3>> if(RA==n)fprintf('%方程只有零解')elseb=null(A,'r')endb =21>> syms kX=k*bX =0 2*kk(2)123123123123234245 38213 496x x xx x xx x xx x x++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩>> A=[2 3 1;1 -2 4;3 8 -2;4 -1 9];b=[4 -5 13 -6]';B=[A b];>> n=3;>> RA=rank(A)RA =2>> RB=rank(B)RB =2rref(B)ans =1 02 -10 1 -1 20 0 0 00 0 0 0>> format ratif RA==RB&RA==n %判断有唯一解X=A\belseif RA==RB&RA<n %判断有无穷解X=A\b %求特解C=null(A,'r') %求AX=0的基础解系else X='equition no solve' %判断无解endWarning: Rank deficient, rank = 2, tol = 8、9702e-015、3/2-1/2 C =-211⑤求矩阵211020413A-⎛⎫⎪= ⎪⎪-⎝⎭的逆矩阵1A-及特征值与特征向量。

A=[-2 1 1;0 2 0;-4 1 3];>> a1=inv(A)a1 =-3/2 1/2 1/20 1/2 0-2 1/2 1 >> [P,R]=eig(A)P =-985/1393 -528/2177 379/12570 0 379/419-985/1393 -2112/2177 379/1257 R =-1 0 00 2 00 0 2A的三个特征值就是:r1=-1,r2=2,r3=2。

三个特征值分别对应的特征向量就是P1=[1 0 1];p2=[1 0 4];p3=[1 3 1]⑥化方阵222254245A-⎛⎫⎪=-⎪⎪--⎝⎭为对角阵。

>> A=[2 2 -2;2 5 -4;-2 -4 5];[P,D]=eig(A)P =-0、2981 0、8944 0、3333-0、5963 -0、4472 0、6667-0、7454 0 -0、6667D =1、0000 0 00 1、0000 00 0 10、0000>> B=inv(P)*A*PB =1、0000 -0、0000 0、00000、0000 1、0000 0、0000-0、0000 0 10、0000程序说明:所求得的特征值矩阵D 即为矩阵A 对角化后的对角矩阵,D 与A 相似。

⑦求一个正交变换,将二次型222123121323553266f x x x x x x x x x =++-+-化为标准型。

>> A=[5 -1 3;-1 5 -3;3 -3 3];>> syms y1 y2 y3y=[y1;y2;y3];[P,D]=eig(A)P =881/2158 985/1393 -780/1351-881/2158 985/1393 780/1351-881/1079 0 -780/1351D =* 0 00 4 00 0 9>> x=P*yx =(6^(1/2)*y1)/6 + (2^(1/2)*y2)/2 - (3^(1/2)*y3)/3 (2^(1/2)*y2)/2 - (6^(1/2)*y1)/6 + (3^(1/2)*y3)/3 - (3^(1/2)*y3)/3 - (2^(1/2)*3^(1/2)*y1)/3>> f=[y1 y2 y3]*D*yf =- y1^2/2251799813685248 + 4*y2^2 + 9*y3^2。

相关文档
最新文档