第38讲 空间几何体的结构特征及表面积与体积(达标检测)(解析版)

合集下载

空间几何体的结构特征、表面积与体积(六大题型)(课件)-2024年高考数学一轮复习(新教材新高考)

空间几何体的结构特征、表面积与体积(六大题型)(课件)-2024年高考数学一轮复习(新教材新高考)

由题意,取上下底面三角形得中心,分别为, ,得
中点即为外接圆圆心,作图如下:
则 = = 3, ⊥平面, = 1 = 2,
2
在Rt △ 中, = 2 − 2 = 2,
1 = 2 = 2 2.
故答案为:2 2.
题型五:展开图
【对点训练5】(2023·全国·高三专题练习)已知三棱锥P-ABC的底面ABC为等边三角
故选:D.
【解析】如图所示的几何体满足两个平面平行,其余各面都
【解题方法总结】
是平行四边形,但它不是棱柱,A错;
空间几何体结构特征的判断技巧
正八面体的各面都是三角形,不是三棱锥,B错;
(1)紧扣结构特征是判断的关键,依据条件构建几何模
如果两个平行截面与圆柱的底面平行,则是旋转体,如果这
型,在条件不变的情况下,变换模型中的线面关系或增加线、
则 = 4, = 2,
由cos∠ = 5
在△PBE中,由余弦定理得2 = 16 + 4 − 2 × 4 = 12,
13
可知sin∠
26
=
3 39

26
在△PCF中,由正弦定理得:
=
sin∠
sin120∘
故答案为:2 3
3 39
=
13× 26
3
2
= 3.
在△PCE中,由余弦定理得:
πrl
S圆锥侧=____
π(r1+r2)l
S圆台侧=_________
侧面展开图
侧面积公式
4.柱、锥、台、球的表面积和体积
名称
表面积
体积
柱体
S表=S侧+2S底
锥体
S表=S侧+S底
V=Sh

高中数学专题17_空间几何体的结构特征、三视图、表面积、体积(有答案)

高中数学专题17_空间几何体的结构特征、三视图、表面积、体积(有答案)

21届_专题17 空间几何体的结构特征、三视图、表面积、体积一、选择题(本大题共12小题,每小题5分,共60分)1. (江西赣州摸底)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A. B.C. D.2. (武汉4月调研)某几何体的三视图如下图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A.√3B.√6C.2√3D.2√63. (湖北部分重点中学二联)一个几何体的三视图如下图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.16π3B.8π3C.4√3πD.√3π4. (河南豫南九校一联)某空间几何体的三视图如下图所示,均为腰长为1的等腰直角三角形,则该几何体的表面积为()A.√2+1B.3+√32C.1+√22D.32+√35. (郑州一次质测)刍甍,中国古代算数中的一种几何形体.《九章算术》中记载“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()A.24B.32√5C.64D.32√66. (福建厦门一次质检)如图,某棱锥的正视图和侧视图都是等边三角形,该棱锥的体积为4√33,则该棱锥内切球的表面积是()A.π3B.2π3C.4π3D.8π37. (长春质测二)如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为()A.2B.√5C.2√2D.38. (西安中学四模)用若干个棱长为1的正方体搭成一个几何体,其主视图、左视图都为下图,则这个几何体体积的最小值为()A.5B.7C.9D.119. (吉林实验中学四模)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2B.1.6C.1.8D.2.410. (呼和浩特一调)某多面体的三视图如下图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中,面积最大的面的面积为()A.2√3B.6C.6√2D.1211. (福州质检)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.π+6B.2π3+6 C.π3+6 D.π3+212. (福建厦门一中第二学期开学考)三棱锥S−ABC及其三视图中的正视图和侧视图如图所示,若该三棱锥S−ABC的外接球的表面积为1123π,则该三棱锥S−ABC的体积为()A.16√3B.8√3C.16√33D.8√33二、填空题(本大题共4小题,每小题5分,共20分)(内蒙古包头二模)已知圆柱的侧面积为4π,它的两个底面的圆周在直径为2√2的同一个球面上,则该圆柱的体积为________.(广州综测一)已知三棱锥P−ABC的底面ABC是等腰三角形,AB⊥AC,PA⊥底面ABC,PA=AB=1,则这个三棱锥内切球的半径为________.(海南中学、文昌中学3月联考)如图,半球内有一内接正四棱锥S−ABCD.若正四棱锥S−ABCD的体积为4√23,则该半球的体积等于________.(重庆西南大学附中六次月考)棱长为a的正四面体ABCD的四个顶点都在同一个球面上,若过棱AB作四面体的截面,交棱CD的中点于E,且截面面积是3√2,则四面体外接球的表面积是________.三、解答题(本大题共4小题,共40分)EC=4,EF=2,(湖南六校联考)如图,梯形EFBC中,EC//FB,EF⊥BF,BF=23A是BF的中点,AD⊥EC,D在EC上,将四边形AFED沿AD折起,使得平面AFED⊥平面ABCD,点M是线段EC上异于E,C的任意一点.当点M是EC的中点时,求证:BM//平面AFED;时,求三棱锥E−BDM的体积.当平面BDM与平面ABF所成的锐二面角的正弦值为√306现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P−A1B1C1D1,下部的形状是正四棱柱ABCD−A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.若AB=6m,PO1=2m,则仓库的容积是多少?若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?(成都七中二诊)已知等边△AB′C′的边长为√2,△BCD中,BD=CD=1,BC=√2(如图1所示),现将B与B′,C与C′重合,将△AB′C′向上折起,使得AD=√3(如图2所示).若BC的中点为O,求证:平面BCD⊥平面AOD;在线段AC上是否存在一点E,使ED与平面BCD成30∘角,若存在,求出CE的长度,若不存在,请说明理由;求三棱锥A−BCD的外接球的表面积.(云南一次统一检测)如图,在四棱锥S−ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.求证:AM⊥SD;若二面角B−SA−M的正弦值为√6,求四棱锥S−ABCD的体积.3参考答案与试题解析21届_专题17 空间几何体的结构特征、三视图、表面积、体积一、选择题(本大题共12小题,每小题5分,共60分)1.【答案】D【考点】简单空间图形的三视图【解析】此题暂无解析【解答】根据三视图中的正视图和俯视图可知该几何体是由一个三棱锥与一个半圆锥组合而成的,则其侧视图应该是选项D中的三角形,故选D.【知识总结】正确掌握三视图的三要素与各图之间的关系是解决问题的关键.三视图的三要素为“长对正、宽相等、高平齐”或者说“主左一样高、俯左一样宽、主俯一样长.”本题考查空间几何体的三视图.2.【答案】B【考点】简单空间图形的三视图【解析】此题暂无解析【解答】由三视图可知该几何体是一个四棱柱,其底面是边长为1的正方形,高为1,侧棱长为√2.故该几何体的顶点间距离的最大值为√12+22+12=√6,故选B.熟记常见几何体的三视图有助于通过三视图还原几何体的直观图.本题考查三视图.3.【答案】A【考点】由三视图求体积球的表面积和体积【解析】此题暂无解析【解答】由三视图得该几何体是一个底面为以2为底,1为高的等腰三角形,高为√3的三棱锥,且三棱锥的一个侧面垂直于底面,则其底面所在的截面圆的半径为1,设三棱锥的外接,所以外接球的表面积为球的半径为R,则有R2=(√3−R)2+12,解得R=2√334πR2=16π,故选A.3根据三视图正确还原几何体是解题的关键.本题考查几何体的三视图和三棱锥的外接球的表面积. 4.【答案】 A【考点】由三视图求表面积 【解析】 此题暂无解析 【解答】由三视图可得该几何体是如图的三棱锥A −BCD (放在棱长为1的正方体中),则△ABC 和△BCD 的面积都是12,△ABD 和△ACD 的面积都是√22,则该几何体的表面积是2×12+2×√22=1+√2,故选A .由三视图得到几何体的直观图是解题的关键. 本题考查三视图、几何体的表面积. 5.【答案】 B【考点】由三视图求体积 【解析】 此题暂无解析 【解答】茅草面积即为几何体的侧面积,由三视图知,该几何体的侧面为两个全等的等腰梯形和两个全等的等腰三角形,其中等腰梯形的上底长为4、下底长为8、高为√42+22=2√5,等腰三角形的底边长为4、高为√42+22=2√5,所以侧面积S =2×4+82×2√5+2×(12×4×2√5)=32√5,即需要的茅草面积至少为32√5,故选B . 本题考查数学文化、空间几何体的三视图及表面积. 6.【答案】 C【考点】球的表面积和体积柱体、锥体、台体的体积计算【解析】 此题暂无解析 【解答】由两个视图知,不妨考虑该几何体为一个底面边长为2、侧面上的高为2的正四棱锥,其内切球的球心和过顶点与底面垂直的等边三角形(如题中视图所示)的内心重合.由题意设正四棱锥的高为ℎ,则4√33=13×2×2×ℎ,ℎ=√3,故其内切球半径R =√33,假设成立,所以该正四棱锥内切球的表面积为4πR 2=4π3,故选C .【方法点拨】(1)由于三视图的俯视图不确定,因此只要满足已知两个视图的几何体都不会影响答案,因此可选特殊的多边形为几何体的底面;(2)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系. 本题考查三视图、球的表面积与棱锥的体积. 7.【答案】 D【考点】由三视图求体积 【解析】 此题暂无解析 【解答】在正方体中画出该三棱锥的直观图,从而算出其最长棱长为3,故选D . 本题考查三视图. 8.【答案】 A【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】根据主视图和左视图得当俯视图为如图所示的两种形式时(图中的数字表示该位置的小正方体的个数),这个几何体的体积取得最小值5,故选A .本题考查几何体的三视图. 9.【答案】 B【考点】由三视图求体积【解析】 此题暂无解析 【解答】由三视图可知,该商鞅铜方升是由一圆柱与一长方体组合而成,因为其体积为12.6,所以π×(12)2x +3×(5.4−x )×1=12.6(其中π取3),解得x =1.6,故选B .【方法归纳】此类以三视图为背景求解空间几何体的体积的问题常常先根据“长对正,宽相等,高平齐”的特征还原出空间几何体的直观图,再利用柱体、锥体的体积公式求解.本题考查数学文化、三视图、简单组合体的体积. 10. 【答案】 B【考点】由三视图求体积 【解析】 此题暂无解析 【解答】根据题中三视图可画出直观图如图所示,该几何体中只有两个相同的梯形的面的面积最大,S =2+42×2=6,故选B .本题考查三视图. 11.【答案】 C【考点】由三视图求体积 【解析】 此题暂无解析 【解答】由三视图可知该几何体由一个棱柱和半个圆锥拼接而成.棱柱的体积V 1=12×(1+2)×2×2=6,半个圆锥的体积V 2=12×13×π×12×2=π3,从而该几何体的体积V =V 1+V 2=6+π3,故选C .【规律总结】求解以三视图为载体的几何体的体积问题,通常分三个步骤完成:(1)将三视图还原为几何体;(2)根据三视图获取相关的数据;(3)利用空间几何体的体积公式计算.本题考查三视图、几何体的体积.12.【答案】 C【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】由三视图可得SC ⊥平面ABC ,且底面△ABC 为正三角形,如图所示,取AC 的中点F ,连接BF ,则BF ⊥AC ,在Rt △BCF 中,BF =2√3,CF =2,BC =4.由于三棱锥S −ABC 的外接球的表面积为1123π,设其半径为R ,则有4πR 2=1123π,解得R 2=283,设SC =ℎ,球心到平面ABC 的距离为d ,易知该三棱锥S −ABC 的外接球是其补形成三棱柱的外接球,则球心到平面ABC 的距离是SC 的一半,即d =12ℎ,因为△ABC 的外接圆的半径为4√33,所以由勾股定理可得R 2=d 2+(4√33)2,解得d=2,则ℎ=4,则三棱锥S −ABC 的体积V =13×√34×42×4=16√33,故选C .【方法技巧】与球有关的问题往往与棱柱、棱锥加以组合,以选择题、填空题的形式在高考中出现,比如球的内接多面体问题或球的外切多面体问题,解题的关键是抓住球心到多面体的各个顶点或面的距离等于球的半径,一般利用多面体的体积转换等建立等量关系.本题考查空间几何体的三视图、球的性质与表面积、空间几何体的体积. 二、填空题(本大题共4小题,每小题5分,共20分)【答案】 2π【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】设圆柱底面圆的半径为r ,高为ℎ,则2πrℎ=4π,所以rℎ=2①,且ℎ2+(2r )2=(2√2)2②,联立①②,解得r =1,ℎ=2,则该圆柱的体积为πr 2ℎ=2π. 本题的突破点是圆柱的侧面积、体积公式、球的结构特征的理解和应用. 本题考查圆柱的侧面积、体积.【答案】3−√36【考点】球的表面积和体积【解析】此题暂无解析【解答】设三棱锥P−ABC的内切球半径为R,则根据体积相等有13×12×1×1×1=1 3×[3×12×1×1+√34×(√2)2]×R,解得R=3−√36.棱锥内切球的半径问题通常利用体积法求解.本题考查三棱锥与其内切球的关系.【答案】4√23π【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】设该半球的半径为R,则正四棱锥S−ABCD的底面正方形的边长为√2R,则V S−ABCD=1 3×(√2R)2×R=4√23,解得R=√2,则该半球的体积V=12×43πR3=4√23π.【考向分析】与球有关的问题往往与棱柱、棱锥加以组合,以选择题、填空题的形式在高考中出现,比如球的内接多面体问题、球的外切多面体问题,解题的关键是抓住球心到多面体的各个顶点、各个面的距离与半径的关系,一般利用多面体的体积转换等建立等量关系.本题考查空间几何体的位置关系、空间几何体的体积.【答案】18π【考点】球的表面积和体积【解析】此题暂无解析【解答】因为正四面体ABCD的棱长为a,所以平面BCD所在的截面圆的半径r=BC2sin∠BDC =√3a3,则正四面体ABCD的高ℎ=√a2−r2=√6a3,设正四面体ABCD的外接球的半径为R,则有R2=(ℎ−R)2+r2,即R2=(√6a3−R)2+(√3a3)2,解得R=√6a4.连接AE,BE,易得AE=BE=√3a2,设棱AB的中点为F,则易得EF=√AE2−AF2=√2a2,又过棱AB作四面体的截面,交棱CD的中点于E,则截面面积为12AB⋅EF=12a⋅√2a2=3√2,解得a =2√3,则R =√6a 4=3√22,则正四面体ABCD 的外接球的表面积为4πR 2=18π.利用正四面体的性质求解其外接球的半径与棱长的关系是解题的关键. 本题考查正四面体的性质、正四面体的外接球. 三、解答题(本大题共4小题,共40分) 【答案】解:证法一:取ED 的中点N ,连接MN ,AN , ∵ 点M 是EC 的中点,∴ MN//DC ,且MN =12DC , 而AB//DC ,且AB =12DC ,∴ MN//__AB ,即四边形ABMN 是平行四边形,∴ BM//AN ,又BM ⊄平面ADEF ,AN ⊂平面ADEF , ∴ BM//平面ADEF .证法二:∵ AD ⊥CD ,AD ⊥ED ,平面AFED ⊥平面ABCD ,平面AFED ∩平面ABCD =AD , ∴ DA ,DC ,DE 两两垂直.以DA ,DC ,DE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则D (0,0,0),A (2,0,0),B (2,2,0),C (0,4,0),E (0,0,2),M(0,2,1), ∴ BM →=(−2,0,1),又平面ADEF 的一个法向量DC →=(0,4,0),BM →⋅DC →=0, ∴ BM →⊥DC →, 又BM ⊄平面ADEF , ∴ BM//平面ADEF . 43【考点】二面角的平面角及求法 直线与平面平行的判定【解析】 此题暂无解析 【解答】【名师指导】本题考查空间中线面的位置关系、锥体的体积.可以利用线面平行的判定定理来证明,此时需作辅助线;亦可以通过建系,转化为证明BM →与平面AFED 的法向量垂直即可; 依题意设点M (0,t,2−t2)(0<t <4),设平面BDM 的法向量n 1=(x,y,z ),则DB →⋅n 1=2x +2y =0,DM →⋅n 1=ty +(2−t2)z =0,令y =−1,则n 1=(1,−1,2t 4−t),取平面ABF 的一个法向量n 2=(1,0,0). ∵ |cos <n 1,n 2>|=|n 1⋅n 2||n 1||n 2|=√2+4t 2(4−t)2=√66, 解得t =2.∴ M (0,2,1)为EC 的中点,S △DEM =12S △CDE =2,又点B 到平面DEM 的距离ℎ=2,∴ V E−BDM =V B−DEM =13⋅S △DEM ⋅ℎ=43.【名师指导】本题考查空间中线面的位置关系、锥体的体积.建系,利用法向量确定M 为EC 的中点,进而利用等体积法转化计算即可. 【答案】 312(m 3)当PO 1=2√3m 时,仓库的容积最大. 【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6.所以正四棱锥P −A 1B 1C 1D 1的体积V 锥=13⋅A 1B 12⋅PO 1=13×62×2=24(m 3);正四棱柱ABCD −A 1B 1C 1D 1的体积 V 柱=AB 2⋅O 1O =62×8=288(m )3. 所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).【知识拓展】解数学应用题一般分两步,一是将实际问题转化为数学问题,二是利用相应的工具(如导数法、换元法、不等式法等)求解最值.【名师指导】本小题主要考查函数的概念、导数的应用、棱柱和棱锥的体积等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.利用柱体、锥体的体积公式求解;设A1B1=a(m),PO1=ℎ(m),则0<ℎ<6,O1O=4ℎ.连O1B1.因为在Rt△PO1B1中,O1B12+PO12=PB12,所以(√2a2)2+ℎ2=36,即a2=2(36−ℎ2).于是仓库的容积V=V柱+V锥=a2⋅4ℎ+13a2⋅ℎ=133a2ℎ=263(36ℎ−ℎ3),0<ℎ<6,从而V′=263(36−3ℎ2)=26(12−ℎ2).令V′=0,得ℎ=2√3或ℎ=−2√3(舍).当0<ℎ<2√3时,V′>0,V是单调增函数;当2√3<ℎ<6时,V′<0,V是单调减函数;故ℎ=2√3时,V取得极大值,也是最大值.因此,当PO1=2√3m时,仓库的容积最大.【知识拓展】解数学应用题一般分两步,一是将实际问题转化为数学问题,二是利用相应的工具(如导数法、换元法、不等式法等)求解最值.【名师指导】本小题主要考查函数的概念、导数的应用、棱柱和棱锥的体积等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.利用柱体、锥体的体积公式建立目标函数,再利用导数研究函数的单调性、极值和最值.【答案】解:证明:连接AO,DO,∵△ABC为等边三角形,△BCD为等腰直角三角形,且O为BC的中点,∴BC⊥AO,BC⊥DO.∵AO∩DO=O,∴BC⊥平面AOD,又BC⊂平面BCD,∴平面BCD⊥平面AOD.存在,CE=1.3π【考点】平面与平面垂直的判定直线与平面所成的角解三角形余弦定理正弦定理【解析】此题暂无解析【解答】【名师指导】本题考查空间直线与平面的位置关系、球的表面积以及空间向量在立体几何中的应用.利用线面垂直、面面垂直的判定定理证明;解法一:作AH⊥DO,交DO的延长线于点H,由平面BCD∩平面AOD=HD,得AH⊥平面BCD,AH⊥HC.在Rt△BCD中,OD=12BC=√22,在Rt△ACO中,AO=√32AC=√62,在△AOD中,cos∠ADO=AD 2+OD2−AO22AD⋅OD=√63,∴sin∠ADO=√33,在Rt△AHD中,AH=AD sin∠ADO=1,HD=√2.过点E作EF⊥CH于点F,则EF//AH,∴EF⊥平面BCD,∴∠EDF就是ED与平面BCD所成的角.设CE=x(0≤x≤√2),由EFAH =CEAC,∴EF=√22x.由AD2=AC2+CD2,得AC⊥CD.在Rt△CDE中,DE=√CE2+CD2=√x2+1,要使ED与平面BCD成30∘角,只需使EFED =√22x√x2+1=12,∴x=1,即当CE=1时,ED与平面BCD成30∘角.解法二:作AH⊥DO,交DO的延长线于点H,由平面BCD∩平面AOD=HD,得AH⊥平面BCD,AH⊥HC.在Rt△BCD中,OD=12BC=√22,在Rt△ACO中,AO=√32AC=√62,在△AOD 中,cos ∠ADO =AD 2+OD 2−AO 22AD⋅OD=√63, ∴ sin ∠ADO =√33. 在Rt △AHD 中,AH =AD sin ∠ADO =1,HD =√2. 设CE =x(0≤x ≤√2),过点E 作EF ⊥CH 于点F , 则EF//AH ,∴ EF ⊥平面BCD ,∴ ∠EDF 就是ED 与平面BCD 所成的角. 由EF AH=CE AC,∴ EF =√22x . 以D 为坐标原点,以直线DB ,DC 分别为x 轴、y 轴,以过D 与平面BCD 垂直的直线为z 轴建立如图所示的空间直角坐标系,则D(0,0,0),E (√22x ,1,√22x),DE →=(√22x ,1,√22x), 设平面BCD 的一个法向量为n =(0,0,1), 要使ED 与平面BCD 成30∘角,只需使DE →与n 成60∘角, 只需使DE →⋅n|DE →|⋅|n |=cos 60∘,即√22x √x 2+1=12,∴ x =1,即当CE =1时,ED 与平面BCD 成30∘角.【名师指导】本题考查空间直线与平面的位置关系、球的表面积以及空间向量在立体几何中的应用.利用传统解法对线面角进行转化或建立空间直角坐标系,利用空间向量求解线面角; 将原图补形成正方体,如图,则外接球的半径R =√32, 故外接球的表面积为4πR 2=4π⋅34=3π.【名师指导】本题考查空间直线与平面的位置关系、球的表面积以及空间向量在立体几何中的应用.将原图形补全为正方体,利用正方体与外接球的关系求得半径,再利用球的表面积公式求解.【答案】解:证明:设AD 的中点为N ,连接MN . ∵ 由底面ABCD 是矩形得MN ⊥BC .∵ SB =SC ,M 是BC 的中点,∴ SM ⊥BC .∵ 平面ABCD ⊥平面SBC ,平面ABCD ∩平面SBC =BC , ∴ SM ⊥平面ABCD ,∴ SM ⊥MN , ∴ 直线MC ,MS ,MN 两两互相垂直.以M 为坐标原点,MC ,MS ,MN 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系M −xyz ,设SM =a ,依题意得M(0,0,0),A(−1,0,1),B(−1,0,0),C(1,0,0),D(1,0,1),S(0,a ,0),a >0.∴ AM →=(1,0,−1),SD →=(1,−a ,1). ∴ AM →⋅SD →=1×1+0×(−a)+(−1)×1=0. ∴ AM →⊥SD →,即AM ⊥SD . 2√23【考点】二面角的平面角及求法 【解析】 此题暂无解析 【解答】【技巧点拨】一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系,如果不存在这样的三条直线,则尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点.【名师指导】本题考查空间直线与直线的位置关系、二面角、棱锥的体积公式. 以M 为原点建立空间直角坐标系,通过求得AM →⋅SD →=0使问题得证; 由(Ⅰ)可得MS →=(0,a ,0),MA →=(−1,0,1). 设平面AMS 的法向量为n 1=(x ,y ,z), 则n 1⊥MS →,n 1⊥MA →.∴ {ay =0,−x +z =0,即{y =0,−x +z =0,取x =1,解得{y =0,z =1.∴ n 1=(1,0,1)是平面AMS 的一个法向量. 设平面ABS 的法向量为n 2=(r ,s ,t),同理可得n 2=(a ,−1,0)是平面ABS 的一个法向量. 设二面角B −SA −M 的大小为θ, 则|cos θ|=|n 1⋅n 2|n 1||n 2||=√2×√a 2+1.∴ 1−cos 2θ=1−a 22a 2+2=sin 2θ=23,解得a =√2. ∴ 四棱锥S −ABCD 的体积为V =13×S 矩形ABCD ×SM =13×2×1×√2=2√23.【技巧点拨】一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系,如果不存在这样的三条直线,则尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点.【名师指导】本题考查空间直线与直线的位置关系、二面角、棱锥的体积公式.首先求得平面AMS 与平面ABS 的法向量,然后利用空间向量的夹角公式求得MS 的长度,从而利用四棱锥的体积公式求解即可.。

2023高考数学二轮复习专题复习28 空间几何体的结构特征、表面积与体积(解析版)

2023高考数学二轮复习专题复习28 空间几何体的结构特征、表面积与体积(解析版)

专题28空间几何体的结构特征、表面积与体积【考点预测】知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1.棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3.棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1.圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2.圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3.圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4.球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式体积公式1.斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系. (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠=x O y (或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线. 注:4. 2.平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.【题型归纳目录】题型一:空间几何体的结构特征 题型二:空间几何体的表面积与体积 题型三:直观图 题型四:最短路径问题【典例例题】题型一:空间几何体的结构特征例1.(2022·全国·模拟预测)以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直 D .棱台的每条侧棱均与上下底面不垂直【答案】D【解析】对于A ,经过不共面的四点的球,即为该四面体的外接球,有且仅有一个,故A 正确, 对于B ,平行六面体的每个面都是平行四边形,故B 正确, 对于C ,正棱柱的每条侧棱均与上下底面垂直,故C 正确,对于D ,棱台的每条侧棱延长线交于一点,侧棱中有可能与底面垂直,故D 错误, 故选:D例2.(2022·全国·高三专题练习(文))下列说法正确的是( ) A .经过三点确定一个平面B .各个面都是三角形的多面体一定是三棱锥C .各侧面都是正方形的棱柱一定是正棱柱D .一个三棱锥的四个面可以都为直角三角形 【答案】D【解析】A.错误,经过不共线的三点确定一个平面; B.错误,正八面体的八个面也都是正三角形;C.错误,侧面都是正方形,但底面如果不是正多边形,也不是正棱柱,比如侧面是正方形,但底面是菱形的柱体不是正四棱柱;D.正确,底面是直角三角形,一条侧棱和底面垂直,并且垂直落在非直角顶点处的三棱锥,即可满足条件. 故选:D例3.(2022·海南·模拟预测)“三棱锥P ABC -是正三棱锥”的一个必要不充分条件是( ) A .三棱锥P ABC -是正四面体 B .三棱锥P ABC -不是正四面体 C .有一个面是正三角形 D .ABC 是正三角形且PA PB PC == 【答案】C【解析】由正三棱锥的定义,得三棱锥P ABC -是正三棱锥等价于“有一个面是正三角形,其他面是等腰三角形”,对于A :因为三棱锥P ABC -是正四面体等价于四个面是全等的正三角形,所以“三棱锥P ABC -是正四面体”是“三棱锥P ABC -是正三棱锥”的充分不必要条件, 即选项A 错误;对于B :因为一个正三棱锥可能是正四面体,也可能不是正四面体,所以“三棱锥P ABC -不是正四面体”是“三棱锥P ABC -是正三棱锥”的既不充分也不必要条件,即选项B 错误;对于C :因为三棱锥P ABC -是正三棱锥等价于有一个面是正三角形,其他面是等腰三角形,所以“有一个面是正三角形”是“三棱锥P ABC -是正三棱锥”的必要不充分条件, 即选项C 正确;对于D :因为三棱锥P ABC -是正三棱锥等价于有一个面是正三角形,其他面是等腰三角形,当但正三角形不一定是ABC ,所以“ABC 是正三角形且PA PB PC ==”是“三棱锥P ABC -是正三棱锥”的充分不必要条件,即选项D 错误. 故选:C.例4.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】A【解析】①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示; ③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故选:A例5.(2022·山东省东明县第一中学高三阶段练习)下列说法正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .过空间内不同的三点,有且只有一个平面 C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【答案】C【解析】对A :根据棱柱的定义知,有两个面平行,其余各面都是四边形, 且每相邻两个四边形的公共边都互相平行的几何体是棱柱,所以A 错误,反例如图:对B :若这三点共线,则可以确定无数个平面,故B 错误;对C :棱锥的底面为多边形,其余各面都是有一个公共顶点的三角形,故C 正确;对D :只有用平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D 错误, 故选:C .例6.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】A【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故选:A.例7.(2022·全国·高三专题练习)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V 、棱数E 、面数F 之间总满足数量关系2,V F E +-=,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.【答案】 90 60【解析】因为某凸32面体,12个面是五边形,20个面是六边形, 则该32面体的棱数:125206902⨯+⨯=;因为顶点数V 、棱数E 、面数F 之间总满足数量关系2V F E +-=, 设顶点的个数为x ,则32902x +-=, 解得60x =, 故答案为:90;60.例8.(2022·安徽·合肥一六八中学模拟预测(理))如图,正方体1AC 上、下底面中心分别为1O ,2O ,将正方体绕直线12O O 旋转360︒,下列四个选项中为线段1AB 旋转所得图形是( )A .B .C .D .【答案】D【解析】解:设正方体的棱长等于a ,1AB 的中点到旋转轴的距离等于12a ,而A 、1B , 1AB ∴的中点旋转一周,得到的圆较小,可得所得旋转体的中间小,上、下底面圆较大.由此可得A、C项不符合题意,舍去.又在所得旋转体的侧面上有无数条直线,且直线的方向与转轴不共面,∴B项不符合题意,只有D项符合题意.故选:D.例9.(多选题)(2022·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是()(多选)A.①是棱台B.②是圆台C.③是棱锥D.④是棱柱【答案】CD【解析】题图①中的几何体不是由棱锥被一个平面所截得到的,且上、下底面不是相似的图形,所以不是棱台;题图②中的几何体上、下两个面不平行,所以②不是圆台;图③中的几何体是三棱锥;题图④中的几何体前、后两个面平行,其他面都是平行四边形,且每相邻两个平行四边形的公共边都互相平行,所以④是棱柱.故选:CD.C)是一种非金属单质,它是由例10.(2022·陕西·西北工业大学附属中学高三阶段练习(理))碳60(6060个碳原子构成的分子,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2.则其六元环的个数为__________.【答案】20【解析】根据题意,碳60(Co)由60个顶点,有32个面,+-=,由顶点数-棱数+面数=2可得:棱数为6032290设正五边形有x个,正六边形有y个,则3256902x y x y +=⎧⎨+=⨯⎩,解得:1220x y =⎧⎨=⎩,所以六元环的个数为20个,故答案为:20【方法技巧与总结】 熟悉几何体的基本概念.题型二:空间几何体的表面积与体积例11.(多选题)(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h =,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误;圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误. 故选:AC .例12.(2022·青海·海东市第一中学模拟预测(理))设一圆锥的侧面积是其底面积的3倍,则该圆锥的高与母线长的比值为( )A .89B .3C D .23【答案】B【解析】设圆锥的底面半径为r ,母线长为l ,高为h ,由题意得23rl r ππ=,解得3l r =,又222l r h =+,则h =,h l =. 故选:B.例13.(2022·云南·二模(文))已知长方体1111ABCD A B C D -的表面积为62,所有棱长之和为40,则线段1AC 的长为( )A B C D【答案】A【解析】由题意知:()11262AB AD AB AA AD AA ⋅+⋅+⋅=,140104AB AD AA ++==,故()22221111222100AB AD AA AB AD AA AB AD AB AA AD AA ++=+++⋅+⋅+⋅=,则222138AB AD AA ++=,所以1AC = 故选:A.例14.(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为( ) A .9π B .12πC .16πD .18π【答案】D【解析】分别过,A B 作圆柱的母线,AE BF ,连接,,,CE DE CF DF ,设圆柱的底面半径为r 则三棱锥A BCD -的体积为两个全等四棱锥C ABFE -减去两个全等三棱锥A CDE -即311122222183323r r r r r r r ⨯⨯⨯⨯-⨯⨯⨯⨯⨯==,则3r =圆柱的侧面积为2π18πr r ⨯= 故选:D .例15.(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =P ABCD -的体积是8,则该四棱锥的侧面积是( )A B .C .D .【答案】C【解析】如图,连接AC ,BD ,记AC BD O =,连接OP ,所以OP ⊥平面ABC D.取BC 的中点E ,连接OE PE ,.因为正四棱锥P ABCD -的体积是8,所以218833AB OP OP ⋅==,解得3OP =.因为12BE BC =POE 中,PE ==则PBC 的面积为1122BC PE ⋅=⨯故该四棱锥的侧面积是故选:C例16.(2022·全国·高三专题练习)《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16 【答案】C【解析】由题意得12EF AB =,设2EF x =,则4AB x =,BF =. 过点E 、F 在平面ABFE 内分别作EM AB ⊥,FN AB ⊥,垂足分别为点M 、N ,在等腰梯形ABFE 中,因为//EF AB ,EM AB ⊥,FN AB ⊥,则四边形MNFE 为矩形,所以,2MN EF x ==,EM FN =,因为AE BF =,EM FN =,90AME BNF ∠=∠=,所以,Rt AME Rt BNF △≌△,所以,2AB EF AM BN x -===,所以,FN ==,所以等腰梯形ABFE 的面积为2242x x S +===1x =.所以,22EF x ==,44AB x ==,故方亭的体积为(156241633⨯⨯++=. 故选:C.例17.(2022·湖南·高三阶段练习)如图,一种棱台形状的无盖容器(无上底面1111D C B A )模型其上、下底面均为正方形,面积分别为24cm ,29cm ,且1111A A B B C C D D ===,若该容器模型的体积为319cm 3,则该容器模型的表面积为( )A .()29cm B .219cmC .()29cmD .()29cm 【答案】C【解析】由题意得该容器模型为正四棱台,上、下底面的边长分别为2cm ,3cm.设该棱台的高为h ,则由棱台体积公式(13V h S S =+下上, 得:191(496)33h =⨯⨯++ 得1cm h =,所以侧面等腰梯形的高)cm h '=,所以()()2232499cm 2表+=⨯+=S , 故选:C例18.(2022·海南海口·二模)如图是一个圆台的侧面展开图,其面积为3π,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )A B C D 【答案】D【解析】圆台的侧面展开图是一扇环,设该扇环的圆心角为α, 则其面积为221142322ααπ⨯⨯-⨯⨯=,得2πα=, 所以扇环的两个圆弧长分别为π和2π,设圆台的上底半径,下底半径分别为12,r r ,圆台的高为h ,则122,22r r ππππ== 所以112r =,21r =,又圆台的母线长422l =-=所以圆台的高为h ,所以圆台的体积为2211111322V π⎡⎤⎛⎫=++⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故选:D.例19.(2022·全国·高三专题练习)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A.B .C .D .【答案】C【解析】因为圆台下底面半径为5,球的直径为210R =,所以圆台下底面圆心与球心重合,底面圆的半径为5R =,画出轴截面如图,设圆台上底面圆的半径r ,则4r =所以球心O 到上底面的距离3h ,即圆台的高为3,所以母线长l ==,所以()12πS r r l =+=侧,故选:C.例20.(2022·河南安阳·模拟预测(文))已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( )A .13B .23 C .1 D .43【答案】D【解析】解:如图所示:连接11CO DO ,因为AB CD ⊥,12AB O O ⊥,且122O O CD O ⋂=,所以AB ⊥平面1CDO ,所以11--=+ABCD A CDO B CDO V V V ,111142223323=⋅=⨯⨯⨯⨯=CDO S AB , 故选:D例21.(2022·山东·烟台市教育科学研究院二模)鲁班锁是我国传统的智力玩具,起源于中国古代建筑中的榫卯结构,其内部的凹凸部分啮合十分精巧.图1是一种鲁班锁玩具,图2是其直观图.它的表面由八个正三角形和六个正八边形构成,其中每条棱长均为2.若该玩具可以在一个正方体内任意转动(忽略摩擦),则此正方体表面积的最小值为________.【答案】168+【解析】将鲁班锁补成正方体1111ABCD A B C D -,然后以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,在鲁班锁所在几何体上任取一个顶点(2P +,观察图形可知,P 到鲁班锁所在几何体上其他顶点的距离的最大值在PE 、PF 、 PG 、PH 、PM 、PN 、PR 、PS 中取得,结合图形可知)E 、()2F 、()2G +、()2H +、 ()2M +、)2N +、()0,2R 、()S ,则(224216PE =++=+((22222220PF =+++=+ (222224PG =+=+(2222428PH =++=+ ((22222224PM =++⨯+=+ ((22222220PN =+++=+(224216PR =++=+(22212PS =+=+所以,P所以,若该玩具可以在一个正方体内任意转动(忽略摩擦),设该正方体的棱长的最小值为a ,则a =26168S a ==+故答案为:168+.例22.(2022·湖北省天门中学模拟预测)已知一个圆柱的体积为2π,底面直径与母线长相等,圆柱内有一个三棱柱,与圆柱等高,底面是顶点在圆周上的正三角形,则三棱柱的侧面积为__________.【答案】【解析】设圆柱的底面半径为r ,则222r r ππ⋅=,∴1r =,设三棱柱底面边长为a , 则22sin 60a r ==︒,∴a =∴三棱柱的侧面积为3232a r ⨯⨯==故答案为:例23.(2022·上海闵行·二模)已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.【答案】2【解析】设圆柱的高为h ,底面半径为r ,则体积为2πr h ,体积扩大为原来的4倍,则扩大后的体积为24πr h ,因为高不变,故体积()224ππ2r h r h =,即底面半径扩大为原来的2倍,原来侧面积为2πrh ,扩大后的圆柱侧面积为2π24πrh rh ⋅=,故侧面积扩大为原来的2倍.故答案为:2例24.(2022·浙江绍兴·模拟预测)有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为_________.【答案】12【解析】设正六边形的边长为a ,根据题意有262=,可得2a =由题意可知,原正四面体的棱长为3a ,故原正四面体的表面积为()23412S a =⨯=, 故答案为:12.例25.(2022·上海徐汇·三模)设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB AB 和圆锥的轴的距离为1,则该圆锥的侧面积为___________.【答案】【解析】设圆锥的顶点为P ,底面圆圆心为点O ,取线段AB 的中点E ,连接OE 、PE 、OA 、OB ,因为PA PB =,OA OB =,则OE AB ⊥,PE AB ⊥,故PE =因为PO ⊥平面OAB ,OE ⊂平面OAB ,PO OE ∴⊥,所以,OE 为直线PO 、AB 的公垂线,故1OE =,因为112AE AB ==,OA ∴=2PA ==,所以,圆锥PO 2,因此,该圆锥的侧面积为2π=.故答案为:.例26.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2 ,则该几何体的体积为___________.【解析】根据题意,图2立体图形的一半,其体积等于与其同底等高的正三棱柱中,去掉一个与其同底等高正三棱锥之后的体积,,所以该底面积1166023S ==, 因为圆柱的直径为4,所以该几何体一半的高为2,所以对应正三棱柱及三棱锥的高均为2,所以对应正三棱柱的体积2V ==,正三棱锥的体积1123V ==,所以该几何体的体积为()12V V -=【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 题型三:直观图例27.(2022·全国·高三专题练习)如图,已知用斜二测画法画出的ABC 的直观图是边长为a 的正三角形,原ABC 的面积为 __.2【解析】过点C '作//C M y '''轴,且交x '轴于点M ', 过点C '作C D x '''⊥轴,且交x '轴于点D ,则C D ''=, 所以45C M D '''∠=︒,则C M '',所以原三角形的高CM =,底边长为a ,其面积为212S a =⨯=.2. 例28.(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为( )A .1B .2C .2D .1【答案】B【解析】解:由题得1BC =,所以()11(22222S A D B C A B =+⋅=⨯'''=''' 故选:B .例29.(2022·全国·高三专题练习)如图,△ABC 是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等边三角形C .△ABC 是等腰直角三角形D .△ABC 是等腰三角形,但不是直角三角形【答案】C【解析】解:将其还原成原图,如图,设2A C ''=,则可得21OB O B ''==,2AC A C ''==,从而AB BC =所以222AB BC AC +=,即AB BC ⊥, 故ABC 是等腰直角三角形. 故选:C.例30.(2022·全国·高三专题练习)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D '''',已知2,2A O O B B C =='''''=',则四边形ABCD 的周长为( )A .20B .12C .8+D .8+【答案】A【解析】由题设O C ''=OC =4D C DC A B AB ''''====,故6BC =,且AD BC =,所以四边形ABCD 的周长为20AB BC DC AD +++=. 故选:A例31.(2022·全国·高三专题练习(文))如图,已知等腰直角三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .【答案】D【解析】2O B ''=,O A A B ''''=,45A O B '''∠=,O A ∴''= 由此可知平面图形是如下图所示的Rt OAB ,其中OA OB ⊥,2OB O B ''==,2OA O A ''==11222OABSOA OB ∴=⋅=⨯⨯= 故选:D.例32.(2022·全国·高三专题练习)一个三角形的水平直观图在x O y '''是等腰三角形,底角为30,腰长为2,如图,那么它在原平面图形中,顶点B 到x 轴距离是( )A .1B .2CD.【答案】D【解析】过点B '作//'''B C y 轴,交x '轴于点C ',如图,在O B C '''中,30,135,2B O C B C O O B ''''''''∠=∠==,由正弦定理得,sin 30sin135B C O B ''''=︒︒,于是得12B C ⨯''==B 到x轴距离是故选:D【方法技巧与总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:S 直原. 题型四:最短路径问题例33.(多选题)(2022·广东广州·三模)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB.该圆台轴截面面积为2 C3D .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm【答案】BCD 【解析】如图,作BE CD ⊥交CD 于E ,易得12CD ABCE -==,则22213BE ,则圆台的高为,A 错误;圆台的轴截面面积为()214m 22⨯+=,B 正确;圆台的体积为(3143ππ++=,C 正确;将圆台一半侧面展开,如下图中ABCD ,设P 为AD 中点,圆台对应的圆锥一半侧面展开为扇形COD ,由1CE EO =可得2BC OB ==,则4OC =,4242COD ππ∠==,又32ADOP OA =+=,则5CP =, 即点C 到AD 的中点所经过的最短路程为5cm ,D 正确. 故选:BCD.例34.(2022·河南洛阳·三模(理))在棱长为1的正方体1111ABCD A B C D -中,点E 为1CC 上的动点,则1D E EB +的最小值为___________.【解析】如图,将正方形11DCC D 、11BCC B 铺平在同一平面上,当1,,D E B 三点共线时,1D E EB +例35.(2022·黑龙江齐齐哈尔·二模(文))如图,在直三棱柱111ABC A B C -中,12,1,90AA AB BC ABC ===∠=︒,点E 是侧棱1BB 上的一个动点,则下列判断正确的有___________.(填序号)②存在点E ,使得1A EA ∠为钝角③截面1AEC 周长的最小值为【答案】①③【解析】取AC 中点D ,11A C 中点F ,连接DF ,矩形11ACC A 中可得1//DF AA ,1DF AA =, 1AA ⊥平面ABC ,所以DF ⊥平面ABC ,90ABC ∠=︒,所以D 是ABC 外心,同理F 是111A B C △的外心,所以DF 的中点O 是直三棱柱外接球的球心,由已知AC =2CD =1211A O A D ==,所以OC =所以外接球的体积为343V π=⨯=,①正确;矩形11AA B B 中,11,2AB AA ==,1AA 为直径的圆与1BB 相切,切点为1BB 的中点,当E 为切点时,190AEA ∠=︒.当E 是1BB 上其他点时,190AEA ∠<︒,②错误;1AEC 中,1AC =11BB C C 与矩形11ABB A 摊平,得正方形11''AAC C ,当1,,A E C '共线时,1AE EC +最短,最短为所以截面1AEC 周长的最小值为故答案为:①③.例36.(2022·河南·二模(理))在正方体1111ABCD A B C D -中,2AB =,P 是线段1BC 上的一动点,则1A P PC +的最小值为________.【解析】如图,连接1A B 、11A C ,将△1BCC 沿1BC 翻折到与△11A BC 在同一个平面,如下图:已知△11A BC 为等边三角形,△1BCC 为等腰三角形,两个三角形有公共边1BC ,则当P 是1BC 中点时,1A 、P 、1C 三点共线,此时1A P PC +例37.(2022·陕西宝鸡·二模(文))如图,在正三棱锥P ABC -中,30APB BPC CPA ∠=∠=∠=,4PA PB PC ===,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是___________.【答案】【解析】如图所示,将三棱锥的侧面展开,因为30APB BPC CPA ∠=∠=∠=,所以190∠=APA , 当虫子沿1AA 爬行时,距离最短,又1=AA所以虫子爬行的最短距离是故答案为:例38.(2022·安徽宣城·二模(理))已知正四面体ABCD 的棱长为2,P 为AC 的中点,E 为AB 中点,M 是DP 的动点,N 是平面ECD 内的动点,则||||AM MN +的最小值是_____________.取CE 中点O ,连接,DO OP ,由正四面体可知,DE AB CE AB ⊥⊥,又DE CE E ⋂=,AB ∴⊥面CDE , 又OP AB ∥,OP ∴⊥面CDE ,当||||AM MN +最小时,MN ⊥面CDE ,故N 在线段DO 上.由OP ⊥面CDE 可得OP OD ⊥,又111242OP AE AB ===,DP =OD == 将PDO △沿PD 翻折到平面APD 上,如图所示:易知30ADP ∠=,sinOP OD ODP ODP DP DP ∠==∠= 则()333sin sin 30sin cos30cos sin 3012ODA ODP ODP ODP +∠=∠+=∠+∠=,故||||AM MN +的最小值即A 到OD 的距离,即sin 2AD ADO ⋅∠==. 例39.(2022·新疆阿勒泰·三模(理))如图,圆柱的轴截面ABCD 是一个边长为4的正方形.一只蚂蚁从点A 出发绕圆柱表面爬到BC 的中点E ,则蚂蚁爬行的最短距离为( )A .B .C .D。

2024版高考复习A版数学考点考法PPT讲解:空间几何体的表面积和体积

2024版高考复习A版数学考点考法PPT讲解:空间几何体的表面积和体积

表面积
体积
柱体(棱柱和圆柱)
S表面积=S侧+2S底
V=S底h
锥体(棱锥和圆锥) 台体(棱台和圆台)

S表面积=S侧+S底 S表面积=S侧+S上+S下 S=4πR2
V= 1S底h
3
V= 1(S上+S下+ S上S下)h
3
V= 4πR3
3
注意:1.几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所
答案 C
考法二 与球有关的切、接问题 1.“切”“接”问题的处理规律 1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时 要找准切点,通过作截面来解决. 2)“接”的处理:把一个多面体的顶点放在球面上,即球外接于该多面体. 解题的关键是抓住球心到多面体的顶点的距离等于球的半径. 2.当球的内接多面体为共顶点的棱两两垂直的三棱锥或三组对棱分别相 等的三棱锥时,常构造长方体或正方体以确定球的直径. 3.与球有关的组合体的常用结论 1)长方体的外接球: ①球心:体对角线的交点;
高考 数学
感谢观看
名称 母线
轴截面 侧面 展开图
圆柱 平行、相等且垂直于
底面 全等的矩形
矩形
圆锥 相交于一点
全等的等腰三角形 扇形
圆台 延长线交于一点
全等的等腰梯形 扇环
注意:1.球是旋转体,球面不能展开,球的截面是圆面; 2.球心和截面(不过球心)圆心的连线垂直于截面; 3.球心到截面(不过球心)的距离d与球的半径R及截面的半径r的关系为r=
.
解析 连接AC,BD,交于点O,取AD的中点M,连接PM,因为PA=PD=2,所以 PM⊥AD.
因为等腰Rt△PAD与矩形ABCD所在平面垂直,平面PAD∩平面ABCD= AD,PM⊂平面PAD,所以PM⊥平面ABCD. 连接OM,OP,则PM⊥OM, 因为等腰Rt△PAD和矩形ABCD中,PA=PD=AB=2,所以AD=2 2,PM= 2, AC=BD= 8 4 =2 3 ,所以OA=OB=OC=OD= 3,MO=1, 所以OP= PM 2 OM 2 = 3 , 所以OP=OA=OB=OC=OD= 3 , 所以点O为四棱锥P-ABCD的外接球的球心,且球的半径为 3 ,所以四棱 锥P-ABCD的外接球的表面积为4π·( 3)2 =12π.

空间几何体的表面积与体积

空间几何体的表面积与体积

V柱 = pR2·2R
面积, 再减去渗水孔的面积.
组合体的体积怎样计算?
柱体、锥体、台体 京沪铁路全长1462 km,
球的表面积公式是怎样的? 是用什么方法得到的?
京沪高铁全长1318 km. 0230568 (kg),
的表面积与体积
∴ h(a+c)>bh,
≈1197 (cm2).
球的体积和表面积
柱体、锥体、台体 的表面积与体积
12
解: 这个零件的表面积为
S = S棱柱表+S圆柱侧
p = 2 [ 6 3 ( 2 + 1 4 )+ 6 2 ] 1 5 + 2 6 25
≈1579.485 (mm2),
10000个零件的表面积约为15794850 mm2,
约合15.795平方米.
2. 如图是一种机器零件, 零件
下面是六棱柱 (底面是正六边形, 侧
种零件需要用锌, 已知每平方米用锌 0.
某街心花园有许多钢球(钢的密度是7.
在△SBC中, 边长为 a,
五棱台的上、下底面均是正五边形, 边长分别是 8 cm 和 18 cm, 侧面是全等的等腰梯形, 侧棱长是 13 cm, 求它的侧面面积.
≈2956 (mm3)
圆柱、圆锥、圆台的表面积
当半球切得的片数无限多,
2. 圆柱、圆锥、圆台的表面积 底面积加侧面积.
底面积: S底=p r2. 圆柱侧面积: S柱侧=2p rh. 圆锥侧面积: S锥侧=p rl. 圆台侧面积: S台侧=p l (r+r).
【课时小结】
3. 柱体、锥体、台体体积
柱体体积: V柱 = Sh.
锥体体积:
V锥
=

专题8.2 空间几何体的表面积和体积(讲)(解析版)

专题8.2 空间几何体的表面积和体积(讲)(解析版)

专题8.2 空间几何体的表面积和体积【考纲解读与核心素养】1.会计算柱、锥、台、球的表面积和体积.2.培养学生的数学抽象、数学运算、数学建模、逻辑推理、直观想象等核心数学素养. 3. 高考预测:(1)以结合三视图、几何体的结构特征考查几何体的面积体积计算为主,题型基本稳定为选择题或填空题,难度中等以下;也有几何体的面积或体积在解答题中与平行关系、垂直关系等相结合考查的情况. (2)与立体几何相关的“数学文化”等相结合,考查数学应用.(3)几何体的表面积与体积与三视图结合是主要命题形式.有时作为解答题的一个构成部分考查几何体的表面积与体积,有时结合面积、体积的计算考查等积变换等转化思想. 4.备考重点:(1)掌握三视图与直观图的相互转换方法是关键; (2)掌握等积转换的方法.【知识清单】知识点1.几何体的表面积 圆柱的侧面积 rl S π2= 圆柱的表面积 )(2l r r S +=π 圆锥的侧面积 rl S π= 圆锥的表面积 )(l r r S +=π 圆台的侧面积 l r r S )(+'=π圆台的表面积 )(22rl l r r r S +'++'=π 球体的表面积 24R S π=柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积. 知识点2.几何体的体积 圆柱的体积 h r V 2π= 圆锥的体积 h r V 231π= 圆台的体积 )(3122r r r r h V '++'=π球体的体积 334R V π=正方体的体积 3a V = 正方体的体积 abc V =【典例剖析】高频考点一 :几何体的面积【典例1】(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B .623+C .123D .1223+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【典例2】(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】A 【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=, ∴球O 的表面积2464S R ππ==.故选:A【规律方法】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系. 【变式探究】1.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为15__________.【答案】 【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为8,因为SAB 的面积为,l 所以221802l l ⨯==,因为SA 与圆锥底面所成角为45°,所以底面半径为πcos,42l =因此圆锥的侧面积为2π.rl l ==2.(2019·福建高三月考)已知四面体ABCD 内接于球O ,且2AB BC AC ===,若四面体ABCD的体积为3,球心O 恰好在棱DA 上,则球O 的表面积是_____. 【答案】16π 【解析】如图:在三角形ABC 中,因为222AB BC AC +=,所以△ABC 为直角三角形,所以三角形ABC 的外接圆的圆心为AC 的中点1O ,连1OO ,根据垂径定理,可得1OO ⊥平面ABC ,因为1,O O 为,AD AC 的中点可知DC ⊥平面ABC ,所以DC 为四面体ABCD 的高.所以1132DC ⨯=,解得DC =所以4AD ==. 所以四面体ABCD 的外接球的半径为2,表面积为24R π=24216ππ⨯=.【总结提升】计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. 高频考点二 :几何体的体积【典例3】(2019·福建高三月考)某几何体的三视图如图所示,则该几何体的体积是( )A.8B.12C.332D.403【答案】C 【解析】根据三视图可知该几何体是一个上部为正四棱锥,下部是一个正方体的组合体, 正四棱锥的高为2,底面积为224⨯=,所以其体积为:184233⨯⨯=, 正方体的棱长为2,所以其体积为328=, 所以该组合体的体积为:832833+=. 故选C .【典例4】(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________. 【答案】8π 【解析】分析:作出示意图,根据条件分别求出圆锥的母线SA ,高SO ,底面圆半径AO 的长,代入公式计算即可. 详解:如下图所示,30,90SAO ASB ∠=∠=又211822SAB S SA SB SA ∆=⋅==, 解得4SA =,所以2212,232SO SA AO SA SO ===-=,所以该圆锥的体积为2183V OA SO ππ=⋅⋅⋅=.【总结提升】(1)已知几何体的三视图求其体积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表体积公式求其体积.(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. (3)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(4)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(5)三视图形式:若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解提醒:处理高线问题时,经常利用的方法就是“等积法”. 【变式探究】1.(2019·湖南高三月考(理))正方体1111ABCD A B C D -的棱长为2,点E 、F 、G 分别是AB 、AD 、1AA 的中点,以EFG ∆为底面作直三棱柱(侧棱垂直底面的棱柱),若此直三棱柱另一底面的三个顶点也都在该正方体的表面上,则该直三棱柱的体积为( ) A.6 B.2C.32D.34【答案】C 【解析】如图,连接11A C ,1C D ,1AC , 1BC ,分别取11A C 、1BC 、1C D 中点M 、N 、Q ,连接MQ ,MN ,NQ ,FQ ,EN ,GM由中位线定理可得111111111//,,//,,//,222GM AC GM AC FQ AC FQ AC EN AC EN AC === 又1AC EFG ⊥平面,∴三棱柱EFG NQM —是正三棱柱332EFG S ∆==1132h GM AC ===,∴三棱柱32EFG NQM V =— 答案选C2.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆外接圆的半径为222m n + 则三棱锥的高为22934m n +-+,三棱锥P ABC -的体积公式为222222111(93)(93)324344m n m n m n mn +++⨯-+≤⨯-+, 设224m n t +=,则1()(93)3f t t t =-+,1()93329f t t t '⎛⎫=--+ ⎪-⎝⎭, 令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为323【方法总结】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.高频考点三 : 几何体的展开、折叠、切、截问题【典例5】(2019·天津高考真题(理))已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】由题意四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 【规律方法】几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1.【典例6】(2019·四川高三月考(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为102cm ,高为10cm .打印所用部料密度为30.9g/cm .不考虑打印损耗.制作该模型所需原料的质量为________g .(π取3.14)【答案】358.5 【解析】设被挖去的正方体的棱长为xcm ,圆锥底面半径为r ,取过正方体上下底面面对角线的轴截面,由相似三角形得则2210221052x xh x x r h --=⇒=,解得5x =. 模型的体积为(22331150052105125333V r h x πππ=-=⨯⨯-=-,因此,制作该模型所需材料质量约为5000.91251500.9125358.5g 3ππ⎛⎫⨯-=-⨯≈ ⎪⎝⎭.故答案为:358.5. 【总结提升】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【典例7】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD 中, 483AB BC ==,现沿AC 折起,使得平面ABC ⊥平面ADC ,连接BD ,得到三棱锥B ACD -,则其外接球的体积为( )A.5009π B. 2503π C. 10003π D. 5003π【答案】D【解析】结合几何体的特征可得,外接球的球心为AC 的中点,则外接球半径:22221186522R AB BC =+=+=, 则外接球的体积: 3450033V R ππ==.本题选择D 选项. 【总结提升】看个性考向(一)是几何体的外接球一个多面体的顶点都在球面上即为球的外接问题,解决这类问题的关键是抓住外接球的特点,即球心到多面体的顶点的距离等于球的半径. 考向(二)是几何体的内切球求解多面体的内切球问题,一般是将多面体分割为以内切球球心为顶点,多面体的各侧面为底面的棱锥,利用多面体的体积等于各分割棱锥的体积之和求内切球的半径.找共性解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:【变式探究】1.(2018届河南省洛阳市高三期中)在三棱锥S ABC -中,底面ABC ∆是直角三角形,其斜边4AB =,SC ⊥平面ABC ,且3SC =,则三棱锥的外接球的表面积为( )A. 25πB. 20πC. 16πD. 13π 【答案】A【解析】根据已知,可将三棱锥补成一个长方体,如下图:则三棱锥的外接球就是这个长方体的外接球,由于43AB SC ==,,且ABC ∆是直角三角形, SC ⊥平面ABC , ∴2222222435AC BC SC AB SC ++=+=+=, ∴三棱锥的外接球的半径52R =, ∴三棱锥的外接球的表面积为254254ππ⨯=,故选A. 2.(2018·天津高考真题(文))如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B , 则1A O 是四棱锥的高,且221111121122A O A C ==+=111212BDD B S BD DD =⨯==四边形,结合四棱锥体积公式可得其体积为11212333V Sh ===,故答案为13. 3.(2018届河北省衡水市武邑中学高三上第三次调研)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑M ABC -中, MA ⊥平面ABC , 2MA AB BC ===,则该鳖臑的外接球与内切球的表面积之和为____.【答案】2482ππ-【解析】由题意,MC 为球O 的直径,MC=23,∴球O 的半径为3,∴球O 的表面积为4π•3=12π,内切球的半径设为r, ()11*222222**2*233r +++= 得到21r =- 内切球的体积为1282ππ- ,故结果为2482ππ-.【典例8】(2017课标1,理16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O.D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【答案】415 【解析】【规律方法】有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【变式探究】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD 中, 483AB BC ==,现沿AC 折起,使得平面ABC ⊥平面ADC ,连接BD ,得到三棱锥B ACD -,则其外接球的体积为( )A.5009π B. 2503π C. 10003π D. 5003π【答案】D【解析】结合几何体的特征可得,外接球的球心为AC 的中点,则外接球半径:22221186522R AB BC =+=+=, 则外接球的体积: 3450033V R ππ==.本题选择D 选项.【典例9】(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2,,所以该多面体的体积为21421(2).33⨯⨯⨯=【变式探究】(2020·山东省滨州市三模)已知P ,A ,B ,C 是球O 的球面上的四个点,PA ⊥平面,26,ABC PA BC ==AB AC ⊥,则球O 的表面积为__________.【答案】45π 【解析】由于PA ⊥平面ABC ,所以,PA AB PA AC ⊥⊥,而AB AC ⊥,故可将P ABC -补形为长方体,如图所示,长方体的外接球,也即三棱锥P ABC -的外接球,也即球O .由于26,3PA BC BC ===,设,AB a AC b ==,则2229a b BC +==,所以长方体的对角线长为22236945PA AB AC ++=+=设球O 的半径为R ,则245R =所以球O 的表面积为2445R ππ=. 故答案为:45π【典例10】(2020·山东省泰安市6月三模)已知球O 是正三棱锥P ABC -的外接球,3AB =,23PA =,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是_______. 【答案】94π【解析】如图,设三棱锥的外接球半径为R ,正三角形ABC 的外接圆圆心为D , 因为3AB =,三角形ABC 是正三角形,D 为正三角形ABC 的外接圆圆心, 所以3DA =因为3PA =所以3PD =()2233R R +-=,解得2R =,1OD =, 因为过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小, 所以当截面与OE 垂直时,截面圆的面积有最小值,在Rt EDO ∆中,237122OE ⎛⎫=+= ⎪ ⎪⎝⎭, 故22322r OE =-=,截面面积294S r ππ==,故答案为:94π.【总结提升】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的. 【变式探究】1.(2020·安徽马鞍山�高三三模(文))已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α,平面α截此正方体所得截面中,正确的说法是( ) A .截面形状可能为四边形 B .截面形状可能为五边形 C .截面面积最大值为23 D .截面面积最大值为33【答案】D 【解析】 如图在正方体中1AC ⊥平面1A BD ,所以平面α与平面1A BD 平行 平面α与正方体的截面可以是三角形、六边形但不会是五边形和四边形 当截面为正六边形EFNMGH 时,截面面积有最大,由题可知:221sin 45==NM ,则133611sin 602=⨯⨯⨯⨯=EFNMGHS 故选:D2.(2020·江苏苏州�高一期末)已知在球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,则球O 的表面积为________,若P 为线段AD 的中点,则过点P 的平面截球O 所得截面面积的最小值为______. 【答案】17π 9π4【解析】 如图,因为球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =, 所以22212=DB 2+2+3=17R =, 所以球的表面积2=417S R ππ=,当OP ⊥球的截面,即P 为截面圆圆心时,球心到截面圆的距离d OP =时最大, 此时截面圆的半径22d R r -=最小,此时截面圆的面积最小,而222211112OP OO O P =+=+=所以173242r =-=, 所以截面圆面积294S r ππ==. 故答案为:17π;94π。

第1讲 空间几何体的结构特征及表面积与体积附带解析

第1讲 空间几何体的结构特征及表面积与体积附带解析

第38讲 空间几何体的结构特征及表面积与体积(讲)思维导图知识梳理1.简单几何体(1)多面体的结构特征名称棱柱棱锥棱台图形底面 互相平行且相等 多边形互相平行且相似 侧棱 互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状 平行四边形三角形梯形①特殊的四棱柱 四棱柱――→底面为平行四边形 平行六面体――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――→底面边长相等正四棱柱――→侧棱与底面边长相等正方体 ②多面体的关系:棱柱――――――→一个底面退化为一个点棱锥―――――――→用平行于底面的平面截得棱台 (2)旋转体的结构特征名称圆柱圆锥圆台球▲图形母线互相平行且相等,垂直于底面长度相等且相交于一点 延长线交于一点轴截面 全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图 矩形扇形扇环2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l4.空间几何体的表面积与体积公式名称几何体 表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下 V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3题型归纳题型1 空间几何体的结构特征【例1-1】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2 D.3【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.【答案】A【跟踪训练1-1】下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形【解析】如图所示,可排除A、B选项.对于D选项只有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则截面为椭圆或椭圆的一部分,故选C.【答案】C【跟踪训练1-2】(多选)给出下列命题,其中真命题是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直C.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱D.存在每个面都是直角三角形的四面体【解析】A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个二面角都是直二面角;C正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;D正确,如图,正方体ABCD­A1B1C1D1中的三棱锥C1­ABC,四个面都是直角三角形.【答案】BCD【名师指导】辨别空间几何体的2种方法题型2 空间几何体的表面积【例2-1】(1)(2019·四川泸州一诊)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.(5+2)πB.(4+2)πC .(5+22)π D.(3+2)π(2)(2020·河南周口模拟)如图,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB ⊥BC ,AA 1=AC =2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为( )A .4+42B .4+43C .12D.8+42[解析] (1)∵在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,∴将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC =2的圆柱挖去一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥,∴该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.(2)连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =22,BC = 2.又AB ⊥BC ,则AB =2,则该三棱柱的侧面积为22×2+2×2=4+4 2.[答案] (1)A (2)A【跟踪训练2-1】在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【解析】将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(50+80)×(π×40)=2 600π(cm 2).【答案】2 600π 【名师指导】求解几何体表面积的类型及求法求多面体的表面积 只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积 可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积时 通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积题型3 空间几何体的体积【例3-1】(2019·江苏南通联考)已知正三棱柱ABC ­A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D ­BB1C 1的体积为________.[解析] 如图,取BC 中点O ,连接AO .∵正三棱柱ABC ­A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又S △BB 1C 1=12×2×2=2,∴V D ­BB 1C 1=13×2×3=233.[答案]233【例3-2】(1)(2019·全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ­A 1B 1C 1D 1挖去四棱锥O ­EFGH 后所得的几何体.其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为________g.(2)如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.[解析] (1)由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6 cm 和4 cm , 故V 挖去的四棱锥=13×12×4×6×3=12(cm 3).又V 长方体=6×6×4=144(cm 3),所以模型的体积为V 长方体-V 挖去的四棱锥=144-12=132(cm 3), 所以制作该模型所需原料的质量为132×0.9=118.8(g).(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,BF ,易求得EG =HF =12,AG =GD =BH =HC =32,则△BHC 中BC 边的高h =22.∴S △AGD =S △BHC =12×22×1=24,∴V 多面体=V E ­ADG+V F ­BHC +V AGD ­BHC =2V E ­ADG +V AGD ­BHC =13×24×12×2+24×1=23.[答案] (1)118.8 (2)23【例3-3】如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1­ABC 1的体积为( )A.312B.34C.612D.64[解析] 易知三棱锥B 1­ABC 1的体积等于三棱锥A ­B 1BC 1的体积,又三棱锥A ­B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. [答案] A【跟踪训练3-1】如图,正四棱锥P ­ABCD 的底面边长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.【解析】记正四棱锥P ­ABCD 的底面中心为点O ,棱AB 的中点为H ,连接PO ,HO ,PH ,则PO ⊥平面ABCD ,因为正四棱锥的侧面积为8 3 cm 2,所以83=4×12×23×PH ,解得PH =2,在Rt △PHO 中,HO=3,所以PO =1,所以V P ­ABCD =13·S 正方形ABCD ·PO =4 cm 3.【答案】4【跟踪训练3-2】如图,已知体积为V 的三棱柱ABC ­A 1B 1C 1,P 是棱B 1B 上除B 1,B 以外的任意一点,则四棱锥P ­AA 1C 1C 的体积为________.【解析】如图,把三棱柱ABC ­A 1B 1C 1补成平行六面体A 1D 1B 1C 1­ADBC .设P 到平面AA 1C 1C 的距离为h ,则V P ­AA 1C 1C =13S AA 1C 1C ·h =13V AA 1C 1C ­DD 1B 1B =13·2V ABC ­A 1B 1C 1=2V3.【答案】2V3【名师指导】求空间几何体的体积的常用方法公式法 对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积 等体积法一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积题型4 与球有关的切、接问题【例4-1】(2019·全国卷Ⅲ)已知三棱锥P ­ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46π C .26πD.6π[解析] 法一:∵E ,F 分别是P A ,AB 的中点,∴EF ∥PB . ∵∠CEF =90°,∴EF ⊥EC ,∴PB ⊥EC ,又∵三棱锥P ­ABC 为正三棱锥,∴PB ⊥AC ,从而PB ⊥平面P AC ,∴三条侧棱P A ,PB ,PC 两两垂直. ∵△ABC 是边长为2的正三角形,∴P A =PB =PC =2, 则球O 是棱长为2的正方体的外接球,设球O 的半径为R , 则2R =3×2,R =62,∴球O 的体积V =43πR 3=6π.故选D. 法二:令P A =PB =PC =2x (x >0),则EF =x ,连接FC ,由题意可得FC = 3.在△P AC 中,cos ∠APC =4x 2+4x 2-42×4x 2=2x 2-12x 2.在△PEC中,EC 2=PC 2+PE 2-2PC ·PE cos ∠EPC =4x 2+x 2-2×2x ·x ·2x 2-12x 2=x 2+2,在△FEC 中,∵∠CEF =90°,∴FC 2=EF 2+EC 2,即x 2+2+x 2=3,∴x =22,∴P A =PB =PC =2x = 2. ∵AB =BC =CA =2,∴三棱锥P ­ABC 的三个侧面为等腰直角三角形,∴P A ,PB ,PC 两两垂直,故球O 是棱长为2的正方体的外接球,设球O 的半径为R ,则2R =3×2,R =62,∴球O 的体积V =43πR 3=6π.故选D. [答案] D【例4-2】(1)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.(2)已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为________.[解析] (1)设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,故V 1V 2=πR 2·2R 43πR 3=32. (2)如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE ,∵△ABC 是正三角形,∴AE 是BC 边上的高和中线,D 为△ABC 的中心.∵AB =23,∴S △ABC =33,DE =1,PE = 2.∴S 表=3×12×23×2+33=36+3 3. ∵PD =1,∴三棱锥的体积V =13×33×1= 3. 设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面把正三棱锥分割为四个小棱锥,则r =3336+33=2-1. [答案] (1)32(2)2-1 【跟踪训练4-1】(2019·四川成都一诊)如图,在矩形ABCD 中,EF ∥AD ,GH ∥BC ,BC =2,AF =FG =BG =1.现分别沿EF ,GH 将矩形折叠使得AD 与BC 重合,则折叠后的几何体的外接球的表面积为( )A .24πB .6π C.163π D.83π 【解析】 由题意可知,折叠后的几何体是底面为等边三角形的三棱柱,底面等边三角形外接圆的半径为23×12-⎝⎛⎭⎫122=33.因为三棱柱的高为BC =2,所以其外接球的球心与底面外接圆圆心的距离为1,则三棱柱外接球的半径为R =⎝⎛⎭⎫332+12=233,所以三棱柱外接球的表面积S =4πR 2=16π3.故选C. 【答案】C 【跟踪训练4-2】(2019·广东中山一中七校联合体联考)在四棱锥P ­ABCD 中,底面ABCD 是边长为2a 的正方形,PD ⊥底面ABCD ,且PD =2a .若在这个四棱锥内放一球,则此球的最大半径为________.【解析】由题意知,当球与四棱锥各面均相切,即内切于四棱锥时球的半径最大.作出其侧视图,如图所示.易知球的半径r =(2-2)a .【答案】(2-2)a【名师指导】解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:。

(完整版)空间几何体的表面积与体积练习题.及答案

(完整版)空间几何体的表面积与体积练习题.及答案

For personal use only in study and research; not forcommercial use空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2π D.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r=2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____. 解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR 2____.解析 由球的半径为R ,可知球的表面积为4πR 2.设内接圆柱底面半径为r ,高为2h ,则h 2+r 2=R 2.而圆柱的侧面积为2πr ·2h =4πrh ≤4πr 2+h 22=2πR 2(当且仅当r =h 时等号成立),即内接圆柱的侧面积最大值为2πR 2,此时球的表面积与内接圆柱的侧面积之差为2πR 2.12.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为___13_____cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm). 三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH ,下半部分是长方体ABCDEFGH .图2、图3分别是该标识墩的正视图和俯视图. (1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.解析 (1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V =V PEFGH +V ABCDEFGH =13×402×60+402×20=64 000(cm 3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。

专题8.1 空间几何体的结构及其表面积、体积(解析版)

专题8.1 空间几何体的结构及其表面积、体积(解析版)

2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题8.1 空间几何体的结构及其表面积、体积目录一、考点全归纳 (2)二题型全归纳 (4)题型一空间几何体的几何特征 (4)题型二空间几何体的三视图 (6)类型一已知几何体,识别三视图 (6)类型二已知三视图,判断几何体 (7)类型三已知几何体的某些视图,判断其他视图 (8)题型三空间几何体的直观图 (9)题型四空间几何体的表面积 (11)题型五空间几何体的体积 (12)类型一直接利用公式求体积 (13)类型二割补法求体积 (13)类型三等体积法求体积 (14)题型六球与空间几何体的接、切问题 (14)类型一外接球 (15)类型二内切球 (16)类型三确定球心位置的三种方法 (16)三、高效训练突破 (18)一、考点全归纳1.空间几何体的结构特征(1)多面体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.①画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.3.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在的平面垂直;①原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式S=2πrl S=πrl S=π(r+r′)l常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变3.正方体的外接球、内切球及与各条棱相切球的半径(1)外接球:球心是正方体的中心;半径r =32a (a 为正方体的棱长). (2)内切球:球心是正方体的中心;半径r =a2(a 为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r =22a (a 为正方体的棱长). 4.正四面体的外接球、内切球的球心和半径(1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).(2)外接球:球心是正四面体的中心;半径r =64a (a 为正四面体的棱长). (3)内切球:球心是正四面体的中心;半径r =612a (a 为正四面体的棱长). 二 题型全归纳题型一 空间几何体的几何特征【题型要点】解决与空间几何体结构特征有关问题的技巧(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)棱(圆)台是由棱(圆)锥截得的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【例1】(2020·辽宁省鞍山一中高三上学期期末)给出下列命题:(1)棱柱的侧棱都相等,侧面都是全等的平行四边形;(2)若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;(3)在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;(4)存在每个面都是直角三角形的四面体;(5)棱台的侧棱延长后交于一点.其中正确命题的个数为()A.2B.3C.4D.5【答案】C【解析】(1)不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;(2)正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;(3)正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;(4)正确,如图,正方体ABCD­A1B1C1D1中的三棱锥C1­ABC,四个面都是直角三角形;(5)正确,由棱台的概念可知.【例2】给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;①底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;①棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3【答案】B.【解析】:①不一定,只有这两点的连线平行于旋转轴时才是母线;①正确;①错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.题型二空间几何体的三视图【题型要点】三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为直观图.类型一已知几何体,识别三视图【例1】(2020·宜宾模拟)已知棱长都为2的正三棱柱ABC­A1B1C1的直观图如图.若正三棱柱ABC­A1B1C1绕着它的一条侧棱所在直线旋转,则它的侧视图可以为()【答案】B【解析】由题知,四个选项的高都是2.若侧视图为A,则中间应该有一条竖直的实线或虚线;若侧视图为C,则其中有两条侧棱重合,不应有中间竖线;若侧视图为D,则长度应为3,而不是1.故选B.【例2】(2020·湖南衡阳二模)如图,正方体ABCD­A1B1C1D1的顶点A,B在平面α上,AB= 2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCD­A1B1C1D1在平面α上的俯视图的面积为()A.2 B.1+ 3 C.2 3 D.22【答案】B【解析】由题意得AB在平面α内,且平面α与平面ABCD所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+ 3.类型二已知三视图,判断几何体【例3】如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由题三视图得直观图如图所示为三棱柱,故选B.【例4】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4【答案】C【解析】将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC①AD,BC=1,AD=AB=P A=2,AB①AD,P A①平面ABCD,故①P AD,①P AB为直角三角形,因为P A①平面ABCD,BC①平面ABCD,所以P A①BC,又BC①AB,且P A∩AB=A,所以BC①平面P AB,又PB①平面P AB,所以BC①PB,所以①PBC为直角三角形,容易求得PC=3,CD=5,PD=22,故①PCD不是直角三角形,故选C.类型三已知几何体的某些视图,判断其他视图【例5】(2020·福州模拟)如图为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是()【答案】B【解析】圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合正视图,可知侧视图最高点在中间,故选B.【例6】(2020·河北衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的正视图和俯视图如图中粗实线所示,则该楔体的侧视图的周长为( )A .3丈B .6丈C .8丈D .(5+13)丈【答案】C【解析】由题意可知该楔体的侧视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为 22+⎝⎛⎭⎫322=52(丈),所以该楔体侧视图的周长为3+2×52=8(丈).故选C. 题型三 空间几何体的直观图【题型要点】(1)斜二测画法中的“三变”与“三不变” “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变(2)平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算.【例1】已知等边三角形ABC 的边长为a ,那么①ABC 的平面直观图①A ′B ′C ′的面积为( ) A.34a 2 B .38a 2 C.68a 2 D .616a 2 【答案】D.【解析】:如图①①所示的实际图形和直观图,由①可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图①中作C ′D ′①A ′B ′于点D ′,则C ′D ′=22O ′C ′=68a .所以S ①A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 【例2】.在等腰梯形ABCD 中,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.【答案】:22【解析】:因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.题型四空间几何体的表面积【题型要点】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.【例1】(2020·河南周口模拟)如图,在三棱柱ABC­A1B1C1中,AA1①底面ABC,AB①BC,AA1=AC=2,直线A1C与侧面AA1B1B所成的角为30°,则该三棱柱的侧面积为()A.4+4 2 B.4+43C.12 D.8+42【答案】A【解析】连接A1B.因为AA1①底面ABC,则AA1①BC,又AB①BC,AA1∩AB=A,所以BC①平面AA1B1B,所以直线A1C与侧面AA1B1B所成的角为①CA1B=30°.又AA1=AC=2,所以A1C=22,BC= 2.又AB①BC,则AB=2,则该三棱柱的侧面积为22×2+2×2=4+42,故选A.【例2】(2020·四川泸州一诊)在梯形ABCD 中,①ABC =π2,AD ①BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )A .(5+2)πB .(4+2)πC .(5+22)πD .(3+2)π【答案】A【解析】因为在梯形ABCD 中,①ABC =π2,AD ①BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.题型五 空间几何体的体积【题型要点】处理体积问题的思路①“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高;①“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算;①“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法.(2)求空间几何体的体积的常用方法①公式法:对于规则几何体的体积问题,可以直接利用公式进行求解;①割补法:把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积;①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.类型一直接利用公式求体积【例1】(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为()A.13.25立方丈B.26.5立方丈C.53立方丈D.106立方丈【答案】B【解析】由题意知,刍童的体积为[(4×2+3)×3+(3×2+4)×2]×3÷6=26.5(立方丈),故选B.类型二割补法求体积【例2】《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为()A.4 B.5 C.6 D.12【答案】B【解析】如图所示,由三视图可还原得到几何体ABCDEF ,过E ,F 分别作垂直于底面的截面EGH 和FMN ,可将原几何体切割成三棱柱EHG ­FNM ,四棱锥E ­ADHG 和四棱锥F ­MBCN ,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B. 类型三 等体积法求体积【例3】(2020·贵州部分重点中学联考)如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1­AEF 的体积为2,则四棱柱ABCD ­A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【答案】A【解析】设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1­AEF =V F ­A 1AE .又V F ­A 1AE =13S ①A 1AE ·h =13×⎝⎛⎭⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD ­A 1B 1C 1D 1,所以V ABCD ­A 1B 1C 1D 1=6V A 1­AEF =6×2=12.所以四棱柱ABCD ­A 1B 1C 1D 1的体积为12.故选A. 题型六 球与空间几何体的接、切问题【题型要点】与球有关的切、接问题的解法(1)旋转体的外接球:常用的解题方法是过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)多面体的外接球:常用的解题方法是将多面体还原到正方体和长方体中再去求解.①若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体,利用2R =a 2+b 2+c 2求R .①一条侧棱垂直底面的三棱锥问题:可补形成直三棱柱.先借助几何体的几何特征确定球心位置,然后把半径放在直角三角形中求解.(3)解题流程类型一 外接球【例1】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4 C.π2D .π4【答案】B 【解析】设圆柱的底面圆半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B. 【例2】已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ①平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC 的体积为9,则球O 的表面积为________.【答案】36π【解析】设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ①SC ,BO ①SC ,因为平面SCA ①平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ①平面SCB ,所以V S ­ABC =V A ­SBC =13×S ①SBC ×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,所以球O 的表面积为S =4πR 2=4π×32=36π.类型二 内切球【例3】如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,表面积为S 1,球O 的体积为V 2,表面积为S 2,则V 1V 2的值是__________,S 1S 2=________.【答案】32 32【解析】设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.S 1S 2=2πR ·2R +2πR 24πR 2=32. 【例4】已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为________. 【答案】63π【解析】正四面体的表面积为S 1=4×34×a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 类型三 确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法. 方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.【例1】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24π D.32π【答案】C【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.【例2】如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将①AED,①EBF,①FCD 分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()A. 2 B.62 C.112D.52【解析】易知四面体A ′EFD 的三条侧棱A ′E ,A ′F ,A ′D 两两垂直,且A ′E =1,A ′F =1,A ′D =2,把四面体A ′EFD 补成从顶点A ′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A ′EFD的外接球,球的半径为r =12 12+12+22=62.故选B. 方法三 由性质确定球心利用球心O 与截面圆圆心O ′的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.【例3】正三棱锥A ­BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________. 【答案】163π 【解析】 如图M 为底面①BCD 的中心,易知AM ①MD ,DM =1,AM = 3.在Rt①DOM 中,OD 2=OM 2+MD 2,即OD 2=(3-OD )2+1,解得OD =233,故球O 的表面积为4π×⎝⎛⎭⎫2332=163π. 二、高效训练突破一、选择题1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【解析】:由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2020·安徽宣城二模)一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是()A.2 B.2 2 C.2 3 D.4【答案】C.【解析】:如图所示由三视图可知该几何体是四棱锥P­ABCD截去三棱锥P­ABD后得到的三棱锥P­BCD.其中四棱锥中,底面ABCD是正方形,P A①底面ABCD,且P A=AB=2,易知面积最大面为面PBD,面积为34×(22)2=2 3.故选C.3.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5 C.3 D.2【解析】:由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图①所示,连接MN ,则MS =2,SN =4,则从M 到N 的路径中,最短路径的长度为MS 2+SN 2=22+42=2 5.故选B.4.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为( )A.16B .26 C.36 D .12【答案】A【解析】几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.①俯视图是正方形,有四个直角,正视图和侧视图中分别有一个直角.正视图和侧视图中的直角对应上底面左边外侧顶点(图中D 点上方顶点),将该顶点下拉至D 点,连接DA ,DB ,DC 即可.该几何体即图中棱长为1的正方体中的四面体ABCD ,其体积为13×12×1×1×1=16.故选A. 5.(2020·陕西彬州质检)一个几何体的三视图如图所示,其中正视图中①ABC 是边长为1的等边三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( )A.38 B .34 C .1 D .32【答案】A.【解析】:由三视图可知该几何体为正六棱锥,其直观图如图所示该正六棱锥的底面正六边形的边长为12,侧棱长为1,高为32.侧视图的底面边长为正六边形的高,为32,则该几何体的侧视图的面积为12×32×32=38,故选A. 6.(2020·江西省名校学术联盟质检)如图所示,边长为1的正方形网格中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为( )A .{1,5}B .{1,6}C .{1,2,5}D .{1,2,22,6} 【答案】B.【解析】:如图所示该几何体是四棱柱,底面是边长为1的正方形,侧棱长为6,故选B.7.(2020·河南非凡联盟4月联考)某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为( )A .12B .3 2C .6 2D .6【答案】B.【解析】:法一:由题图易知,该几何体为一个四棱锥(高为23,底面是长为4,宽为3的矩形)与一个半圆柱(底面圆半径为2,高为3)的组合体,所以其俯视图的外侧边沿线组成一个长为4,宽为3的矩形,其面积为12,由斜二测知识可知四边形O ′A ′B ′C ′的面积为4×32sin 45°=3 2. 法二:由斜二测画法可先还原出俯视图的外轮廓是长为4,宽为3的矩形,其面积为4×3=12,结合直观图面积是原图形面积的24,即可得结果. 8.(2020·安徽黄山一模)如图所示为某几何体的三视图,则几何体的体积为( )A.12B .1 C.32 D .3 【答案】B.【解析】:由三视图可得如图的四棱锥P ­ABCD ,其中平面ABCD ①平面PCD .由正视图和俯视图可知AD =1,CD =2,P 到平面ABCD 的距离为32.所以四棱锥P ­ABCD 的体积为V =13×S 长方形ABCD ×h =13×1×2×32=1.故选B. 9.(2020·湖南永州三模)某几何体的三视图如图所示,则该几何体的体积为( )A.5π3B .4π3 C.π3 D .2π3【答案】D.【解析】:几何体是半个圆柱挖去半个圆锥所形成的,如图,由题意可知几何体的体积为:12×12·π×2-13×12×12·π×2=2π3.故选D. 10.(2020·广东茂名一模)在长方体ABCD ­A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,D 1B 与DC 所成的角是60°,则长方体的外接球的表面积是( )A .16πB .8πC .4πD .42π【答案】A.【解析】:如图,在长方体ABCD ­A 1B 1C 1D 1中,因为DC ①AB ,所以相交直线D 1B 与AB 所成的角是异面直线D 1B 与DC 所成的角.连接AD 1,由AB ①平面ADD 1A 1,得AB ①AD 1,所以在Rt①ABD 1中,①ABD 1就是D 1B 与DC 所成的角,即①ABD 1=60°,又AB =2,AB =BD 1cos 60°,所以BD 1=AB cos 60°=4,设长方体ABCD ­A 1B 1C 1D 1外接球的半径为R ,则由长方体的体对角线就是长方体外接球的直径得4R 2=D 1B 2=16,则R =2,所以长方体外接球的表面积是4πR 2=16π.故选A.11.(2020·江西萍乡一模)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A.236B .72 C.76 D .4【答案】A.【解析】:由三视图可得,该几何体是如图所示的三棱柱ABB 1­DCC 1,挖去一个三棱锥E ­FCG 所形成的,故所求几何体的体积为12×(2×2)×2-13×⎝⎛⎭⎫12×1×1×1=236.故选A. 12.(2020·福建厦门外国语学校模拟)已知等腰直角三角形ABC 中,①ACB =90°,斜边AB =2,点D 是斜边AB 上一点(不同于点A ,B ).沿线段CD 折起形成一个三棱锥A ­CDB ,则三棱锥A ­CDB 体积的最大值是( )A .1B .12 C.13 D .16【答案】D. 【解析】:设AD =x ,将①ACD 折起使得平面ACD ①平面BCD .在①ACD 中,由面积公式得12CD ·h 1=12AD ·1(h 1为点A 到直线CD 的距离),则h 1=x 1+(x -1)2.由题易知h 1为点A 到平面BCD 的距离,故三棱锥A ­CDB 体积为V =13S ①BCD ·h 1=13×⎝⎛⎭⎫12BD ·1·h 1=16·2x -x 2x 2-2x +2,x ①(0,2).令t =x 2-2x +2,则t ①[1,2),故V =16·2-t 2t =16·⎝⎛⎭⎫2t -t .由于2t -t 是减函数,故当t =1时,V 取得最大值为16×(2-1)=16.故选D. 二、填空题1.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为______cm.【答案】:13【解析】:如图过点A 作AC ①OB ,交OB 于点C .在Rt①ABC 中,AC =12(cm),BC =8-3=5(cm).所以AB =122+52=13(cm).2.已知正四棱锥V ­ABCD 中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.【答案】:6【解析】:如图取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V­ABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211,所以VO=VA2­AO2=44-8=6.所以正四棱锥V­ABCD的高为6. 3.某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为________.【答案】:96【解析】:由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,所以CO=CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.4.(2019·高考全国卷①)中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.。

【精品】高中数学 必修2_空间几何体的表面积和体积__讲义 知识点讲解+巩固练习(含答案)提高

【精品】高中数学 必修2_空间几何体的表面积和体积__讲义  知识点讲解+巩固练习(含答案)提高

空间几何体的表面积和体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2.能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系;3.了解球的表面积和体积公式推导的基本思想,掌握球的表面积和体积的计算公式,并会求球的表面积和体积;4.会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积.【要点梳理】【高清课堂:空间几何体的表面积和体积 395219 空间几何体的表面积】要点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之和.计算时要分清面的形状,准确算出每个面的面积再求和.棱柱、棱锥、棱台底面与侧面的形状如下表:要点诠释:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积.要点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,圆柱的底面半径为r,母线长l,那么这个矩形的长等于圆柱底面周长C=2πr,宽等于圆柱侧面的母线长l(也是高),由此可得S=C l=2πr l.圆柱侧(2)圆柱的表面积:2222()S r rl r r l πππ=+=+圆柱表. 2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r ,母线长为l ,那么这个扇形的弧长等于圆锥底面周长C=πr ,半径等于圆锥侧面的母线长为l ,由此可得它的侧面积是12S Cl rl π==圆锥侧.(2)圆锥的表面积:S 圆锥表=πr 2+πr l .3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r '、r ,母线长为l ,那么这个扇形的面积为π(r '+r)l ,即圆台的侧面积为S 圆台侧=π(r '+r)l .(2)圆台的表面积:22('')S r r r l rl π=+++圆台表. 要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.【高清课堂:空间几何体的表面积和体积395219 空间几何体的体积】 要点三、柱体、锥体、台体的体积1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S 和高h 的乘积,即V 棱柱=Sh . 圆柱的体积:底面半径是r ,高是h 的圆柱的体积是V 圆柱=Sh=πr 2h . 综上,柱体的体积公式为V=Sh . 2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S ,高是h ,那么它的体积13V Sh =棱锥.圆锥的体积:如果圆锥的底面积是S ,高是h ,那么它的体积13V Sh =圆锥;如果底面积半径是r ,用πr 2表示S ,则213V r h π=圆锥.综上,锥体的体积公式为13V Sh =.3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S '、S ,高是h ,那么它的体积是1('')3V h S SS S =++棱台.圆台的体积:如果圆台的上、下底面半径分别是r '、r ,高是h ,那么它的体积是2211('')('')33V h S SS S h r rr r π=++=++圆台.综上,台体的体积公式为1('')3V h S SS S =++.4.柱体、锥体、台体的体积公式之间的关系如下图所示.【高清课堂:空间几何体的表面积和体积395219 球的体积与表面积】 要点四、球的表面积和体积 1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积. (2)球的表面积设球的半径为R ,则球的表面积公式 S 球=4πR 2.即球面面积等于它的大圆面积的四倍. 2.球的体积设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数.球的体积公式为343V R π=球.要点五、侧面积与体积的计算 1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键.【典型例题】类型一、简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,则a 的取值范围是 .【答案】150a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:221262(1086)1248s a a =⨯+++=+, 222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成四棱柱时只有一种情况:表面积为22(86)2462428a a +⨯+⨯=+, 由题意得2224281248a a +<+,解得1503a <<. 【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】 一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A .4S π B .2S π C .S π D .23S π 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为Sr π=,进一步求出侧面积为4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。

2021高中数学一轮复习课时过关检测(三十八) 空间几何体的结构特征及表面积与体积

2021高中数学一轮复习课时过关检测(三十八) 空间几何体的结构特征及表面积与体积

课时过关检测(三十八) 空间几何体的结构特征及表面积与体积A级——夯基保分练1.下列说法中正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线解析:选D当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,故B错误;由几何图形知,若以正六边形为底面,且侧棱长相等正六棱锥棱长必然要大于底面边长,故C错误.选D.2.如图是水平放置的某个三角形的直观图,D′是△A′B′C′中B′C′边的中点且A′D′∥y′轴,A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC,那么()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C由题中的直观图可知,A′D′∥y′轴,B′C′∥x′轴,根据斜二测画法的规则可知,在原图形中AD∥y轴,BC∥x轴,又因为D′为B′C′的中点,所以△ABC为等腰三角形,且AD为底边BC上的高,则有AB=AC>AD成立.3.(2019·吉林调研)已知圆锥的高为3,底面半径长为4.若一球的表面积与此圆锥的侧面积相等,则该球的半径长为()A.5 B. 5C.9 D.3解析:选B∵圆锥的底面半径R=4,高h=3,∴圆锥的母线l=5,∴圆锥的侧面积S =πRl=20π.设球的半径为r,则4πr2=20π,∴r= 5.故选B.4.(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A .13.25立方丈B .26.5立方丈C .53立方丈 D.106立方丈解析:选B 由题意知,刍童的体积为[(4×2+3)×3+(3×2+4)×2]×3÷6=26.5(立方丈),故选B.5.(2020·南昌模拟)正四棱锥V -ABCD 的五个顶点在同一个球面上.若其底面边长为4,侧棱长为26,则此球的体积为( )A .722πB .36πC .92π D.9π2解析:选B 由题意知正四棱锥的高为(26)2-(22)2=4,设其外接球的半径为R ,则R 2=(4-R )2+(22)2,解得R =3,所以外接球的体积为43πR 3=43π×33=36π.故选B. 6.(2019·安徽马鞍山第二次质监)如图,半径为R 的球的两个内接圆锥有公共的底面.若两个圆锥的体积之和为球的体积的38,则这两个圆锥的高之差的绝对值为( )A.R 2B.2R 3C.4R 3D.R解析:选D 设球的球心为O ,半径为R ,体积为V ,上面圆锥的高为h (h <R ),体积为V 1,下面圆锥的高为H (H >R ),体积为V 2,两个圆锥共用的底面的圆心为O 1,半径为r .由球和圆锥的对称性可知h +H =2R ,|OO 1|=H -R .∵V 1+V 2=38V ,∴13πr 2h +13πr 2H =38×43πR 3,∴r 2(h +H )=32R 3.∵h +H =2R ,∴r =32R .∵OO 1垂直于圆锥的底面,∴OO 1垂直于底面的半径,由勾股定理可知R 2=r 2+|OO 1|2,∴R 2=r 2+(H -R )2,∴H =32R ,∴h =12R ,则这两个圆锥的高之差的绝对值为R ,故选D. 7.(多选)已知某圆柱的侧面展开图是边长为2a ,a 的矩形,设该圆柱的体积为V ,则V =( )A.a 3πB.a 32πC.2a 3π D.πa 32解析:选AB 设圆柱的母线长为l ,底面圆的半径为r ,则当l =2a 时,2πr =a ,∴r =a 2π,这时V 圆柱=2a ·π⎝⎛⎭⎫a 2π2=a 32π;当l =a 时,2πr =2a ,∴r =a π,这时V 圆柱=a ·π⎝⎛⎭⎫a π2=a 3π.综上,该圆柱的体积为a 32π或a 3π. 8.(多选)(2020·潍坊模拟)正方体ABCD -A 1B 1C 1D 1的棱长为2,已知平面α⊥AC 1,则关于α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六边形D .截面面积最大值为3 3解析:选ACD 如图,显然A ,C 成立,下面说明D 成立,如图截得正六边形,面积最大,MN =22,GH =2,OE =OO ′2+O ′E 2= 1+⎝⎛⎭⎫222=62, 所以S =2·12·(2+22)·62=33, 故D 成立.故选A 、C 、D.9.如图,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.解析:因为在正三棱柱ABC -A 1B 1C 1中,AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C ,所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离,作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥A -A 1EF 的体积V A -A 1EF=V E -A 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3. 答案:8 310.(一题两空)母线长为5的圆锥的侧面展开图的圆心角等于8π5,则该圆锥的底面圆的半径为________,体积为________.解析:设该圆锥的底面圆的半径为r ,高为h .∵母线长为5的圆锥的侧面展开图的圆心角等于8π5,∴侧面展开图的弧长为5×8π5=8π.又弧长=底面周长,即8π=2πr ,∴r =4,∴圆锥的高h =52-42=3,∴圆锥的体积V =13×π×42×3=16π. 答案:4 16π11.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,过点A ,P ,C 1的平面截正方体所得的截面为M ,则截面M 的面积为________.解析:如图,取A 1D 1,AD 的中点分别为F ,G .连接AF ,AP ,PC 1,C 1F ,PG ,D 1G ,AC 1,PF .∵F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点,∴AF =FC 1=AP =PC 1=52,PG 綊CD ,AF 綊D 1G .由题意易知CD 綊C 1D 1,∴PG 綊C 1D 1,∴四边形C 1D 1GP 为平行四边形,∴PC 1綊D 1G ,∴PC 1綊AF ,∴A ,P ,C 1,F 四点共面,∴四边形APC 1F 为菱形.∵AC 1=3,PF =2,过点A ,P ,C 1的平面截正方体所得的截面M 为菱形APC 1F ,∴截面M 的面积S =12AC 1·PF =12×3×2=62. 答案:6212.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图,∵SA 与底面成45°角,∴△SAO 为等腰直角三角形.设OA =r ,则SO =r ,SA =SB =2r .在△SAB 中,cos ∠ASB =78, ∴sin ∠ASB =158,∴S △SAB =12SA ·SB ·sin ∠ASB =12×(2r )2×158=515,解得r =210, ∴SA =2r =45,即母线长l =45, ∴S 圆锥侧=πrl =π×210×45=402π.答案:402πB 级——提能综合练13.魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”.刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4.若正方体的棱长为2,则“牟合方盖”的体积为( )A .16B .16 3 C.163 D.1283解析:选C 若正方体的棱长为2,则其内切球的半径r =1,∴正方体的内切球的体积V 球=43π×13=43π.又已知V 球V 牟合方盖=π4,∴V 牟合方盖=4π×43π=163.故选C. 14.(2019·河北衡水中学四调)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81π D.128π解析:选B 小圆柱的高分为上下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,体积V 单调递增;当53<h <5时,V ′<0,体积V 单调递减.所以当h =53时,小圆柱的体积取得最大值,即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B.15.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,则该几何体的体积为________.解析:过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =V A 1B 1C 1-A 2B 2C +V C -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. 答案:616.(一题两空)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为 ⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=3 3.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:334π81。

超实用高考数学:空间几何体知识点解析(含历年真题专项练习)

超实用高考数学:空间几何体知识点解析(含历年真题专项练习)

空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式 V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高);V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r .在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎫33,1时,V ′<0.∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面P AB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面P AB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面P AB 上, 即球心就是△P AB 的外心,根据正弦定理ABsin ∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知P A ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵P A ⊥平面ADE ,∴R 1=⎝⎛⎭⎫P A 22+r 21, 可得P A 2=R 21-r 21=102,∴P A =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵P A ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝⎛⎭⎫P A 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π. 专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18 答案 C 解析 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元 答案 B解析 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A.32π3 B .3π C.4π3 D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36 B.12 C.13 D.32答案 C解析 ∵在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等, ∴此三棱锥的外接球即以P A ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即P A =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △P AB ×PC =13×12×⎝⎛⎭⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确.12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点,则P A =2AA 1=4,OA =2,所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC=4,AC =4,得△P AC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×(23)2+(2)2=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2,因此r=1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.答案 2 600π解析将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(π×40)×(50+80)=2 600π(cm2).15.已知球O与棱长为4的正四面体的各棱相切,则球O的体积为________.答案82 3π解析将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R=22,则球O的体积V=43πR3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5, ∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。

2022高三总复习数学 空间几何体的结构特征、表面积及体积(含解析)

2022高三总复习数学 空间几何体的结构特征、表面积及体积(含解析)

空间几何体的结构特征、表面积及体积A级——基础达标1.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥解析:选D从较短的底边的端点向另一底边作垂线,两条垂线把等腰梯形分成了两个直角三角形,一个矩形,所以一个等腰梯形绕它的较长的底边所在直线旋转一周形成的是由一个圆柱,两个圆锥所组成的几何体,如图所示.2.已知圆锥的高为3,底面半径长为4,若一球的表面积与此圆锥的侧面积相等,则该球的半径长为()A.5 B. 5C.9 D.3解析:选B∵圆锥的底面半径R=4,高h=3,∴圆锥的母线l=5,∴圆锥的侧面积S =πRl=20π.设球的半径为r,则4πr2=20π,∴r= 5.故选B.3.(2020·全国卷Ⅱ)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A. 3 B.32C.1 D.3 2解析:选C由等边三角形ABC的面积为934,得34AB2=934,得AB=3,则△ABC的外接圆半径r=23×32AB=33AB= 3.设球的半径为R,则由球的表面积为16π,得4πR2=16π,得R=2,则球心O到平面ABC的距离d=R2-r2=1,故选C.4.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,点E是棱BB1的中点,点F是棱CC1上靠近C1的三等分点,且三棱锥A1-AEF的体积为2,则四棱柱ABCD-A1B1C1D1的体积为() A.12 B.8C.20 D.18解析:选A设点F到平面ABB1A1的距离为h,由题意得VA1-AEF=VF-A1AE.又VF-A1AE=13S△A1AE·h=13×⎝⎛⎭⎫12AA1·AB·h=16(AA1·AB)·h=16S四边形ABB1A1·h=16VABCD-A1B1C1D1,所以VABCD-A1B1C1D1=6VA1-AEF=6×2=12.所以四棱柱ABCD-A1B1C1D1的体积为12.故选A.5.(多选)下列命题错误的是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直D.棱台的侧棱延长后交于一点,侧面是等腰梯形解析:选ABD对于A,棱柱的侧面不一定全等,故错误;对于B,由棱台的定义可知只有当平面与底面平行时,所截部分才是棱台,故错误;对于C,若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直,比如正方体中共点的三个相邻平面,故正确;对于D,棱台的侧面不一定是等腰梯形,故错误.综上,A、B、D错误,故选A、B、D.6.(多选)(2021·山东临沂模拟)已知A,B,C三点均在球O的表面上,AB=BC=CA=2,且球心O到平面ABC的距离等于球半径的13,则下列结论正确的是()A.球O的表面积为6πB.球O的内接正方体的棱长为1C.球O的外切正方体的棱长为43 D.球O的内接正四面体的棱长为2解析:选AD设球O的半径为r,△ABC的外接圆圆心为O′,半径为R.易得R=23 3.因为球心O到平面ABC的距离等于球O半径的13,所以r2-19r2=43,得r2=32.所以球O的表面积S=4πr2=4π×32=6π,选项A正确;球O的内接正方体的棱长a满足3a=2r,显然选项B不正确;球O的外切正方体的棱长b满足b=2r,显然选项C不正确;球O的内接正四面体的棱长c满足c=263r=263×62=2,选项D正确.7.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为 cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm).∴AB =122+52=13(cm).答案:138.已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为 .解析:法一:如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. 答案:229.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为 .解析:如图,∵SA 与底面成45°角, ∴△SAO 为等腰直角三角形.设OA =r ,则SO =r ,SA =SB =2r .在△SAB 中,cos ∠ASB =78,且∠ASB ∈(0,180°),∴sin ∠ASB =158,∴S △SAB =12SA ·SB ·sin ∠ASB=12×(2r )2×158=515,解得r =210, ∴SA =2r =45,即母线长l =45, ∴S 圆锥侧=πrl =π×210×45=402π. 答案:402π10.如图,在四棱锥P -ABCD 中,四边形ABCD 是边长为2的正方形,且PA =PB =PC =PD ,已知四棱锥的表面积是12,则它的体积为 .解析:由题意可知四棱锥P -ABCD 为正四棱锥,设AC 交BD 于点O ,连接PO (图略),则PO 是四棱锥的高.设正四棱锥的斜高为h ′,则2×2+4×12×2h ′=12,解得h ′=2, 则正四棱锥的高PO =22-12= 3.∴正四棱锥的体积V =13×4×3=433.答案:43311.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·(A 1B 1)2·PO 1=13×62×2=24(m 3);正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.12.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S , 则⎝⎛⎭⎫h 22+r 2=R 2,即h =2 R 2-r 2.因为S =2πrh =4πr ·R 2-r 2=4πr 2·(R 2-r 2)≤4π(r 2+R 2-r 2)24=2πR 2, 当且仅当r 2=R 2-r 2,即r =22R 时,取等号, 所以当内接圆柱底面半径为22R ,高为2R 时,其侧面积的值最大,最大值为2πR 2.B 级——综合应用13.(多选)(2021·寿光市高三模拟)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下0.02 cm 3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏中的细沙体积为1 024π81cm 3 B .沙漏的体积是128π cm 3C .细沙全部漏入下部后此锥形沙堆的高度约为2.4 cmD .该沙漏的一个沙时大约是1 985秒(π≈3.14)解析:选ACD A .根据圆锥的截面图可知,细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r =23×4=83(cm),所以体积V =13·πr 2·2h 3=13·64π9·163=1 024π81(cm 3);B .沙漏的体积V =2×13×π×⎝⎛⎭⎫h 22×h =2×13×π×42×8=2563π(cm 3); C .设细沙流入下部后的高度为h 1,根据细沙体积不变可知,1 024π81=13×π⎝⎛⎭⎫h 22×h 1, 所以1 024π81=16π3h 1,所以h 1≈2.4 cm ; D .因为细沙的体积为1 024π81cm 3,沙漏每秒钟漏下0.02 cm 3的沙,所以一个沙时为1 024π810.02=1 024×3.1481×50≈1 985(秒). 故选A 、C 、D.14.(2021·上海市浦东新区模拟)如图①所示,已知正方体的面对角线长为a ,沿阴影面将正方体切割成两块,拼成如图②所示的几何体,那么此几何体的表面积为 .解析:由已知得正方体的棱长为22a ,则正方体的表面积为3a 2,新几何体的表面积比原来多了两个阴影部分的面积,少了正方体两个面的面积,故所求几何体的表面积为3a 2+2×22a 2-2×12a 2=(2+2)a 2. 答案:(2+2)a 215.一个正三棱锥P -ABC 的底面边长为a ,高是h .一个内接直三棱柱A 1B 1C 1-A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0在底面△ABC 上,试证明:当三棱柱侧面积取最大值时,正三棱锥的高PO 被三棱柱的上底面A 1B 1C 1平分.证明:如图,截面A 1B 1C 1∥底面ABC ,故△A 1B 1C 1为正三角形,于是三棱柱A 1B 1C 1-A 0B 0C 0是正三棱柱.设PO 交截面A 1B 1C 1于点O 1,则A 1B 1AB =PO 1PO .令A 1B 1=x ,又PO =h ,则PO 1=h a x .于是O 1O =h -PO 1=h -ha x =h ⎝⎛⎭⎫1-x a . 所以所求三棱柱的侧面积S =3x ·h ⎝⎛⎭⎫1-x a =3h a ·(a -x )·x =3h a ⎣⎡⎦⎤a 24-⎝⎛⎭⎫x -a 22,当x =a 2,即PO 1=h 2时,S 有最大值,为34ah ,此时O 1为PO 的中点,即三棱柱的侧面积最大时,PO被三棱柱的上底面A1B1C1平分.C级——迁移创新16.瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V、棱数E及面数F满足等式V-E+F=2,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由m块黑色正五边形面料和32-m块白色正六边形面料构成的.根据欧拉多面体公式求m的值.解:依题意,设足球顶点数V、棱数E及面数F,则F=m+32-m=32,每条棱被两个面公用,故棱数E=5×m+6×(32-m)2=192-m2,每个顶点被3条棱公用,故顶点数V=5×m+6×(32-m)3=192-m3,由V-E+F=2,得192-m3-192-m2+32=2,解得m=12.。

空间几何体与三视图、体积表面积(含答案)教学文案

空间几何体与三视图、体积表面积(含答案)教学文案

空间几何体与三视图、体积表面积(含答案)空间几何体的结构,三视图直观图、表面积及体积1.几种常凸多面体间的关系2.一些特殊棱柱、棱锥、棱台的概念和主要性质名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的交线都互相平行的多面体侧棱垂直于底面的棱柱底面是正多边形的直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面的形状平行四边形矩形矩形平行于底面的截面的形状与底面全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体底面是正多边形,且顶点在底面的射影是底面的中心用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分由正棱锥截得的棱台侧棱相交于一点但不一定相等相交于一点且相等延长线交于一点相等且延长线交于一点侧面的形状三角形全等的等腰三角形梯形全等的等腰梯形对角面的形状三角形等腰三角形梯形等腰梯形平行于底的截与底面相似的多边形与底面相似的正多边形与底面相似的多边形与底面相似的正多边形面形状其他性质高过底面中心;侧棱与底面、侧面与底面、相邻两侧面所成角都相等两底中心连线即高;侧棱与底面、侧面与底面、相邻两侧面所成角都相等名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分(2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度;(3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度;三视图画法规则高平齐:主视图与左视图的高要保持平齐长对正:主视图与俯视图的长应对正宽相等:俯视图与左视图的宽度应相等空间几何体的直观图(1)斜二测画法①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使'''X OY=450(或1350),它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X 轴、Y 轴及为画图添加的辅助线(虚线)。

空间几何体的表面积和体积(含解析)

空间几何体的表面积和体积(含解析)

归纳与技巧:空间几何体的表面积和体积基础知识归纳柱、锥、台和球的侧面积和体积基础题必做1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a 时,该三棱锥的全面积是( )A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a , ∴S 全=34a 2+3×12×⎝⎛⎭⎫22a 2=3+34a 2. 2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为 (32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.(教材习题改编)表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)解题方法归纳1.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性. 3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例1] 某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5. 所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案] 92解题方法归纳1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. 3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1. 如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A.3 B .2 3 C .43 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝⎛⎭⎫12×1×1=4.几何体的体积典题导入[例2] (1) 某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2) 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V圆柱-V圆锥=π×32×4-13π×32×4=24π.答案:24π解题方法归纳1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解. 2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.以题试法2.(1) 四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为 13Sh -13·12S ·12h -13·12Sh 13Sh =14.如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例3] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36 C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A解题方法归纳1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为1∶3.以题试法3.(1) 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23π B.8π3 C .4 3D.16π3(2) 如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示. 其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心,又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝⎛⎭⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62. 故球O 的体积V =4πR 33=6π.答案:(1)D (2)6π1. 某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×P A=13×12×2×2×2=43. 2. 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O -ABCD 的高等于42-⎝⎛⎭⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51. 3. 如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4. 用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. 若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112 B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝⎛⎭⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7. 如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________. 解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π. 答案:33π 9. 在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10. 如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.(1)求证:面ABEF ⊥平面BCDE ;(2)求五面体ABCDEF 的体积.解:设原正六边形中,AC ∩BE =O ,DF ∩BE =O ′,由正六边形的几何性质可知OA =OC =3,AC ⊥BE ,DF ⊥BE .(1)证明:在五面体ABCDE 中,OA 2+OC 2=6=AC 2,∴OA ⊥OC ,又OA ⊥OB ,∴OA ⊥平面BCDE .∵OA ⊂平面ABEF ,∴平面ABEF ⊥平面BCDE .(2)由BE ⊥OA ,BE ⊥OC 知BE ⊥平面AOC ,同理BE ⊥平面FO ′D ,∴平面AOC ∥平面FO ′D ,故AOC -FO ′D 是侧棱长(高)为2的直三棱柱,且三棱锥B -AOC 和E -FO ′D 为大小相同的三棱锥,∴V ABCDEF =2V B -AOC +V AOC -FO ′D=2×13×12×(3)2×1+12×(3)2×2=4. 11. 如图,在四棱锥P -ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB =4,CD =2,侧面P AD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为P A 的中点.(1)求证:DE ∥平面PBC ;(2)求三棱锥A -PBC 的体积.解:(1)证明:如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB =4,CD =2,所以BF 綊CD .所以四边形BCDF 为平行四边形.所以DF ∥BC .在△P AB 中,PE =EA ,AF =FB ,所以EF ∥PB .又因为DF ∩EF =F ,PB ∩BC =B ,所以平面DEF ∥平面PBC .因为DE ⊂平面DEF ,所以DE ∥平面PBC .(2)取AD 的中点O ,连接PO .在△P AD 中,P A =PD =AD =2,所以PO ⊥AD ,PO = 3.又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD .在直角梯形ABCD 中,CD ∥AB ,且AB =4,AD =2,AB ⊥AD ,所以S △ABC =12×AB ×AD =12×4×2=4. 故三棱锥A -PBC 的体积V A -PBC =V P -ABC =13×S △ABC ×PO =13×4×3=433. 12. 一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积;(2)证明:A 1C ⊥平面AB 1C 1.解:(1)几何体的直观图如图所示,四边形BB 1C 1C 是矩形,BB 1=CC 1=3,BC =B 1C 1=1,四边形AA 1C 1C 是边长为3的正方形,且平面AA 1C 1C垂直于底面BB 1C 1C ,故该几何体是直三棱柱,其体积V =S △ABC ·BB 1=12×1×3×3=32. (2)证明:由(1)知平面AA 1C 1C ⊥平面BB 1C 1C 且B 1C 1⊥CC 1,所以B 1C 1⊥平面ACC 1A 1.所以B 1C 1⊥A 1C .因为四边形ACC 1A 1为正方形,所以A 1C ⊥AC 1.而B 1C 1∩AC 1=C 1,所以A 1C ⊥平面AB 1C 1.1. 已知矩形ABCD 的面积为8,当矩形ABCD 周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D -ABC 的外接球表面积等于( )A .8πB .16πC .482πD .不确定的实数 解析:选B 设矩形长为x ,宽为y ,周长P =2(x +y )≥4xy =82,当且仅当x =y =22时,周长有最小值.此时正方形ABCD 沿AC 折起,∵OA =OB =OC =OD ,三棱锥D -ABC 的四个顶点都在以O 为球心,以2为半径的球上,此球表面积为4π×22=16π.2. 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6. 答案:63. 如图,平行四边形ABCD 中,AB ⊥BD ,AB =2,BD =2,沿BD 将△BCD 折起,使二面角A -BD -C 是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥C -OAD 的体积最大?最大值为多少?(2)当AD ⊥BC 时,求α的大小.解:(1)由题知CO ⊥平面ABD ,∴CO ⊥BD ,又BD ⊥CD ,CO ∩CD =C ,∴BD ⊥平面COD .∴BD ⊥OD .∴∠ODC =α.V C -AOD =13S △AOD ·OC =13×12·OD ·BD ·OC =26·OD ·OC =26·CD ·cos α·CD ·sin α =23·sin 2α≤23, 当且仅当sin 2α=1,即α=45°时取等号.∴当α=45°时,三棱锥C -OAD 的体积最大,最大值为23.(2)连接OB ,∵CO ⊥平面ABD ,∴CO ⊥AD ,又AD ⊥BC ,∴AD ⊥平面BOC .∴AD ⊥OB .∴∠OBD +∠ADB =90°.故∠OBD =∠DAB ,又∠ABD =∠BDO =90°,∴Rt △ABD ∽Rt △BDO .∴OD BD =BD AB. ∴OD =BD 2AB =(2)22=1, 在Rt △COD 中,cos α=OD CD =12,得α=60°.1.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A .(6-33)πB .(8-43)πC .(6+33)πD .(8+43)π解析:选A 设球O 1、球O 2的半径分别为r 1、r 2,则3r 1+r 1+3r 2+r 2=3,r 1+r 2=3-32, 从而4π(r 21+r 22)≥4π·(r 1+r 2)22=(6-33)π.2.已知某球半径为R ,则该球内接长方体的表面积的最大值是( )A .8R 2B .6R 2C .4R 2D .2R 2解析:选A 设球内接长方体的长、宽、高分别为a 、b 、c ,则a 2+b 2+c 2=(2R )2,所以S 表=2(ab +bc +ac )≤2(a 2+b 2+c 2)=8R 2,当且仅当a =b =c =233R 时,等号成立. 3.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π解析:选A 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中,正方体的棱长为2,半圆柱的底面半径为1,母线长为2.故该几何体的表面积为4×5+2×π+2×12π=20+3π.4. 我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈ 3169VB .d ≈ 32VC .d ≈ 3300157VD .d ≈ 32111V 解析:选D ∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.5. 如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是________.解析:如图过点B 在平面BAD 中作BE ⊥AD ,垂足为E ,连接CE ,因为BC ⊥AD ,所以AD ⊥平面BCE .所以四面体ABCD 的体积为13S △BCE ·AD .当△BCE 的面积最大时,体积最大.因为AB +BD =AC +CD =2a ,所以点B ,C 在一个椭圆上运动,由椭圆知识可知当AB =BD =AC =CD =a 时,BE =CE =a 2-c 2为最大值,此时截面△BCE 面积最大,为12×2a 2-c 2-1=a 2-c 2-1,此时四面体ABCD 的体积最大,最大值为13S △BCE ·AD =2c 3·a 2-c 2-1. 答案:23c a 2-c 2-1。

空间几何体的结构特征及表面积与体积

空间几何体的结构特征及表面积与体积

解析:对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对 等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形, 则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正确.
综上,命题①②③不正确. 答案:①②③
【思维升华】 空间几何体概念辨析题的常用方法 (1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中 的线面关系或增加线、面等基本元素,根据定义进行判定. (2)反例法:通过反例对结构特征进行辨析.
3.设长方体的长、宽、高分别为 a,b,c,则它的外接球半径 R=
a2+b2+c2 2.
4.设正方体的棱长为
a,则它的内切球半径
r=a2,外接球半径
R=
3 2 a.
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( √ ) (4)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (5)菱形的直观图仍是菱形.( × )
轴截面
侧面 展开图
全等的_矩__形__ _矩__形__
全等的
全等的
_等__腰__三__角__形__ _等__腰__梯__形___
__扇__形_
_扇__环__
_圆___
3.直观图 斜二测画法:(1)原图形中 x 轴、y 轴、z 轴两两垂直,直观图中 x′轴、y′轴的夹 角为 45°或135° ,z′轴与 x′轴和 y′轴所在平面 垂直 .(2)原图形中平行 于坐标轴的线段在直观图中仍 平行于坐标轴 ,平行于 x 轴和 z 轴的线段在直观 图中保持原长度 不变 ,平行于 y 轴的线段在直观图中长度为 原来的一半 .

2018届高考数学复习——立体几何:(一)空间几何体的结构特征及三视图、表面积和体积(解析版)

2018届高考数学复习——立体几何:(一)空间几何体的结构特征及三视图、表面积和体积(解析版)

【知识归纳梳理】一、空间几何体的结构特征 1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分. 2.旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到. (2)圆锥可以由直角三角形绕其一条直角边旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆面或圆面绕直径旋转得到.[注意] (1)认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.(2)台体可以看成是由锥体截得的,但一定强调截面与底面平行.二、空间几何体的三视图与直观图 1.空间几何体的三视图(1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽; ③看不到的线画虚线.[注意] 若相邻两物体的表面相交,则表面的交线是它们的分界线,在三视图中,要注意实、虚线的区别. 2.空间几何体的直观图画空间几何体的直观图常用 斜二测_画法,基本步骤是:(1)在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴、y ′轴,两轴相交于点O ′,且使∠x ′O ′y ′= 45°(或135°) .(2)已知图形中平行于x 轴、y 轴的线段,在直观图中分别平行于 x ′轴、y ′轴 .(3)已知图形中平行于x 轴的线段,在直观图中长度 保持不变 ,平行于y 轴的线段,长度变为 原来的一半 .(4)在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ′轴也垂直于x ′O ′y ′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度 不变 .[注意] 按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系: S 直观图=24S 原图形,S 原图形=22S 直观图. 三、空间几何体的表面积和体积 1.空间几何体的表面积当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得: S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl [注意] 组合体的表面积应注意重合部分的处理. 2.空间几何体的体积(1)柱体:V 柱体=Sh ;V 圆柱=πr 2h .(2)锥体:V 锥体=13Sh ;V 圆锥=13πr 2h .(3)台体:V 台体=13(S +SS ′+S ′)h ;V 圆台=13πh (r 2+rr ′+r ′2).3.球体(1)球的表面积公式:S =4πR 2;球的体积公式V =43πR 3(2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a .③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a .(3)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE = 23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a .【第1讲:空间几何体的结构特征及三视图】题型1:空间几何体的结构特征 【典型例题】[例1](1)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③四棱锥的四个侧面都可以是直角三角形;④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠P AB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④(2)以下命题:①直角三角形绕一边所在直线旋转得到的旋转体是圆锥;②夹在圆柱的两个平行截面间的几何体还是圆柱;③圆锥截去一个小圆锥后剩余部分是圆台;④棱锥截去一个小棱锥后剩余部分是棱台.其中正确的命题序号是________.【答案】③[例2](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.(2)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选DA错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图1图2【变式训练】1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用一个平面去截一个球,截面是一个圆面()答案:(1)×(2)×(3)√2.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若过两个相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是________.【答案】②④3.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0B.1C.2D.3【答案】A题型2:空间几何体的三视图与直观图【典型例题】[例1](1)一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()【答案】 C(2)如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为()解析:选C由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.(3)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为 ()【答案】B(4)一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C(5)如图所示,E、F分别为正方体ABCD—A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是______.(填序号)【答案】②[例2](1)(2014·福建)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【答案】A[考向1]因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,故选A.(2)(2014·课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析] B[由题知,该几何体的三视图为一个三角形,两个四边形,分析可知该几何体为三棱柱,故选B.](3)(教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱(4)(教材习题改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱(5)(2015·北京朝阳期末)一个四棱锥的三视图如图所示,则该四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4[解析] D[满足条件的四棱锥的底面为矩形,且一条侧棱与底面垂直,如图所示,易知该四棱锥四个侧面均为直角三角形.][例3](1)利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.【答案】①②④(2)用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.(3)(2014·湖北)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:选D在空间直角坐标系O-xyz中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.选D.【变式训练】1.(2011·课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D2.(2015·成都一诊)若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()[解析]C[由题意知,俯视图的长度和宽度相等,故C不可能.]3.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线P A形成的投影,应为虚线,故答案为C.4.(2015·桂林一调)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()[解析]C[选项A,B,D中的俯视图,正方形内的线应该为另一条对角线,当四棱锥的直观图为右图时,它的三视图是C.]5.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③6.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )A B C D【答案】B7.(2015·东北三校联考)利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是________.答案:①②8.(2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.9.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D[考向1]由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,圆台的下底面和圆柱的底面恰好重合.10.(2014·江西)一个几何体的直观图如图,下列给出的四个俯视图中正确的是()【答案】B俯视图为在水平投射面上的正投影,结合几何体可知选B.【第2讲:空间几何体的三视图与表面积和体积】题型3:空间几何体的三视图与表面积【典型例题】 [例1](1)(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12. 答案:12 (2)(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是( ).A.8B.20+8 2C.16D.24+8 2解析 由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S =2×12×2×2+22×4+2×2×4=20+8 2.答案 B (3)(2014·许昌模拟)如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( ).A.4πB.32π C .3π D .2π解析 由三视图可知,该几何体是一个圆柱,S 表=2×π×⎝⎛⎭⎫122+π×1×1=3π2. 答案 B (4)(2016·湖南长沙联考)已知某几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的表面积是________.【解析】 由题意知,该几何体是一个侧放的圆锥,圆锥底面位于右侧,底面圆的半径为1,圆锥的高为2,易知其母线长为5,所以其表面积为S =π·1×(1+5)=5π+π. 【答案】 5π+π (5)(2016·课标III)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5B.54+185C.90D.81解析B[考向2]由图可知,该几何体为四棱柱,S表=2S底+2S前+2S侧=2×32+2×3×6+2×3×32+62=18+36+185=54+18 5.[例2](1)已知棱长为a,各面均为等边三角形的四面体S-ABC,则它的表面积为________. 解析:过S作SD⊥BC,∵BC=a,∴SD=3 2a∴S△SBC=34a2,∴表面积S=4×34a2=3a2.答案:3a2(2)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+ 5B.4+ 5C.2+2 5D.5【解析】作出三棱锥的示意图如图①,在△ABC中,作AB边上的高CD,连接SD.在三棱锥S-ABC中,SC⊥底面ABC,SC=1,底面三角形ABC是等腰三角形,AC=BC,AB边上的高CD=2,AD=BD=1,斜高SD=5,AC=BC= 5.∴S表=S△ABC+S△SAC+S△SBC+S△SAB=12×2×2+12×1×5+12×1×5+12×2×5=2+2 5.(3)(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为()A.3+ 6B.3+ 5C.2+ 6D.2+ 5= 2.解析:选C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3, 从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6.(4)(2016·北京房山一模)某四棱锥的三视图如图所示,则最长的一条侧棱的长度为( ) A. 2 B. 3 C. 5 D. 63.C [考向1]由三视图可知,该几何体是一个底面为直角梯形,且有一条侧棱垂直于底面的四棱锥,直观图如图所示,其中P A ⊥面ABCD ,P A =1,AD =1,CD =1,AB =2,PD =2,PC =3,而在Rt △P AB 中,PB =P A 2+AB 2=12+22=5>3,故最长的侧棱为PB ,其长度为5,故选C.(5)(2014·课标Ⅰ)如图所示,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 2 B.4 2 C.6 D.4【解析】由三视图可知该几何体为图中棱长为4的正方体中的三棱锥P -ABC .由图②可知,最长棱为PC =42+42+22=6.[例3](1)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析 由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S =π×1+π×9+π×(1+3)×232+22=26π. 答案:26π(2)一个几何体的三视图如图所示,则该几何体的表面积为________.解析 如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分.∴S 表=(4×1+3×4+3×1)×2+2π×1×1-2π×12=38. 答案 38 (3)(2015·课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( ) A.1 B.2 C.4 D.8解析 B 由题意知,该几何体是由半个圆柱与半个球组合得到的.则表面积S =2πr 2+2×12πr 2+4r 2+2πr 2=5πr 2+4r 2=20π+16,∴r =2.(4)[2014重庆理]某几何体的三视图如下图所示,则该几何体的表面积为( ) A.54 B.60 C.66 D.72俯视图左视图正视图3245【答案】B【解析】在长方体中构造几何体'''ABC A B C-,如右图所示,4,'5,'2,3AB A A B B AC====,经检验该几何体的三视图满足题设条件.其表面积'''''''''ABC ACC A ABB A BCC B A B CS S S S S S∆∆=++++,3515615146022=++++=,故选择BC'B'A'CBA(5)(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ 3B.18+ 3C.21D.18解析A由三视图知,该多面体是由正方体割去两个角后剩下的部分,如图所示,则S=S正方体-2S三棱锥侧+2S三棱锥底=24-2×3×12×1×1+2×34×(2)2=21+ 3.【变式训练】1.(2015·北京西城期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3. 答案:2 3 2.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A.100πB.100π3C.25πD.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π. 3.(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ).A.1B. 2C.2-12D.2+12解析 由俯视图的面积为1可知,该正方体的放置如图所示,当正视图的方向与正方体的侧面垂直时,正视图的面积最小,其值为1,当正视图的方向与正方体的对角面BDD 1B 1或ACC 1A 1垂直时,正视图的面积最大,其值为2,由于正视图的方向不同,因此正视图的面积S ∈[1,2].故选C. 答案 C 4.(2014·陕西)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π. 5.(2013·临沂一模)具有如图所示的正视图和俯视图的几何体中,体积最大的几何体的表面积为( ).A.3B.7+3 2C.72π D .14解析 由正视图和俯视图可知,该几何体可能是四棱柱或者是水平放置的三棱柱,或水平放置的圆柱.由图可知四棱柱的体积最大.四棱柱的高为1,底面边长分别为1,3,所以表面积为2(1×3+1×1+3×1)=14. 答案 D 6.(2015·山东淄博模拟)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A -BCD 的正(主)视图与俯视图如图所示,则其侧(左)视图的面积为( )A.22B.12C.24D.14解析 D 由正(主)视图与俯视图可得三棱锥A -BCD 的一个侧面与底面垂直,其侧(左)视图是直角三角形,且直角边长均为22,所以侧(左)视图的面积为S =12×22×22=14.7.(2016·西安一模)如图,网格纸中的小正方形的边长均为1,图中粗线画出的是一个几何体的三视图,则这个几何体的表面积为( ) A.12(22+32+4) B.12(22+32+8) C.12(22+2+8) D.12(22+22+8)解析 B 根据三视图可知该几何体是底面为直角三角形的三棱锥,其表面积S =12×2×2+12×2×3+12×2×3+12×2×11=12(22+32+8),故选B.8.(2016·课标Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A.20π B .24π C .28π D .32π解析 C S 表=πr 2+2πr ×4+12×2πr ×R =4π+16π+2π22+(23)2=28π.9 .(2013重庆文)某几何体的三视图如图所示,则该几何体的表面积为( ) A.180 B.200 C.220 D.240【答案】D10.(2014浙江理)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( ) A.90cm 2 B.129cm 2 C.132cm 2 D.138cm 2【答案】D【解析】由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4, ∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm 2). 11.(2017北京理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ). A.3 2 B.2 3 C.2 2 D.2解析 几何体四棱锥如图所示,最长棱为正方体的体对角线,即22222223l =++=.故选B.12.(2017全国1理)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ). A.10 B.12 C.14 D.16解析 由三视图可画出立体图,如图所示,该多面体只有两个相同的梯形的面, ()24226S =+⨯÷=梯,6212S =⨯=全梯.故选B.题型4:空间几何体的三视图与体积 【典型例题】 [例1](1)(2013·陕西)某几何体的三视图如图所示,则其体积为________.解析 该几何体为一个半圆锥,故其体积为V =13×12×π×12×22=π3.答案 π3(2)(2015·惠州二调)一个几何体的三视图如图所示,其中俯视图与左(侧)视图均为半径是2的圆,则这个几何体的体积是( )A.16πB.14πC.12πD.8π解析:选D 由三视图可知,该几何体为一个球切去四分之一个球后剩余的部分,由于球的 (3)(2013·广东)某四棱台的三视图如图所示,则四棱台的体积是( ).A.4B.143C.163D.6解析 由四棱台的三视图可知该四棱台的上底面是边长为1的正方形;下底面是边长为2的正方形,高为2.由棱台的体积公式可知该四棱台的体积V =13(12+12×22+22)×2=143,故选B.答案 B (4)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析 [考向3]【解析】 由题可知锥体的高为1,底面积为12×23×1=3,∴V 锥=13×3×1=33.【答案】 33[例2](1)(2015·浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403cm 3解析 C 由题意得,该几何体由一个正方体与一个正四棱锥组合而成,所以体积V =23+13×22×2=323.(2)(2017山东理)由一个长方体和两个14圆柱体构成的几何体的三视图如图所示,则该几何体的体积为 .解析 该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+.(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ). A.π2+1 B.π2+3 C.3π2+1 D.3π2+3解析 由三视图可知,直观图是由半个圆锥与一个三棱锥构成,半圆锥体积为()2111=13232S π⨯π⨯⨯=,三棱锥体积为211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+.故选A.(4)(2013·课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ). A.16+8π B .8+8π C.16+16π D .8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2、高为4.所以V =2×2×4+12×22×π×4=16+8π.故选A.(5)(2015·广东中山模拟)已知一个几何体的三视图如图所示,则该几何体的体积(单位:cm 3)为________.解析 π+33[由三视图,该组合体上部是一个三棱锥,下部是一圆柱由图中数据知V 圆柱=π×12×1=π三棱锥垂直于底面的侧面是边长为2的等边三角形,且边长是2,故其高即为三棱锥的高,高为3,故棱锥高为3由于棱锥底面为一等腰直角三角形,且斜边长为2,故两直角边长都是2,底面三角形的面积是12×2×2=1, 故V 棱锥=13×1×3=33,故该几何体的体积是π+33.][例3](1)(2015·山东实验模拟)设下图是某几何体的三视图,则该几何体的体积为( ) A.2π3 B.8-π3 C.8-2π D . 8-2π3解析D[由三视图可知,几何体为正方体内挖去一个圆锥,所以该几何体的体积为V 正方体-V 锥=23-13(π×12×2)=8-23π.](2)(2013·辽宁)某几何体的三视图如图所示,则该几何体的体积是________.解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,所以几何体的体积为16π-16. (3)(2015·河南天一联考)某几何体的三视图如图所示,则该几何体的体积为( ) A.12+π B .8+π C .12-π D .6-π解析 C [由三视图可知,原几何体是底面边长为2的正方形,高为3的棱柱,里面挖去一个半径为1的球,所以所求几何体的体积为12-π,故选C.](4)(2017全国2理)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ). A.90π B .63π C.42π D .36π解析 该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半,如图所示.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上.故选B.466(5)(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为( )A.8π+16B.8π-16C.8π+8D.16π-8解析:选B 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.[例4](1)(2014·福州模拟)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为 ( ).A.312B.34C.612D.64解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. (2)(2012·山东)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.。

第01讲 空间几何体的结构特征、表面积与体积(六大题型)(课件)

第01讲 空间几何体的结构特征、表面积与体积(六大题型)(课件)
组合体,其口径为15.5cm,足径为9.2cm,顶部到底部的高为4.1cm,底部圆柱高为0.7cm,则该仿钧玫瑰紫釉盘圆台部分的侧面积约为(

(参考数据:π的值取3, 21.4825 ≈ 4.6)
A.143.1cm2
B.151.53cm2
C.155.42cm2
D.170.43cm2
【答案】D
【解析】设该圆台的母线长为l,高为h,两底面圆的半
4 3
πR
3
V=______
常用结论
1.与体积有关的几个结论
(1)一个组合体的体积等于它的各部分体积的和或差.
(2)底面面积及高都相等的两个同类几何体的体积相等.
2
2.直观图与原平面图形面积间的关系:S 直观图= 4 S 原图形.
题型一:空间几何体的结构特征
【例1】(2023·安徽·高三校联考阶段练习)已知几何体,“有两个面平行,其余各面都是平行四边形”是“几何体为棱柱”
题型一:空间几何体的结构特征
【对点训练1】(2023·新疆·统考模拟预测)下列命题中正确的是(

A.有两个平面平行,其余各面都是平行四边形的几何体是棱柱.
B.各个面都是三角形的几何体是三棱锥.
C.夹在圆柱的两个平行截面间的几何体还是一个旋转体.
D.圆锥的顶点与底面圆周上任意一点的连线都是母线.
【答案】D
的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
【答案】B
【解析】由棱柱定义知棱柱有两个面平行,其余各面都
是平行四边形,故满足必要性;
但有两个面平行,其余各面都是平行四边形的几何体不
一定是棱柱,
例如两个底面全等的斜棱柱拼接的几何体不是棱柱,如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第38讲 空间几何体的结构特征及表面积与体积(达标检测)
[A 组]—应知应会
1.(2020春•道里区校级期末)下列说法正确的是( )
A .通过圆台侧面上一点可以做出无数条母线
B .直角三角形绕其一边所在直线旋转一周得到的几何体是圆锥
C .圆柱的上底面下底面互相平行
D .五棱锥只有五条棱
【分析】对于A ,通过圆台侧面上一点只能做出1条母线;对于B ,直角三角形绕其绕其斜边旋转一周,得到的是两个圆锥的组合体;对于C ,由圆柱的定义得圆柱的上底面、下底面互相平行;对于D ,五棱锥有十条棱.
【解答】解:对于A ,通过圆台侧面上一点只能做出1条母线,故A 错误;
对于B ,直角三角形绕其直角边所在直线旋转一周得到的几何体是圆锥,
绕其斜边旋转一周,得到的是两个圆锥的组合体,故B 错误;
对于C ,由圆柱的定义得圆柱的上底面、下底面互相平行,故C 正确;
对于D ,五棱锥有十条棱,故D 错误.
故选:C .
2.(2020春•秦淮区期末)底面边长为2,高为1的正三棱柱的体积是( )
A
B .1 C
D .13
【分析】先求出正三棱柱的底面积,由此能求出正三棱柱的体积.
【解答】解:底面边长为2,高为1的正三棱柱的体积是:
122sin 6012
V SH ==⨯⨯︒⨯= 故选:A .
3.(2020春•苏州期末)已知圆锥的底面半径为4,母线长为5,则该圆锥的侧面积为( )
A .16π
B .20π
C .36π
D .40π
【分析】根据圆锥的侧面积公式计算即可.
【解答】解:由圆锥的底面半径为4,母线长为5,
则圆锥的侧面积为4520S ππ=⨯⨯=侧.。

相关文档
最新文档