机器人运动学共54页
合集下载
机器人运动学43233ppt课件
(2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂线与关节i轴 线的交点;
(3)当关节i轴线和关节i+1轴线平行时,取关节i+1轴线与关节i+2轴线 的公垂线与关节i+1轴线的交点;
编辑版pppt
13
移动连杆坐标系的建立
移动连杆前的相邻连杆坐标系的规定:
• 坐标轴Zi-1:过原点Oi且平行于移动关节i的轴线; • 坐标轴Xi-1:沿移动关节i-1轴线与Zi-1轴线的公垂
0
0
1
c6 s6 0 0
A6
s6
0
c6 0
0 0 1 0
0
0
0 1
机器人末端位为 置: T和 A1姿 A2A3态 A4A5A6
编辑版pppt
29
该机械手末端的位置方程如下:
P x c 1 [ d 6 ( c 2 c 4 s 5 3 s 2 c 5 ) 3 d 4 s 2 a 2 3 c 2 ] s 1 ( d 6 s 4 s 5 d 2 ) P y s 1 [ d 6 ( c 2 c 4 s 5 3 s 2 c 5 ) 3 d 4 s 2 a 2 3 c 2 ] c 1 ( d 6 s 4 s 5 d 2 ) P z d 6 ( c 2 c 5 3 s 2 c 4 3 s 5 ) d 4 c 2 3 a 2 s 2
编辑版pppt
30
三、机器人逆运动学
nx ox ax
TT6
ny n0z
oy oz 0
ay az 0
px py=A1A2A3A4A5A6 p1z
• 1)问题:已知手部位姿,求各关节位置 • 2)意义:是机械手控制的关键
编辑版pppt
31
(一)机器人运动学逆解有关问题
(3)当关节i轴线和关节i+1轴线平行时,取关节i+1轴线与关节i+2轴线 的公垂线与关节i+1轴线的交点;
编辑版pppt
13
移动连杆坐标系的建立
移动连杆前的相邻连杆坐标系的规定:
• 坐标轴Zi-1:过原点Oi且平行于移动关节i的轴线; • 坐标轴Xi-1:沿移动关节i-1轴线与Zi-1轴线的公垂
0
0
1
c6 s6 0 0
A6
s6
0
c6 0
0 0 1 0
0
0
0 1
机器人末端位为 置: T和 A1姿 A2A3态 A4A5A6
编辑版pppt
29
该机械手末端的位置方程如下:
P x c 1 [ d 6 ( c 2 c 4 s 5 3 s 2 c 5 ) 3 d 4 s 2 a 2 3 c 2 ] s 1 ( d 6 s 4 s 5 d 2 ) P y s 1 [ d 6 ( c 2 c 4 s 5 3 s 2 c 5 ) 3 d 4 s 2 a 2 3 c 2 ] c 1 ( d 6 s 4 s 5 d 2 ) P z d 6 ( c 2 c 5 3 s 2 c 4 3 s 5 ) d 4 c 2 3 a 2 s 2
编辑版pppt
30
三、机器人逆运动学
nx ox ax
TT6
ny n0z
oy oz 0
ay az 0
px py=A1A2A3A4A5A6 p1z
• 1)问题:已知手部位姿,求各关节位置 • 2)意义:是机械手控制的关键
编辑版pppt
31
(一)机器人运动学逆解有关问题
机器人技术基础课件第三章-机器人运动学精选全文完整版
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T 12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T 23T 34T 45T 56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
一个六连杆机械手可具有六个自由度,每个连杆含 有一个自由度,并能在其运动范围内任意定位与定向。 其中三个自由度用于规定位置,而另外三个自由度用 来规定姿态。
8
3.1.1 连杆坐标系
机械手的运动方向
机器人手部的位置和姿态也可以
用固连于手部的坐标系{B}的位姿
来表示
关节轴为ZB, ZB轴的单位方向 矢量α称为接近矢量,指向朝外。
(1) 坐标系{i-1}绕xi-1轴转角αi-1,使Zi-1与Zi平行,算子为Rot(x, αi-1) ; (2) 沿Xi-1轴平移ai-1,使Zi-1和Zi共线, 算子为Trans(ai-1,0,0); (3)绕Zi轴转角θi; 使得使Xi-1与Xi平行, 算子为Rot(z,θi);
(4) 沿Zi轴平移di。使得i-1系和i系重合, 算子为Trans(0,0,di)。
3.2.1 机器人正运动学方程
连杆 i 1
2
3
连杆长 度ai-1
0
a0
a1
连杆偏距 di 0
0
d2
连杆扭角 αi-1 00
00
-900
关节角 θi
θ1(00) θ2(00) θ3(00)
3.2.1 机器人正运动学方程
该3自由度机器人的运动学方程为:
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T 12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T 23T 34T 45T 56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
一个六连杆机械手可具有六个自由度,每个连杆含 有一个自由度,并能在其运动范围内任意定位与定向。 其中三个自由度用于规定位置,而另外三个自由度用 来规定姿态。
8
3.1.1 连杆坐标系
机械手的运动方向
机器人手部的位置和姿态也可以
用固连于手部的坐标系{B}的位姿
来表示
关节轴为ZB, ZB轴的单位方向 矢量α称为接近矢量,指向朝外。
(1) 坐标系{i-1}绕xi-1轴转角αi-1,使Zi-1与Zi平行,算子为Rot(x, αi-1) ; (2) 沿Xi-1轴平移ai-1,使Zi-1和Zi共线, 算子为Trans(ai-1,0,0); (3)绕Zi轴转角θi; 使得使Xi-1与Xi平行, 算子为Rot(z,θi);
(4) 沿Zi轴平移di。使得i-1系和i系重合, 算子为Trans(0,0,di)。
3.2.1 机器人正运动学方程
连杆 i 1
2
3
连杆长 度ai-1
0
a0
a1
连杆偏距 di 0
0
d2
连杆扭角 αi-1 00
00
-900
关节角 θi
θ1(00) θ2(00) θ3(00)
3.2.1 机器人正运动学方程
该3自由度机器人的运动学方程为:
第二章 机器人运动学PPT课件
系的位置矢量 AP、BP具有如下变换关系
APB ARBPAPBO
(2-1-12)
15
ZA {A}
OA XA
ZB
ZC {C}
{B}
AP
BP YB
OB(OC)
YC
P A
BO XC YA
XB
图2.1.4 平移加旋转变换 注:坐标系{C}为过渡坐标系
16
2.齐次变换
一般情况下,刚体的运动是转动和平移的复合运 动,为了用同一矩阵既表示转动又表示平移,因此引 入齐次坐标变换矩阵。
28
X
偏转
Z
横滚
O船
Y
俯仰
偏转
X
Z
横滚
O
夹手
Y
俯仰
(a)
(b)
图2.1.11 RPY角的定义
29
§2.2 操作臂运动学
一、机械手位置和姿态的表示
图2.2.1所示为机器人的一个机械手。 描述机械手方位的坐标系置于手指尖的 中 位心置,可其以用原矢点量由矢p在量固p表定示坐。标机系械的手坐的标 表示为
H
0
1
0
b
称为平移的齐次变换矩阵,又可表示为
0 0 1 c
0
0
0
1
HTraa,b n,c)s。(矩阵中的第四列为平移参考矢量的齐次坐标。
19
Z
V
U
P
O
Y
X 图2.1.5 平移的齐次变换
20
例平2移.1,求向平量移U 后i得3到j的5k向沿量向V量 。P 3i7jk
解:
1 0 0 3 1 4
系,首先需要用两个参数对每个连杆进行描述。 如图2.2.2所示,对于任意一个两端带有关节i和
库卡机器人培训教材(PPT 54页)
1 库卡 smartPAD 手持编程器
• 1 用于拔下 smartPAD 的按钮
• 2 用于调出连接管理器的钥匙开关。
•
只有当钥匙插入时,方可转动开关。利用
连接管理器可以转换运行方式。
• 3 紧急停止装置。
•
用于在危险情况下关停机器人。紧急停止装
置在被按下时将自行闭锁。
• 4 3D 鼠标:
•
用于手动移动机器人。
3.2 手动运行附加轴
附加轴不能通过空间鼠标来运行。 如果选择了“ 空间鼠标” 运行模式,则只能用空间鼠标来移动机 器人。 而附加轴则必须用运行键来运行。 前提条件
• 运行模式“ 运行键” 已激活。 • 运行方式 T1 操作步骤 • 1. 在窗口手动移动选项中的选项卡按键里选择所希望的运动系统组,例如附加轴。 • 运动系统组的可用种类和数量取决于设备配置。 • 2. 设定手动倍率。 • 3. 按住确认开关。 • 在运行键旁边将显示所选择运动系统组的轴。 • 4. 按下正或负运行键,以使轴朝正方向或反方向运动。 说明
3.4 显示数字输入/ 输出端
操作步骤 • 1. 在主菜单中选择显示 > 输入/ 输出端 > 数字输入/ 输出端。 • 2. 为显示某一特定输入端/ 输出端: • 点击按键至。即显示栏目至:。 • 输入编号,然后用回车键确认。 • 显示将跳至带此编号的输入/ 输出端。 如下图所示
3.5显示外部自动运行的输入/ 输出端
行。
• 与轴相关的运行
•
运行。
每个轴均可以独立地正向或反向
有 2 个操作元件可以用来运行机器人:
运行键
• 3D 鼠标
3.1 窗口手动移动选项
说明
用于手动移动机器人的所有参数均可在手动移动选项窗口中设置 操作步骤 • 打开手动移动选项窗口: • 1. 在 smartHMI 上打开一个状态显示窗,例如状态显示 POV。 • (无法显示提交解释器、驱动装置和机器人解释器的状态。) • 一个窗口打开。 • 2. 点击选项。 窗口手动移动选项打开。 • 对于大多数参数来说,无需专门打开手动移动选项窗口。 您可以直接通过 • smartHMI 的状态显示来设置。 选项卡概述
第七章 机器人运动学ppt课件
Ai Ai-1
编辑版pppt
8
➢ 杆件参数的定义—— 、li 、 i 和di i
由运动学的观点来看,杆件保持其两端关节间的形态
不变,这种形态由两个参数决定:杆件长度 li 和杆件扭
转角 i 。杆件的相对位置关系,由另外两个参数决定:
杆件的距离 di 和杆件的回转角 i 。
li — 关节 Ai 轴和 Ai+1 轴线公法线的长度。
li
i zi
yi
xi oi
绕 xi 轴转 i 角度,两
坐标系完全重合.
li 1
di
zi1 oi1
yi1
i
xi1
i 1 A i R ( z i 1 ,i ) T r a n s ( z i 1 , d 编i ) 辑T 版pr ppa t n s ( x i , l i ) R ( x i ,i )
机器人技术及空间应用
第七章 机器人运动学
机器人运动学主要是把机器人相对于固定参考 系的运动作为时间的函数进行分析研究,而不 考虑引起这些运动的力和力矩 将机器人的空间位移解析地表示为时间的函数, 特别是研究机器人关节变量空间和机器人末端 执行器位置和姿态之间的关系 本章将讨论机器人运动学几个具有实际意义的 基本问题。
• 并联机器人:刚性好,负载大,误差不积累,工作空间 小,姿态范围不大。
• 本章讲解以串联机器人为主。
编辑版pppt
3
§7.1.2 运动学研究的问题
Where is my hand?
Direct Kinematics HERE!
运动学正问题
运动学逆问题
How do I put my hand here?
ny
z
n0x
编辑版pppt
8
➢ 杆件参数的定义—— 、li 、 i 和di i
由运动学的观点来看,杆件保持其两端关节间的形态
不变,这种形态由两个参数决定:杆件长度 li 和杆件扭
转角 i 。杆件的相对位置关系,由另外两个参数决定:
杆件的距离 di 和杆件的回转角 i 。
li — 关节 Ai 轴和 Ai+1 轴线公法线的长度。
li
i zi
yi
xi oi
绕 xi 轴转 i 角度,两
坐标系完全重合.
li 1
di
zi1 oi1
yi1
i
xi1
i 1 A i R ( z i 1 ,i ) T r a n s ( z i 1 , d 编i ) 辑T 版pr ppa t n s ( x i , l i ) R ( x i ,i )
机器人技术及空间应用
第七章 机器人运动学
机器人运动学主要是把机器人相对于固定参考 系的运动作为时间的函数进行分析研究,而不 考虑引起这些运动的力和力矩 将机器人的空间位移解析地表示为时间的函数, 特别是研究机器人关节变量空间和机器人末端 执行器位置和姿态之间的关系 本章将讨论机器人运动学几个具有实际意义的 基本问题。
• 并联机器人:刚性好,负载大,误差不积累,工作空间 小,姿态范围不大。
• 本章讲解以串联机器人为主。
编辑版pppt
3
§7.1.2 运动学研究的问题
Where is my hand?
Direct Kinematics HERE!
运动学正问题
运动学逆问题
How do I put my hand here?
ny
z
n0x
机器人运动学 ppt课件
控
-θ角,则其旋转变换矩阵就为:
制
cos sin 0
原
R z, ij
sin
cos
0
理
0
0 1
cos sin 0
R z , ij
sin
cos
0
0
0 1
ppt课件
25
2019年12月18日12时47分
第2章 机器人运动学
2.2 齐次变换及运算
为移动关节为转动关节i1i1机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系建立坐标系i1i1关节i机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系ii单步齐次变换矩阵机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系ii单步齐次变换矩阵机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系iii相邻杆件的位姿矩阵机器人运动学方程231运动学方程建立步骤cossinsincoscossinsincoscossinsinsincoscoscossincossinsincossincos相邻杆件位姿矩阵第一种坐标系iii相邻杆件的位姿矩阵cossinsinsincoscoscossincossinsincossincos机器人运动学方程231运动学方程建立步骤相邻杆件位姿矩阵第一种坐标系注意
R—izj ,—坐标系{j}变换到坐标系{i}的旋转变换矩阵,
也称为方向余弦矩阵。
ppt课件
20
2019年12月18日12时47分
第2章 机器人运动学
2.2 齐次变换及运算
机
器 人
2.2.1 直角坐标变换
工业机器人课件第三章 机器人运动学
T3= A1 A2 A3
称这些A矩阵的乘积为T矩阵,其前置上标若为0,则可省略。对于六 连杆机械手,有下列T矩阵
T6= A1 A2 A3 A4 A5 A6
手爪坐标系
机械手的运动方向 原点由矢量p表示。 接近矢量a:z轴设在手指接近物体的方向,称为接近矢量 方向矢量o:y轴设在两手指的连线方向,称为方位矢量 法线矢量n:x轴由右手系确定, 即 n = o a ,称为法向矢量。
0 sin i cos i 0
0 0 0 1
对于在第i坐标系中的点ri在第i—1坐标系中表示为:
ri 1 i 1Ai ri
确定第i坐标系相对于机座坐标系的位置的齐次变换矩阵i-1Ti是 各齐次变换矩阵Ai的连乘积,可表示成
0
Ti A1 A2 A3 A4 A5 A6 A j
பைடு நூலகம்
cos i sin cos i i 1 sin i sin i 1 0
例 建立右图所示机器人相邻坐标 系间的转换矩阵 解:建立的坐标系如右图,这是二维坐 标系(在三维空间中,各坐标系的z轴垂 直于纸面),其相邻坐标系的变换矩阵 为
A1 Rz ,Tx ,l1
第三章 机器人运动学
§ 3.1 机器人运动方程的表示
机器人的机械手看作是一系列由关节连接起来的连杆构成的。为机 械手的每一连杆建立一个坐标系,并用齐次变换来描述这些坐标系间 的相对位置和姿态。通常把描述一个连杆与下一个连杆间相对关系的 齐次变换叫做A矩阵。一个A矩阵就是一个描述连杆坐标系间相对平移 和旋转的齐次变换。如果A1表示第一个连杆对于基系的位置和姿态, A2表示第二个连杆相对于第一个连杆的位置和姿态,则第二个连杆在 基系中的位置和姿态可由下列矩阵的乘积给出 T2= A1 A2 同理,若A3表示第三个连杆相对于第二个连杆的位置和姿态,则有
《机器人运动学》课件
机器人正向运动学建模
正向运动学
根据机器人关节参数,计算机器人末端执行器在笛卡尔坐标 系中的位置和姿态的过程。
正向运动学模型
描述机器人末端执行器位置和姿态与关节参数之间关系的数 学模型。
机器人逆向运动学建模
逆向运动学
已知机器人末端执行器在笛卡尔坐标系中的位置和姿态,求解机器人关节参数 的过程。
逆向运动学模型
02
它主要关注机器人在三维空间中 的位置和姿态,以及如何通过关 节运动来实现这些位置和姿态的 变化。
机器人运动学的研究内容
机器人位姿表示
研究如何用数学表达式表示机 器人在三维空间中的位置和姿
态。
运动学方程
建立机器人末端执行器位姿与 关节状态之间的数学关系,即 运动学方程。
运动学逆解与正解
研究如何通过给定的位姿求解 关节状态(逆解),以及如何 通过给定的关节状态求解位姿 (正解)。
关节坐标系
基于机器人关节建立的坐标系,常用于描述机器 人的关节运动状态。
工作坐标系
基于机器人工作需求建立的坐标系,常用于描述 机器人末端执行器的位置和姿态。
CHAPTER 03
机器人运动学建模
齐次变换与坐标变换
齐次变换
描述空间中物体位置和方向变化的数 学工具,包括平移和旋转。
坐标变换
将一个坐标系中的位置和方向信息转 换到另一个坐标系中的过程,涉及到 齐次变换的应用。
关节空间的轨迹规划
定义
关节空间是指机器人的各个关节角度 构成的坐标系,关节空间的轨迹规划 是指通过控制机器人的关节角度来实 现机器人的运动。
方法
常用的方法包括多项式插值、样条曲 线插值等,通过设定起始和目标位置 的关节角度,计算出一条平滑的关节 角度路径。
第三章机器人运动学PPT课件
用一组关节变量(di或i)来描述。这组变量通常称为关节矢量或关节坐标,
由这些矢量描述的空间称为关节空间。
• 正向运动学:关节空间末端笛卡儿空间,单射 • 逆向运动学:末端笛卡儿空间关节空间,复射
不同的关节空间,相同的 末端笛卡儿空间
关节空间与末端笛卡儿空 间映射关系
第三章 机器人的运动学
3.1 工业机器人运动学
,它的齐
次坐标就是
,即满足Px=ωPx/ω,Py=ωPy/ω,
Pz=ωPz/ω(ω是非零整数)。可以看出,在三维直角坐标系中,
由于ω取值的不同,一个点的齐次坐标的表达不唯一。
齐次坐标不仅可以规定点的位置(ω为非零整数),还可以
用来规定矢量的方向(第四个元素为零时)。列向量
(
)表示空间的无穷远点,a,b和c称为它的方向
单位主矢量相对于坐标系{A}的方向余弦组成:
xB
yB
zB
xA
yA
zA
其中:co scoxB s ,xA ()
既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中的 姿态。
3.1.2.2 坐标变换
一、坐标平移
如图3-5,坐标系{B}与{A} 方向相同,但原点不重合。
图3-5 坐标平移
此式称为平移方程。其中 是B系中的原点在A系中的表示。
0
0
0
1
1
1
给定坐标系{A},{B}和{C},已知{B}相对{A}的描述为 ,
{C}相对{B}的描述为
AP A BTBP BPC BTCP APC ATCP
,则有
APA BTC BTCP
CATABTCBT
从而定义复合变换
。
同理得出:
由这些矢量描述的空间称为关节空间。
• 正向运动学:关节空间末端笛卡儿空间,单射 • 逆向运动学:末端笛卡儿空间关节空间,复射
不同的关节空间,相同的 末端笛卡儿空间
关节空间与末端笛卡儿空 间映射关系
第三章 机器人的运动学
3.1 工业机器人运动学
,它的齐
次坐标就是
,即满足Px=ωPx/ω,Py=ωPy/ω,
Pz=ωPz/ω(ω是非零整数)。可以看出,在三维直角坐标系中,
由于ω取值的不同,一个点的齐次坐标的表达不唯一。
齐次坐标不仅可以规定点的位置(ω为非零整数),还可以
用来规定矢量的方向(第四个元素为零时)。列向量
(
)表示空间的无穷远点,a,b和c称为它的方向
单位主矢量相对于坐标系{A}的方向余弦组成:
xB
yB
zB
xA
yA
zA
其中:co scoxB s ,xA ()
既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中的 姿态。
3.1.2.2 坐标变换
一、坐标平移
如图3-5,坐标系{B}与{A} 方向相同,但原点不重合。
图3-5 坐标平移
此式称为平移方程。其中 是B系中的原点在A系中的表示。
0
0
0
1
1
1
给定坐标系{A},{B}和{C},已知{B}相对{A}的描述为 ,
{C}相对{B}的描述为
AP A BTBP BPC BTCP APC ATCP
,则有
APA BTC BTCP
CATABTCBT
从而定义复合变换
。
同理得出:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ai+
1
• d i 是从第i-1坐标系
的原点到Zi-1轴和
Xi轴的交点沿Zi-1 Ai-1
轴测量的距离
• i 绕 Zi-1轴由Xi-1
轴转向Xi轴的关节
角
Ai i
li
li1 d i
i
坐标系的建立原则
Ai+
• 为右手坐标系
1
• 原点Oi:设在Li与
Ai+1轴线的交点上 • Zi轴:与Ai+1关节轴
0 1 0 1
T110
0 0
0 10 -1 9
0 0 0 1
1 0 0 -10
T2 00
-1 0
0 -1
20 10
0 0 0 1
x yz
• 试求立方体中心在机座坐标系∑0中的位置
• 该手爪从上方把物体抓起,同时手爪的开合方向与物体的Y轴同向, 那么,求手爪相对于∑0的姿态是什么?
解1:
已 摄 T 物 知 T 1, 摄 T 机 T 2, 求 机 T 物
i j k c: n s a 10 0 0ij0k[0 1 0]T
0 0 1
0 1 0 因此:姿态矩 1阵0为0
0 0 -1
当手爪中心 与物体中心 重合时
0
机T物
1 0
0
1 0 11
0 0 10
0 -1 1
0
0
1
y s
O
a
z
x n
nx sx ax px
实际要求ny nz
sy sz
ay az
ppyz机T手爪
0
0
0
1
ox yz
z机 y机
O机
z物 x物 O物 y物
a: 手爪开合方向与物y向 体重合 有 s [100]T
b: 从上向下抓,的 指a方 出向 手物 爪 z方 体向相反
则 a 有 [0 0 1 ]T
特殊情况坐标系的建立原则
zi
z i-1
两个关节轴相交
xi
oi
yi
Oi— Ai与Ai+1关节轴线的交点
运动学正问题
▪ 杆件参数的意义 ▪ 坐标系的建立原则 ▪ 杆件坐标系间的变换过程-相邻关节坐标
系的齐次变换 ▪ 机器人的运动学方程
杆件参数的意义- l i 和 i
串联关节,每个杆件最多与2个杆件相连,如Ai与Ai-1和 Ai+1相连。由运动学的观点来看,杆件的作用仅在于它能保 持其两端关节间的形态不变。这种形态由两个参数决定,一
1
zi+1 yi+1
o
i
+
x
1
i
+
1
举例:Stanford机器人
• 为右手坐标系 • 原点Oi: Ai与Ai+1
关节轴线的交点 • Zi轴:与Ai+1关节轴
重合,指向任意 • Xi轴: Zi和Zi-1构
成的面的法线 • Yi轴:按右手定则
A5
A6
y6
z6
O6
x6
z5
y5
O5
x5
A4
y3
d6
z3
O3
▪ 可解性
❖所有具有转动和移动关节的系统,在一个单一串联中 总共有6个(或小于6个)自由度时,是可解的,一般 是数值解,它不是解析表达式,而是利用数值迭代原 理求解,它的计算量要比解析解大
❖如若干个关节轴线相交和或多个关节轴线等于0或90° 的情况下,具有6个自由度的机器人可得到解析解
例题:
在机器人工作台上加装一电视摄像机,摄像机可见到固联 着6DOF关节机器人的机座坐标系原点,它也可以见到被操作 物体(立方体)的中心,如果在物体中心建一局部坐标系,则 摄像机所见到的这个物体可由齐次变换矩阵T1来表示,如果摄 像机所见到的机座坐标系为矩阵T2表示。
Zi— Ai+1轴线
Xi— Zi和Zi-1构成的面的法线
A i+ 1
Yi— 右手定则
Ai
两个关节轴线平行
• 先建立
Ai-1
∑0i-1
• 然后建立 ∑0i+1
• 最后建立 ∑0i
Ai
Ai+1
Ai+2
yi-1 zi-1
li-1
o
i
-
x
1
i
-
1
di
A
C
d
zi oi
i+1
B D
( yi)
(y ix xi
i) li+
Ai-1
Ai
重合,指向任意
i zi
yi
•
Xi轴:与公法线Li 重合,指向沿Li由
Ai轴线指向Ai+1轴线
• Yi轴:按右手定则
li1 d i
xi
li
oi
z i1 o i1
y i1
i
x i 1
Li —沿 xi 轴, zi-1 轴与 xi 轴交点到 0i 的距离 αi — 绕 xi 轴,由 zi-1 转向zi di — 沿 zi-1 轴,zi-1 轴和 xi 交点至∑0i –1 坐标系原点的距离 θi — 绕 zi-1 轴,由 xi-1转向 xi
有 机 T : 物 机 T 摄 摄 T 物 ( T 2 ) -1T 1
ox yz
1 0 0 10 0 1 0 1 0 -1 0 20 1 0 0 10
0 0 -1 10 0 0 -1 9 0 0 0 1 0 0 0 1
0 1 0 11
-
1
0
0
10
0 0 1 1
0
0
0
1
z机 y机
O机
因此物体位于机座坐标系的(11,10,1)T 处,它的X,Y,Z轴分别与机座坐标系的 -Y,X,Z轴平行。
杆件坐标系间的变换过程 -相邻关节坐标系的齐次变换
• 将xi-1轴绕zi-1轴转i 角度,将其与xi轴平行; • 沿zi-1轴平移距离di ,使zi-1轴与zi轴重合; • 沿xi轴平移距离Li,使两坐标系原点及x轴重
合; • 绕xi 轴转i角度,两坐标系完全重合.
D-H变换矩阵
cois sinicosi sinisini aicois
d3
z4
x3
A3
A2
O4
x2
x4
y4
z2
y2
i1Ai si0ni
0
coiscosi coissini aisini
sini
0
cosi
0
di 1
机器人的运动学方程
0Ti 0A11A2i1Ai
运动学逆问题
▪ 多解性,剔除多余解原则
❖根据关节运动空间合适的解 ❖选择一个与前一采样时间最接近的解 ❖根据避障要求得选择合适的解 ❖逐级剔除多余解
z物 x物 O物 y物
∑ O物 根 据 T1画 出 ∑ O机 根 据 T2画 出
解2:
ox
yz
nx sx ax px
实际要求ny nz
sy sz
ay az
ppyz机T手爪
0
0
0
1
z机 y机
z物 x物 O物 y物
a: 手爪开合方向与物y向 体重合 有 s [100]T
O机
b: 从上向下抓,的 指a方 出向 手物 爪 z方 体向相反 则a 有 [001 ]T
是杆件的长度 li(a i),一个是杆件的扭转角 i
Ai+
1
• li 关节Ai轴和Ai+1轴 线公法线的长度
• i 关节i轴线与i+1 Ai
轴线在垂直于li平面
i
内的夹角
li
杆件参数的意义- d i和 i
确定杆件相对位置关系,由另外2个参数决定,一个是杆
件的距离:d i ,一个是杆件的回转角: i