椭圆、双曲线、抛物线的标准方程与几何性质
高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
双曲线和抛物线

双曲线和抛物线双曲线和抛物线一、知识梳理1.双曲线的定义双曲线是平面内与两个定点F1、F2的距离之差的绝对值为常数2a(2aF1F2时,P的轨迹不存在;当PF1-PF2=2a=F1F2时,P的轨迹为以F1、F2为端点的两条射线。
2.双曲线的标准方程和几何性质双曲线的标准方程为x^2/a^2-y^2/b^2=1(a>0,b>0),y^2/b^2-x^2/a^2=1(a>0,b>0)。
双曲线的范围为x≥a或x≤-a,对称轴为坐标轴,对称中心为原点。
双曲线有两条渐近线y=±b/a*x,顶点为(0,0),离心率为e=√(1+b^2/a^2)。
实轴长度为2a,虚轴长度为2b。
3.抛物线的定义抛物线是平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹,点F叫做抛物线的焦点,直线l叫做抛物线的准线。
当定点F在定直线l时,动点的轨迹是过点F与直线l垂直的直线。
4.抛物线的标准方程和几何性质抛物线的标准方程为y^2=2px或x^2=2py(p>0)。
抛物线的范围为x≥0或x≤0,对称轴为y轴或x轴,顶点为(0,0),离心率为e=1.焦点F在y轴上时,抛物线的准线方程为x=-p/2,焦点F在x轴上时,抛物线的准线方程为y=-p/2.二、方法归纳1.双曲线的离心率需要分两种情况计算,共渐近线的双曲线方程为x^2/a^2-y^2/b^2=λ或y^2/b^2-x^2/a^2=λ(λ≠0)。
渐近线方程为y=±b/a*x。
2.抛物线的标准方程为y^2=2px或x^2=2py(p>0),焦点在y轴上时,准线方程为x=-p/2,焦点在x轴上时,准线方程为y=-p/2.关于双曲线的渐近线,可以得出以下结论:对于已知双曲线方程为$ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 $或$ \frac{y^2}{b^2}-\frac{x^2}{a^2}=1 $的情况,它们的渐近线方程只需将常数“1”换成“0”,再写成直线方程的形式即可;对于已知双曲线的两渐近线的情况,先将它们写成一个方程$ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 $的形式,再设出双曲线方程的形式$ \frac{x^2}{a^2}-\frac{y^2}{b^2}=\lambda(\lambda\neq 0)$。
专题五 第二讲 椭圆、双曲线、抛物线的定义、方程与性质

考点一 考点二 考点三 课后训练 提升能力
首页 上页 下页 尾页
考点一 圆锥曲线的定义与标准方程
[全练——快速解答]
1根.据(20双17曲·高线考C全的国渐卷近Ⅲ线)已方知程双为曲y=线 25Cx:,xa22-by22=1(a>0,b>0) 的可一知条ba=渐近25线.①方程为 y= 25x,且与椭圆1x22+y32=1 有公共焦点, 则 A又所.x8C2椭以-的圆a1y方2021+x=22程+b12为=y32(=9.②B1 的)B焦.x4点2-坐y52标=为1 (3,0)和(-3,0), C根所.x52据以-①Cy42②=的可1方知程为a2=x42-4D,.yx542b2=-2=1y3. 椭圆离心率求法·T10
学科素养 通过对椭圆、双曲线、抛物线的定义、 方程及几何性质的考查,着重考查了
数学抽象、数学建模与数学运算三大
核心素养.
考情分析 明确方向
考查角度及命题 年份 卷别
位置
命题分析及学科素养
抛物线与圆的综 命题分析
Ⅰ卷
合问题·T10
1.圆锥曲线的定义、方程与性质是每年高
线与双曲线的位置关 空题的形式考查,常出现在第 4~
系·T11 双曲线的渐近线方
11 或 15~16 题的位置,着重考查 圆锥曲线的几何性质与标准方程,
Ⅱ卷 程·T5
2018
椭圆的离心率·T12
双曲线的离心率·T11
难度中等. 2.圆锥曲线的综合问题多以解答题 的形式考查,常作为压轴题出现在 第 20 题的位置,一般难度较大.
3.(2018·惠州模拟)已知 F1,F2 是双曲线ay22-xb22=1(a>0,b>
0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
高中椭圆双曲线抛物线知识点汇总

高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
椭圆方程,双曲线方程,抛物线方程联立

椭圆方程、双曲线方程、抛物线方程是平面解析几何中常见的曲线方程类型,它们在数学、物理、工程等领域都有着重要的应用。
通过联立这些方程,不仅可以深入理解曲线的特性,还可以解决一些实际问题。
本文将分别介绍椭圆方程、双曲线方程、抛物线方程的基本定义和性质,以及它们的联立解法,帮助读者更好地理解和应用这些数学知识。
一、椭圆方程的定义和性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
椭圆方程的一般形式为:(x-h)²/a² + (y-k)²/b² = 1其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
椭圆有许多重要性质,如对称性、焦点、直径等,这些性质都可以通过椭圆方程的分析得到。
二、双曲线方程的定义和性质双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P 的轨迹。
双曲线方程的一般形式为:(x-h)²/a² - (y-k)²/b² = 1类似椭圆,双曲线也有许多重要性质,如渐近线、焦点、枝等。
通过双曲线方程的分析,可以深入理解这些性质。
三、抛物线方程的定义和性质抛物线是平面上到一个定点F的距离等于到某条直线L的距离的点P 的轨迹。
抛物线方程的一般形式为:y² = 2px其中p为焦点到抛物线顶点的距离,也是抛物线的焦距。
抛物线也有许多重要性质,如焦点、直径、对称轴等,通过抛物线方程的分析可以得到这些性质。
四、联立椭圆、双曲线和抛物线方程的解法在一些实际问题中,我们需要联立椭圆、双曲线和抛物线方程进行求解。
以二元二次方程组为例,我们可以通过联立椭圆、双曲线和抛物线方程进行求解,得到曲线的交点、切点、共焦点等。
这对于一些物理、工程等领域的问题具有重要意义。
结论:椭圆方程、双曲线方程、抛物线方程是平面解析几何中常见的曲线方程类型,通过对它们的定义、性质和联立解法的深入理解,可以帮助我们更好地应用这些数学知识解决实际问题。
专题06椭圆双曲线与抛物线方程的图像与基本性质(理)(知识点串讲)原卷版

专题06 椭圆、双曲线与抛物线方程的图像与基本性质知识网络重难点突破知识点一 椭圆的方程与性质 1、椭圆的定义平面内与两个定点F 1,F 2的距离之和等于常数(大于||F 1F 2)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |||MF 1+||MF 2=2a },||F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数.(1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2、椭圆的标准方程和几何性质 标准方程x 2a 2+y 2b 2=1(a >b >0)x 2b 2+y 2a 2=1(a >b >0)图形性质范围-a ≤x ≤a ,-b ≤y ≤b-b ≤x ≤b , -a ≤y ≤a对称性 对称轴:坐标轴,对称中心:(0,0) 顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)轴长轴A 1A 2的长为2a ,短轴B 1B 2的长为2b焦距||F1F2=2c离心率e=ca,e∈(0,1) a,b,c的关系c2=a2-b2例1、(1)(2020·河南洛阳一模)已知椭圆x211-m+y2m-3=1的长轴在y轴上,且焦距为4,则m等于() A.5B.6C.9 D.10(2).已知m是两个数2,8的等比中项,则圆锥曲线221yxm+=的离心率为()A.32或52B.32或5C.32D.5【变式训练11】、已知圆F1:(x+1)2+y2=16,定点F2(1,0),动圆M过点F2,且与圆F1相内切,那么点M的轨迹C的方程为____.【变式训练12】、如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是____.知识点二 直线与椭圆的位置关系1.焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段的长度叫做椭圆的焦半径,分别记作r 1=|PF 1|,r 2=|PF 2|.(1)x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; (2)y 2a 2+x 2b 2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0;(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).2.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b 2=1(a >b >0)中 (1)当P 为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ).3.焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b 2a . 4.AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|= 1+1k 2|y 1-y 2|; (2)直线AB 的斜率k AB =-b 2x 0a 2y 0.例2、已知椭圆Γ:22221(0)x y a b a b +=>> 4.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)直线l 与椭圆Γ交于A ,B 两点,AB 的中点M 在圆221x y +=上,求AOB ∆(O 为坐标原点)面积的最大值.【变式训练21】、已知A 、B 分别是椭圆2222x y C 1(a b 0)a b+=>>:的左、右顶点,P 为椭圆C 的下顶点,F为其右焦点.点M 是椭圆C 上异于A 、B 的任一动点,过点A 作直线l x ⊥轴.以线段AF 为直径的圆交直线AM 于点A 、N ,连接FN 交直线l 于点H.点G 的坐标为()b,0-,且PF PG ⋅=,椭圆C 的离心率为12. ()1求椭圆C 的方程;()2试问在x 轴上是否存在一个定点T ,使得直线MH 必过该定点T ?若存在,求出点T 的坐标,若不存在,说明理由.知识点三 双曲线的方程与性质 1、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P ={M||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 2、双曲线的标准方程和几何性质 标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围 x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性 对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a )渐近线 y =±b a x y =±a b x离心率e = ca ,e ∈(1,+∞) a ,b ,c 的关系c 2=a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长||A 1A 2=2a ;线段B 1B 2叫做双曲线的虚轴,它的长||B 1B 2=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长例3、(1).已知一个双曲线的方程为:22132x y m m -=-+,则m 的取值范围是__.(2)设双曲线x 24-y 22=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为__________.【变式训练31】、设双曲线22221(0,0)y x C a b a b-=>>:的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,且与另一条渐近线交于点B ,若32OF OB OA =+,则双曲线C 的离心率为( ) A .2 B .2C .233D .143知识点四 直线与双曲线位置关系例4、设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C的方程为( )A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -=【变式训练41】、(2019年全国Ⅱ卷)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A 2B 3C .2D 5知识点五 抛物线的方程与性质 1、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2、抛物线的标准方程与几何性质标准方程y 2=2px(p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0) 对称轴 x 轴y 轴焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p 2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2离心率 e =1 准线 x =-p2 x =p 2 y =-p2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右向左向上向下焦半径(其中P (x 0,y 0))||PF =x 0+p 2||PF =-x 0+p2||PF =y 0+p 2||PF =-y 0+p2例5、已知点()0,2A ,抛物线1:C 2y ax =()0a >的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N .若:5FM MN =a 的值为( ) A .14B .12C .1D .4【变式训练51】、已知点F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,点P 是抛物线y 2=8ax 与双曲线的一个交点,若||PF 1+||PF 2=12,则抛物线的准线方程为__________.知识点六 直线与抛物线位置关系 1、 与焦点弦有关的常用结论设A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角). (3)1|AF |+1|BF |为定值2p .(4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.2、设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角); (3)1|F A |+1|FB |=2p ;(4)以弦AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.例6、已知F 是抛物线C :22y px =(0)p >的焦点,点A 在C 上,A 到y 轴的距离比||AF 小1.(1)求C 的方程;(2)设直线AF 与C 交于另一点B ,M 为AB 的中点,点D 在x 轴上,||||DA DB =.若||6DM =直线AF 的斜率.【变式训练61】、已知直线()20y x m m =+≠与抛物线24y x =交于B 、A 两点, (1)若OA OB ⊥,求m 的值;(2)以AB 为边作矩形ABCD ,若矩形ABCD 的外接圆圆心为1,22⎛⎫⎪⎝⎭,求矩形ABCD 的面积.知识点七 直线与圆锥曲线方程的综合应用 1、 直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点、仅有一个公共点以及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l 的方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f x ,y =0,消元(如消去y ),得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合). ②若a ≠0,设Δ=b 2-4ac .当Δ>0时,直线和圆锥曲线相交于不同的两点; 当Δ=0时,直线和圆锥曲线相切于一点; 当Δ<0时,直线和圆锥曲线没有公共点. 2、 直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长:||P 1P 2=1+k 2||x 1-x 2=1+k 2[x 1+x 22-4x 1x 2]=⎝⎛⎭⎫1+1k 2[y 1+y 22-4y 1y 2]=1+1k 2||y 1-y 2 .(2)斜率不存在时,可求出交点坐标,直接求解(利用坐标轴上两点间距离公式). 3、 圆锥曲线的中点弦问题遇到弦中点问题常用“点差法”或“根与系数的关系”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k = -b 2x 0a 2y 0 ;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k = b 2x 0a 2y 0 ;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率 k =py 0 .在使用根与系数的关系时,要注意使用条件是Δ≥0.例7、已知直线l :y =kx +2,椭圆C :x 24+y 2=1.试问当k 取何值时,直线l 与椭圆C :(1) 有两个不重合的公共点; (2) 有且只有一个公共点; (3) 没有公共点.【变式训练71】、(安徽蚌埠二中2019届模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.。
数学(理)高考二轮复习:专题五第二讲《椭圆、双曲线、抛物线的定义、方程与性质》课件(共46张PPT)

a2+b2=25
a2=20
依题意1=ba×2
,解得b2=5 ,∴双曲线 C 的方程为
2x02 -y52=1.
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短 限时规范训练 上页 下页
试题
通解 优解
考点一
考点二
考点三
2.设 F1,F2 分别为椭圆x42+y2=1 的左、右焦点,点 P 在椭圆上,
第二讲 椭圆、双曲线、抛物线的定义、方程与性质 课前自主诊断 课堂对点补短
考点三 直线与椭圆、双曲线、抛物线的位置关系
限时规范训练 上页 下页
试题
解析
考点一 考点二
考点三
6.(2016·高考全国Ⅰ卷)设圆 x2+y2+2x-15=0 的圆心为 A,直 线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E. (1)证明|EA|+|EB|为定值,并写出点 E 的轨迹方程; (2)设点 E 的轨迹为曲线 C1,直线 l 交 C1 于 M,N 两点,过 B 且 与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积 的取值范围.
10,点 P(2,1)在 C 的一条渐近线上,则 C 的方程为( A )
A.2x02 -y52=1
B.x52-2y02 =1
C.8x02-2y02 =1
D.2x02-8y02 =1
第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题
解析
考点一 考点二 考点三
长即可表示出面积,解方程求 b 即可. 由题意知双曲线的渐近线方程为 y=±b2x,圆的方程为 x2+y2=4,
圆锥曲线(椭圆、双曲线、抛物线)知识点总结

双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
高二数学 双曲线和抛物线的标准方程及几何性质

双曲线和抛物线的标准方程及几何性质【考点一:双曲线的定义与标准方程】1. 双曲线定义平面内与两个定点21F F 、的距离之差的绝对值为常数)2(221F F a a <的动点P 的轨迹叫双曲线,其中两个定点21F F 、叫双曲线的焦点.当21212F F a PF PF <=-时, P 的轨迹为双曲线 ; 当21212F F a PF PF >=-时, P 的轨迹不存在;当21212F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 当没有绝对值时,表示双曲线的一支或一条射线. 2. 双曲线的标准方程i. 中心在原点,焦点在x 轴上:)00(12222>>=-b a b y a x ,.ii. 中心在原点,焦点在y 轴上:)00(12222>>=-b a bx a y ,.3.求双曲线的标准方程的方法有定义法、待定系数法,有时还可根据条件用代入法.用待定系数法求双曲线方程的一般步骤同椭圆的求法是相同的(1)作判断(2)设方程:(3)找关系(4)解方程 4.焦点位置的判断由x 2,y 2分母的符号决定,焦点在分母为正的坐标轴上.例如双曲线)0(122<=-mn ny m x , 当00<>n m ,时表示焦点在x 轴上的双曲线;当00<>m n ,时表示焦点在y 轴上的双曲线. 【例1】已知()15,0F -,()25,0F ,一曲线上的动点P 到1F 、2F 距离之差为6,则双曲线的方程为 ______.【解析】10621<=-PF PF ,P ∴的轨迹是双曲线的右支.其方程为)0(116922>=-x y x 【课堂练习】1.设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围.【解析】设点P 的坐标为(x ,y ),依题意得||||x y =2,即y =±2x (x ≠0). ①因此点P (x ,y )、M (-1,0)、N (1,0)三点不共线,得||PM |-|PN ||<|MN |=2. ∵||PM |-|PN ||=2|m |>0,∴0<|m |<1.因此点P 在以M 、N 为焦点,实轴长为2|m |的双曲线上.故22m x -221m y -=1. ②将①代入②,并解得x 2=22251)1(mm m --, ∵1-m 2>0,∴1-5m 2>0.解得0<|m |<55, 即m 的取值范围为(-55,0)∪(0,55).【例2】根据下列条件,求双曲线方程:(1)与双曲线92x -162y =1有共同的渐近线,且过点(-3,23);(2)与双曲线162x -42y =1有公共焦点,且过点(32,2).【解析】(1)设双曲线的方程为22a x -22by =1,由题意,得()(22224331b a ab ⎧=⎪⎪⎨-⎪-=⎪⎩, 解得a 2=49,b 2=4, 所以双曲线的方程为492x -42y =1.(2)设双曲线方程为22a x -22by =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b=1. 又∵a 2+b 2=(25)2,∴a 2=12,b 2=8,故所求双曲线的方程为122x -82y =1.【课堂练习】2.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由821=-PF PF ,即892=-PF ,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面横线上.______________________________________________. 【解析】易知P 与F 1在y 轴的同侧,|PF 2|-|PF 1|=2a ,∴|PF 2|=17.【考点二:双曲线的几何性质】1. 双曲线的方程与几何性质:2.与双曲线)00(12222>>=-b a b y a x ,共渐近线的双曲线系方程为:)0(2222≠=-m m by a x与双曲线)00(12222>>=-b a by a x ,共轭的双曲线为12222=-a x b y实轴和虚轴等长的双曲线叫做等轴双曲线,等轴双曲线222a y x ±=-的渐近线方程为x y ±=,离心率为2=e .【例3】已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程是y ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为 ( )(A )22136108x y -= (B ) 221927x y -= (C )22110836x y -= (D )221279x y -=【答案】B【解析】依题意知2222269,27ba c abc a b +⎧=⎪⎪=⇒==⎨⎪=⎪⎩,所以双曲线的方程为221927x y -= 【课堂练习】3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.【解析】由双曲线的几何性质,知圆C 过双曲线同一支上的顶点和焦点,所以圆C 的圆心的横坐标为4. 故圆心坐标为(4,±374).易求它到双曲线中心的距离为316. 【例4】已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为21F F 、,点P 在双曲线的右支上,且214PF PF =,则此双曲线的离心率e 的最大值为__________.【解析】ac a PF a PF PF a PF PF -+≤+=+=21||21||||2||||22221双曲线上存在一点P 使214PF PF =,等价于2514,13a e c a +≥∴<≤- 【课堂练习】4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 ( )AB【答案】D【解析】不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为b a ,直线FB 的斜率为:bc-()1b ba c ∴⋅-=-,2b ac ∴=,即220c a ac --=,解得c e a ==.5.P 是双曲线22221(0,0)x y a b a b -=>>左支上的一点,21F F 、分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心的横坐标为( )A .a -B .b -C.c -D.c b a -+【解析】设21F PF ∆的内切圆的圆心的横坐标为0x ,由圆的切线性质知,21000|||()|2PF PF c x x c a x a +=----=⇒=-【考点三:焦点三角形】1. 焦点三角形:椭圆或双曲线上的一点与两焦点所构成的三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +或21PF PF -的结构,这样就可以应用椭圆或双曲线的定义,从而可得到有关a ,c 的关系式.设双曲线22221(0,0)x y a b a b-=>>上的一点00(,)P x y 到两焦点12,F F 的距离分别为12,r r ,①a r r 221=-,双曲线上一点P 到相应焦点的最短距离为c a -,到另一焦点的最短距离为c a +. ②焦点12F PF ∆面积为S ,121sin 2S r r θ=, 【例5】设P 为双曲线11222=-y x 上的一点,21F F 、是该双曲线的两个焦点,若2/3/21=PF PF ,则21F PF ∆的面积为 ( )A .B .12C.D.24【答案】B【解析】由已知1,a b ==,故c =,已知2/3/21=PF PF ①又1222PF PF a -== ②由①、②解得16PF =,24PF =,则221252PF PF +=,又因1252F F =,则21F PF ∆为直角三角形, 则121211641222PF F S PF PF ∆==⨯⨯=. 【课堂练习】6.已知双曲线116922=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且1232PF PF ⋅=,求21PF F ∠的大小.【解析】∵点P 在双曲线的左支上,∴621=-PF PF ,∴362212221=-+PF PF PF PF ,∴1002221=+PF PF ,∵()22221244100F F c a b ==+=,∴ 9021=∠PF F .【考点四:抛物线的标准方程和几何性质】1.抛物线的标准方程、类型及其几何性质 (0>P ):2.抛物线的焦半径:①)0(22≠=p px y 的焦半径2p x PF +=;)0(22≠=p py x 的焦半径2p y PF +=; ② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p . 3. 抛物线中与焦点弦有关的一些几何图形的性质: (1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠A MF =∠B MF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为11B A 、,若P 为11B A 的中点,则P A ⊥PB ;(4)若AO 的延长线交准线于C ,则B C 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A ,O ,C 三点共线.(5) AB 为抛物线)0(22≠=p px y 的焦点弦,则22,4p y y p x x B A B A -==,p x x AB B A ++= 4. 抛物线的焦点位置判断:焦点在一次项的坐标轴上,一次项的符号决定开口方向.【例6】已知抛物线)0(22≠=p px y 的准线与圆(x -3)2+y 2=16相切,则P 的值为( )(A )12(B )1 (C )2 (D )4【答案】 C【解析】法一:抛物线)0(22≠=p px y 的准线方程为2p x -=, 因为抛物线)0(22≠=p px y 的准线与圆(x -3)2+y 2=16相切, 所以2,423==+p p. 法二:作图可知,抛物线)0(22≠=p px y 的准线与圆(x -3)2+y 2=16相切于点(-1,0)所以2,12=-=-p p. 【课堂练习】7.设A 、B 为抛物线)0(22≠=p px y 上的点,且090=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解析】设直线OA 方程为kx y =,由22y kx y px=⎧⎨=⎩解出A 点坐标为⎪⎭⎫⎝⎛k p k p 2,22由⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为()pk pk 2,22-, 直线AB 方程为22-1)2(2k pk x k pk y -=+,令0=y 得p x 2=,直线AB 必过的定点()0,2p【例7】在抛物线24x y =上求一点,使该点到直线54-=x y 的距离为最短,求该点的坐标 【解析】解法1:设抛物线上的点()2P x x,4,则点P 到直线的距离17|544|2+-=x x d 1717417|4)21(4|2≥+-=x当且仅当21=x 时取等号,故所求的点为⎪⎭⎫⎝⎛121,解法2:平行于直线54-=x y 且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为b x y +=4,代入抛物线方程得0442=--b x x , 由01616=+=∆b 得21,1=-=x b ,故所求的点为⎪⎭⎫⎝⎛121,【课堂练习】8.已知抛物线2:ax y C =(a 为非零常数)的焦点为F ,点P 为抛物线c 上一个动点,过点P 且与抛物线c 相切的直线记为l .(1)求F 的坐标; (2)当点P 在何处时,点F 到直线l 的距离最小? 【解析】(1)抛物线方程为 y a x 12=,故焦点F 的坐标为⎪⎭⎫⎝⎛a 410, (2)设()00y x P ,,则200ax y =2 ,2'0ax k P ax y =∴=)的切线的斜率点处抛物线(二次函数在直线l 的方程是)(20020x x ax ax y -=-, 0 2 200=-ax y x ax -即. 411441)1()2(410 20222020ax a aax ax ad ≥+=-+--=∴当且仅当00x =时上式取“=”,此时点P 的坐标是()0,0, 故当P 在()0,0处时,焦点F 到切线l 的距离最小.【巩固练习】基础训练(A 类)1. 双曲线19422=-y x 的渐近线方程是 ( ) A . x y 32±= B . x y 94±= C. x y 23±= D. x y 49±= 2. 焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B . 1241222=-x y C.1122422=-x y D.1122422=-y x3.( )A .22124x y -=B .22142x y -= C.22146x y -= D.221410x y -=4.双曲线24x -212y =1的焦点到渐近线的距离为( )A .B .2 D.1 5.双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、⎫⎪⎪⎝⎭B 、⎫⎪⎪⎝⎭C 、⎫⎪⎪⎝⎭D 、)6.抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0) C.(4,0) D.(- 4,0) 7. 抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1617 B . 1615 C.87D. 0 8.若双曲线22221(0,0)x y a b a b-=>>的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A .2B .3C.5D.29.若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )A . 2B .C.32D. 1 10. 若椭圆122=+ny m x )0(>>n m 和双曲线122=-t y s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是( ) . A .m s - B .)(21s m - C.22s m - D.s m - 【参考答案】1.【答案】C【解析】直接考察渐近线的公式.2.【答案】B【解析】从焦点位置和具有相同的渐近线的双曲线系两方面考虑,选B 3.【答案】B【解析】由2e =得222222331,1,222c b b a a a =+==,选B .4.【答案】A【解析】双曲线24x -212y =1的焦点(4,0)到渐近线y =的距离为d ==5.【答案】C【解析】双曲线的2211,2a b ==,232c =,c =2⎛⎫ ⎪ ⎪⎝⎭. 6.【答案】B【解析】由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,故选B . 7.【答案】B【解析】抛物线的标准方程为y x 412=,准线方程为161-=y , 由定义知,点M 到准线的距离为1,所以点M 的纵坐标是16158.【答案】C【解析】焦点到渐近线的距离等于实轴长,故51,222222=+===ab ac e a b ,所以5=e 9.【答案】D【解析】由222123x y a -===c可知虚轴e=a,解得a =1或a =3, 参照选项知而应选D.10.【答案】A【解析】因为P 在椭圆上,所以m PF PF 221=+.又P 在双曲线上,所以s PF PF 221=-.两式平方相减,得)(4421s m PF PF -=⋅,故s m PF PF -=⋅21.选A .提高训练(B 类)1. 以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程是 A .221090x y x +-+= B . 221090x y x +--=C. 221090x y x +++=D. 221090x y x ++-= 2. 曲线)6(161022<=-+-m m y m x 与曲线)95(19522<<=-+-n ny n x 的 ( ) A .焦距相等 B .焦点相同 C.离心率相等 D.以上都不对3. 两个正数a 、b 的等差中项是29,一个等比中项是52,且b a >,则双曲线12222=-b y a x 的离心率为( )A .35 B . 441 C.45 D.541 4.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A .22x +y +2x=0B .22x +y +x=0 C.22x +y -x=0 D.22x +y -2x=0 5.设双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线21y =x +相切,则该双曲线离心率为( )A B .26. 已知点)4,3(A ,F 是抛物线28x y =的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 ( )A . ()0,0B . ()62,3- C. ()4,2 D. ()62,37.过抛物线焦点F 的直线与抛物线交于两点B A ,,若B A ,在抛物线准线上的射影为11,B A ,则=∠11FB A ( )A . 45︒B . 60︒ C. 90︒ D. 120︒8.“0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件C.充要条件D.既不充分也不必要条件9. 已知点)0,1()0,3(),0,3(B N M ,-,动圆C 与直线MN 切于点B ,过N M ,与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .)1(1822-<=-x y x B .)1(1822>=-x y x C.)0(1822>=+x y x D.)1(11022>=-x y x 10.设双曲线12222=-by a x 的一条渐近线与抛物线y =x 2+1 只有一个公共点,则双曲线的离心率为( ) A . 45 B . 5 C. 25 D.5 【参考答案】1.【答案】A2.【答案】A 【解析】方程)6(161022<=-+-m my m x 表示的曲线为焦点在x 轴的椭圆, 方程)95(19522<<=-+-n ny n x 的曲线为焦点在y 轴上的双曲线, )5()9()6()10(-+-=---n n m m ,故选A .3.【答案】B 【解析】414,5=∴==c b a ,选B . 4.【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D. 5.【答案】C 【解析】由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =, 代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c .6.【答案】C【解析】设M 到准线的距离为MK ,则MK MA MF MA +=+, 当MK MA +最小时,M 点坐标是()4,2,选C.7.【答案】C【解析】焦点弦的性质.8.【答案】C【解析】将方程221mx ny +=转化为 22111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须满足110,0,m n>> 11n m >.9.【答案】B 【解析】,2=-=-BN BM PN PM P 点的轨迹是以N M ,为焦点,实轴长为2的双曲线的右支,选B .10.【答案】D 【解析】双曲线12222=-by a x 的一条渐近线为x a b y =, 由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y ,得210b x x a -+=有唯一解,所以△=2()40b a -=, 所以2b a =,2c e a ==== D. 综合迁移(C 类)1.过抛物线24y x =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于()224a a a R ++∈,则这样的直线( )A .有且仅有一条B .有且仅有两条 C.1条或2条 D.不存在2.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线A F 的斜率为|P F|= ( )A .B .8 C. D. 163.设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b-=(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,∣OP ∣,则该双曲线的渐近线方程为( )A .x y =0B x ±y =0 C.x =0 ±y =04. 已知双曲线122=-n y m x 的一条渐近线方程为x y 34=,则该双曲线的离心率e 为 .5.巳知椭圆G 的中心在坐标原点,长轴在x G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .6.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________.7.过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________.【参考答案】1.【答案】C【解析】 44)1(52||22≥++=++=++=a a a p x x AB B A ,而通径的长为4.2.【答案】B【解析】抛物线的焦点F (2,0),直线A F 的方程为2)y x =-,所以点(2,A -、(6,P ,从而|P F|=6+2=83.【答案】D4.【答案】53或4 【解析】当00>>n m ,时,2925,169n m n e m m +===, 当00<<n m ,时,1625,9162=+==m n m e n m ,4535或=∴e . 5.【答案】193622=+y x【解析】23=e ,122=a ,6=a ,3=b ,则所求椭圆方程为193622=+y x . 6.【答案】3 【解析】依题意,有⎪⎩⎪⎨⎧=+=•=+2222121214||||18||||2||||cPF PF PF PF a PF PF ,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3. 7.【答案】 2【解析】由题意可知过焦点的直线方程为2p y x =-, 联立有22223042y px p x px p y x ⎧=⎪⇒-+=⎨=-⎪⎩,又82AB p ==⇒=.。
椭圆双曲线抛物线知识点

椭圆双曲线抛物线知识点椭圆、双曲线和抛物线是常见的曲线形状,它们在数学和物理中有广泛的应用。
本文将介绍椭圆、双曲线和抛物线的基本定义、性质、方程和常见应用。
一、椭圆(ellipse)椭圆是一个平面上的闭合曲线,该曲线的各点到两个定点(称为焦点)的距离之和是一个常数。
椭圆有两个焦点和两个短轴,两个短轴的中点称为椭圆的中心。
椭圆的长轴是通过焦点的直线,长轴的一半称为椭圆的半长轴,短轴的一半称为椭圆的半短轴。
椭圆的数学表达式为:x^2/a^2 + y^2/b^2 = 1其中a和b分别是椭圆半长轴和半短轴的长度。
椭圆的性质:1.椭圆是轴对称的,关于x轴和y轴都有对称性。
2.椭圆的离心率0<e<1,离心率越接近0,椭圆越圆。
3.椭圆的周长可以用椭圆的长轴和半短轴的长度计算。
椭圆的应用:1.椭圆的几何性质使它在图形设计和艺术中有广泛的应用。
2.椭圆的光学性质使它在透镜和镜面的设计中有应用。
3.椭圆在天体力学中用来描述行星的轨道。
4.椭圆在密码学中用来生成加密算法的公钥和私钥。
二、双曲线(hyperbola)双曲线是一个平面上的开放曲线,该曲线的各点到两个焦点的距离之差是一个常数。
双曲线有两个焦点和两个短轴,两个短轴的中点称为双曲线的中心。
双曲线的长轴是通过焦点的直线,长轴的一半称为双曲线的半长轴,短轴的一半称为双曲线的半短轴。
双曲线的数学表达式为:x^2/a^2 - y^2/b^2 = 1其中a和b分别是双曲线半长轴和半短轴的长度。
双曲线的性质:1.双曲线有两条渐进线,它们与双曲线的轴相切。
2.双曲线是非对称的,关于x轴和y轴没有对称性。
3.双曲线的离心率e>1,离心率越大,双曲线越扁。
4.双曲线的焦点和顶点与轴的关系可以用双曲线的方程来确定。
双曲线的应用:1.在物理学中,双曲线用来描述光学中的反射和折射现象。
2.在工程学中,双曲线用于设计天线的形状,以提高信号接收和发送的效果。
3.在经济学中,双曲线用来描述供求曲线和价格变动趋势。
椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总椭圆、双曲线和抛物线是解析几何中常见的二次曲线,它们在数学、物理和工程等领域有着广泛的应用。
以下是这三种曲线的知识点汇总:1. 椭圆的定义与标准方程椭圆是平面上所有点到两个固定点(焦点)的距离之和为常数的点的集合。
椭圆的标准方程为 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} =1\),其中 \(a\) 和 \(b\) 分别是椭圆的半长轴和半短轴。
2. 椭圆的性质- 椭圆的焦点到椭圆上任意一点的距离之和是一个常数。
- 椭圆的长轴和短轴互相垂直,且长轴是椭圆上最长的直径。
- 椭圆的面积为 \(\pi \times a \times b\)。
3. 双曲线的定义与标准方程双曲线是平面上所有点到两个固定点(焦点)的距离之差的绝对值为常数的点的集合。
双曲线的标准方程为 \(\frac{x^2}{a^2} -\frac{y^2}{b^2} = 1\)(水平开口)或 \(\frac{y^2}{b^2} -\frac{x^2}{a^2} = 1\)(垂直开口),其中 \(a\) 和 \(b\) 分别是双曲线的实半轴和虚半轴。
4. 双曲线的性质- 双曲线的焦点到双曲线上任意一点的距离之差是一个常数。
- 双曲线的两个分支分别位于两个焦点的两侧。
- 双曲线的面积无法用简单的公式表示,但可以通过积分计算。
5. 抛物线的定义与标准方程抛物线是平面上所有点到一个固定点(焦点)和一条直线(准线)的距离相等的点的集合。
抛物线的标准方程为 \(y^2 = 4ax\)(水平开口)或 \(x^2 = 4ay\)(垂直开口),其中 \(a\) 是抛物线的参数。
6. 抛物线的性质- 抛物线的焦点到抛物线上任意一点的距离等于该点到准线的距离。
- 抛物线是对称的,且对称轴是抛物线的顶点所在的直线。
- 抛物线的面积可以通过积分计算,公式为 \(\frac{1}{4} \times a \times \text{弧长}\)。
抛物线椭圆双曲线定义

抛物线椭圆双曲线定义抛物线平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外,F称为"抛物线的焦点",l称为"抛物线的准线".定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
2.抛物线的标准方程右开口抛物线:y^2=2px左开口抛物线:y^2=-2px上开口抛物线:y=x^2/2p下开口抛物线:y=-x^2/2p3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)4.它的解析式求法:三点代入法5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.抛物线:y = ax* + bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x-h)* + k就是y等于a乘以(x-h)的平方+kh是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2pyx^2=-2py椭圆目录?定义?标准方程?公式?相关性质?历史定义椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。
抛物线的简单几何性质(上课用)

顶点
焦半径
焦点弦 的长度
(0,0)
p 2
x0
p x1 x2
(0,0)
p 2
x0
p (x1 x2 )
(0,0)
p 2
y0
p y1 y2
(0,0)
p 2
y0
p ( y1 y2 )
四、归纳总结
1、范围:抛物线只位于半个坐标平面内,虽然它也可 以无限延伸,但没有渐近线;
2、对称性: 抛物线只有一条对称轴,没有对称中心;
注:这与椭圆有四个顶点,双曲线有两个顶点不同。
(4)离心率
抛物线上的点与焦点的距 离和它到准线的距离 之比,叫 做抛物线的离心率,由抛物线 的定义,可知e=1。
y
P(x0 , y0 )
A
OF
x
B
(5)焦半径:连接抛物线任意一点与焦点的线
段叫做抛物线的焦半径。PF
x0
p 2
(6)通径:通过焦点且垂直对称轴的直线,与 抛物线相交于两点,连接这两点的线段叫做抛物 线的通径。通径长为2p
y
图形
F
o
x
. .
y F ox
焦点 准线
F( p ,0) 2
x p 2
F ( p ,0) 2
x p 2
y
F
x o
F(0, p) 2
y p 2
y
o
x
F
F (0, p) 2
y p 2
3、椭圆和双曲线的性质:
方程
性质
图形
范围 对称性 顶点坐标 离心率
二、探索新知
如何研究抛物线y2 =2px(p>0)的几何性质?
二、讲授新课:
问题:你能说出直线与抛物线位置关系吗? y
高中数学椭圆双曲线抛物线的标准方程与几何性质知识点

高中数学椭圆双曲线抛物线的标准方程与几何性质知识点高中数学椭圆双曲线抛物线的标准方程与几何性质知识点知识点是知识、理论、道理、思想等的相对独立的最小单元,以下是店铺为大家整理的高中数学椭圆双曲线抛物线的标准方程与几何性质知识点,希望对你有所帮助。
椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义:1、到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2、到两定点F1,F2的距离之差的绝对值为定值2a(0|F1F2|)的点的轨迹3、与定点和直线的距离之比为定值e的点的'轨迹.(02.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.图形方程标准方程(0,b0)y2=2px参数方程(t为参数)范围─a£x£a,─b£y£b|x| 3 a,y Rx30中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)离心率e=1准线x=x=渐近线y=x焦半径通径2p焦参数P数学椭圆知识点双曲线⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0抛物线标准方程y2=2pxy2=—2p_2=2pyx2=—2py直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2 圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r 锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=p_r2h乘法与因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=—b/aX1_X2=c/a注:韦达定理判别式b2—4ac=0注:方程有两个相等的实根b2—4ac>0注:方程有两个不等的实根b2—4ac<0注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosAcos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)倍角公式tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctgacos2a=cos2a—sin2a=2cos2a—1=1—2sin2a半角公式sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos (A+B)—cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB【高中数学椭圆双曲线抛物线的标准方程与几何性质知识点】。
专题12椭圆双曲线抛物线方程及其几何性质

专题12椭圆双曲线抛物线方程及其几何性质椭圆、双曲线和抛物线是二次曲线的三种基本类型,它们在几何学和数学分析中都具有重要的地位。
在本文中,我们将介绍它们的方程及其几何性质。
一、椭圆椭圆是平面上与两个给定点F1和F2的距离之和等于常数2a的点的集合。
这两个点被称为焦点,直线F1F2的中点O称为中心,a称为半长轴的长度。
椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为中心坐标,a和b分别为半长轴和半短轴的长度。
椭圆的基本性质如下:1.椭圆的焦点到中心的距离为c,有c²=a²-b²。
2.椭圆的离心率定义为e=c/a,且0<e<13.椭圆的轴是与坐标轴平行的直线,其中长轴与x轴平行,短轴与y轴平行。
4.椭圆的焦点到椭圆上的任意一点的距离之和等于常数2a。
5.椭圆的顶点为(h±a,k)和(h,k±b),其中(h,k)为中心坐标。
二、双曲线双曲线是平面上与两个给定点F1和F2到点的距离之差的绝对值等于常数2a的点的集合。
这两个点被称为焦点,直线F1F2的中点O称为中心,a称为半长轴的长度。
双曲线的标准方程为(x-h)²/a²-(y-k)²/b²=1,其中(h,k)为中心坐标,a和b分别为半长轴和半短轴的长度。
双曲线的基本性质如下:1.双曲线的焦点到中心的距离为c,有c²=a²+b²。
2.双曲线的离心率定义为e=c/a,且e>13.双曲线的轴是与坐标轴平行的直线,其中长轴与x轴平行,短轴与y轴平行。
4.双曲线的顶点为(h±a,k)和(h,k±b),其中(h,k)为中心坐标。
三、抛物线抛物线是平面上到一个给定点(焦点)F的距离等于到一条给定直线(准线)的距离的点的集合。
准线与抛物线的公共点被称为顶点,焦点与准线的垂线称为轴,焦点到抛物线顶点的距离称为焦距,焦点到轴的距离称为准距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识要点: 椭圆、双曲线、抛物线的标准方程与几何性质
第一种定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线.
2.椭圆的标准方程:
(1)
)0
(1
2
2
2
2
>
>
=
+b
a
b
y
a
x
,焦点:F1(-c,0),F2(c,0),其中
c=
2 2b a-.
(2)
)0
(1
2
2
2
2
>
>
=
+b
a
a
y
b
x
,焦点:F1(0,-c),F2(0,c),其中
c=
2 2b a-.
3.椭圆的参数方程:⎩
⎨⎧==θθsin cos b y a x ,(参数θ是椭圆上任意一点的离心率). 4.椭圆的几何性质:以标准方程)0(12222>>=+b a b
y a x 为例: ①范围:|x|≤a,|y|≤b;
②对称性:对称轴x=0,y=0,对称中心为O(0,0);
③顶点A(a,0),A ′(-a,0),B(0,b),B ′(0,-b);长轴|AA ′|=2a,短轴|BB ′|=2b;
④离心率:e=a
c ,0<e<1;
⑤准线x=±c
a 2
;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任
意一点. 二、基本训练 1.设一动点
P 到直线3x =的距离与它到点A (1,0)的距离之比为
3,
则动点P 的轨迹方程是 ( )
()A 22
132
x y +=
()B 22
132
x y -=
()C 2
2
(1)132
x y
++= ()D 22
123
x y +=
2.曲线
192522=+y x 与曲线)9(19252
2<=-+-k k
y k x 之间具有的等量关系 ( ) ()A
()C 3且过点(3,0)A 4.底面直径为12cm 的平面所截, , 短轴长 ,离心率5.已知椭圆22
221(x y a b
+=的离心率为5,若将这个椭圆绕着它的右
焦点按逆时针方向旋转2
π
后,所得新椭圆的一条准线方程是163y =,则原来
的椭圆方程是 __________;新椭圆方程是 ___________ . 三、例题分析
例1(05浙江) 如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的
交点为M ,|MA 1|
∶
|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;
(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).
例2设,A B 是两个定点,且||2AB =,动点M 到
A 点的距离是4,线
段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.
例3.已知椭圆22
2
21(0)x y a b a b
+=>>,P 为椭圆上除长轴端点外的
任一点,12,F F 为椭圆的两个焦点,(1)若α=∠21F PF ,
21PF F β∠=,求证:离心率
2
cos
2
cos
βαβ
α-+=
e ;
12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P
,使得直线
1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于
焦点2F 的准线,直线2PF 与l 相交于点Q ,若22
||
2||QF PF =-,求直线
2PF 的方程.
例5(05上海)点A、B分别是椭圆
1
20
36
2
2
=
+
y
x
长轴的左、右端点,
点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PF
PA⊥。
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于
| |MB,
求椭圆上的点到点M的距离
d的最小值。