人教版八年级上册数学11章《三角形》培优训练(无答案)
人教版数学八年级上册第11章三角形培优测试题含答案
![人教版数学八年级上册第11章三角形培优测试题含答案](https://img.taocdn.com/s3/m/62142147bed5b9f3f90f1c50.png)
第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO 等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB 的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC 的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠A CD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
人教版八年级上册数学 第11章 三角形 优等生辅导提升训练
![人教版八年级上册数学 第11章 三角形 优等生辅导提升训练](https://img.taocdn.com/s3/m/b1cfbd1515791711cc7931b765ce0508763275b1.png)
人教版八年级上册数学第11章三角形优等生辅导提升训练1.(1)如图1我们称之为“8”字形,请直接写出∠A,∠B,∠C,∠D之间的数量关系;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=度;(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.2.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB.将证明过程补充完整.证明:∵DG⊥BC,AC⊥BC∴∠DGB=∠ACB=90°()∴DG∥AC()∴∠2=∠DCA()∵∠1=∠2()∴∠1=∠DCA()∴EF∥CD()∴∠AEF=∠ADC()∵EF⊥AB∴∠AEF=90°()∴∠ADC=90°,即CD⊥AB.3.如图,△ABC的角平分线BD、CE相交于点P.(1)若∠ABC=50°,∠ACB=70°,则∠A=°;(2)试探究∠DPC与∠A之间的数量关系并说明理由.4.如图,已知D是△ABC边BC延长线上一点,DF交AC于点E,∠A=35°,∠ACD=83°.(1)求∠B的度数;(2)若∠D=42°,求∠AFE的度数.5.四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=50°,∠C=70°,则∠DOE=°;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.6.如图,在△ABC中,∠C>∠B,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)探究∠DAE、∠C、∠B有怎样的数量关系,直接写出答案,不用证明.7.已知:如图,∠MON=90°,点A、B分别在射线OM、ON上移动(不与点O重合),AC平分∠MAB,AC的反向延长线与∠ABO的平分线相交于点D.(1)当∠ABO=70°时、∠D的度数是多少?(2)随着点A、B的移动,试问∠D的大小是否变化?请说出你的理由.8.在△ABC中,∠C=80°,点D、E分别是△ABC边AC、BC(不与A、B、C重合)上的点,(P与D、E不在同一条直线上),令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α,(1)若点P在边AB上,如图(1)且∠α=40°,则∠1+∠2=°;(2)若点P在△ABC的外部,如图(2)则∠α,∠1,∠2之间有何关系?(3)若点P在△ABC边BA的延长线上运动(CD>CE),直接写出∠α,∠1,∠2之间的关系.9.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°.(1)求∠DAC的度数;(2)求∠AED的度数.10.如图,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°.(1)∠ABC+∠ACB=.(2)∠ABX+∠ACX=.(说明理由)11.已知AD、AE分别是△ABC的高和角平分线,(1)如图所示,且∠B=77°,∠C=32°,求∠DAE;(2)若∠B=α,∠C=β(α>β)试用α,β表示∠DAE;(3)若∠B=α,∠C=β(α<β)则∠DAE=(直接填结果,无需说理).12.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,求∠BDA′的度数.13.在活动课上我们曾经探究过三角形内角和等于180°,四边形内角和等于360°,五边形内角和等于540°,…,请同学们仔细读题,看图,解决下面的问题:(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果).(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为(直接写出结果).②如图③,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.14.如图,(1)求证:∠ABC=∠A+∠C+∠ADC;(2)若∠A=52°,∠C=20°,BE、DE分别平分∠ABC和∠ADC,交于点E,求∠E的度数.15.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P,∠BDC =58°,求∠BAP的度数.16.(1)如图1,在△ABC纸片中,点D在边AC上,点E在边AB上,沿DE折叠,当点A落在CD上时,∠DAE与∠1之间有一种数量关系保持不变,请找出这种数量关系并说明理由;(2)若折成图2时,即点A落在△ABC内时,请找出∠DAE与∠1,∠2之间的关系式并说明理由.17.直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧!【问题探究】(1)如图1,请直接写出∠A+∠B+∠C+∠D+∠E=;(2)将图1变形为图2,∠A+∠DBE+∠C+∠D+∠E的结果如何?请写出证明过程;(3)将图1变形为图3,则∠A+∠B+∠C+∠D+∠E的结果如何?请写出证明过程.【变式拓展】(4)将图3变形为图4,已知∠BGF=160°,那么∠A+∠B+∠C+∠D+∠E+∠F的度数是.18.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=30°,则∠1+∠2=°;(2)若点P在AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC之外,如图(4)所示,则∠α、∠1、∠2的关系为:.19.如图,在△ABC中,AD是△ABC的高,AE、BF是△ABC角平分线,AE与BF相交于点O,∠BOA=125°,求∠DAC的度数.20.琪琪在学习中遇到这样一个问题:如图1,在△ABC中,∠C>∠B,AE平分∠BAC,AD⊥BC于D.猜想∠B、∠C、∠EAD的数量关系,说明理由.(1)琪琪阅读题目后,没有发现数量关系与解题思路.于是尝试代入∠B、∠C的值求∠EAD值,得到下面几组对应值:∠B/度10 30 30 20 20∠C/度70 70 60 60 80∠EAD/度30 20 15 a 30上表中a=.(2)猜想∠B、∠C、∠EAD的数量关系,说明理由.(3)琪琪突发奇想,交换B、C两个字母位置,如图2,过EA的延长线是一点F作FD⊥BC交CB的延长线于D,当∠B=80°、∠C=20°时,∠F度数为°.。
人教版八年级数学上册 第十一章 三角形 11.3.2 多边形的内角和 同步课时练习题 无答案
![人教版八年级数学上册 第十一章 三角形 11.3.2 多边形的内角和 同步课时练习题 无答案](https://img.taocdn.com/s3/m/a7a833c21ed9ad51f11df246.png)
第十一章三角形 11.3.2 多边形的内角和1. 下列度数中,不可能是某个多边形的内角和的是( )A.180B.270C.2700D.720°2. 一个多边形的内角和不可能是()A.1800°B.540 °C.720 °D.810 °3.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360°B.540 °C.720 °D.900 °4. 若一个多边形的内角和等于720,则这个多边形的边数是________.5.五边形的内角和为 ,十边形的内角和为 .6. 1.若一个正多边形的内角是120 °,那么这是正____边形.7. 已知多边形的每个外角都是45°,则这个多边形是______边形.8. 一个正多边形的内角和为720°,则这个正多边形的每一个内角等于______.9. 如图所示,小华从点A出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地点A时,走的路程一共是_____米.10. 判断正误.(1)当多边形边数增加时,它的内角和也随着增加.( )(2)当多边形边数增加时,它的外角和也随着增加.( )(3)三角形的外角和与八边形的外角和相等. ( )11. 三角形的内角和是多少?正方形,长方形的内角和是多少?12. 从五边形的一个顶点出发可以引______条对角线,它们将五边形分成_______个三角形,那么五边形的内角和等于多少度?13. 从n边形的一个顶点出发可以引几条对角线?它们将n边形分成几个三角形?那么n边形的内角和等于多少度?多边形的边数图形分割出的三角形个数多边形的内角和456……………………n14. 如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.15. 如图,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE∥DF,求证:△DCF为直角三角形.16. 一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?17. 如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.(1) 任意一个外角和它相邻的内角有什么关系?(2) 五个外角加上它们分别相邻的五个内角和是多少?18. 在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和.n边形的外角和又是多少呢?19. 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数.20. 如图,在正五边形ABCDE中,连接BE,求∠BED的度数.21. 一个多边形的内角和为1800°,截去一个角后,求得到的多边形的内角和.22. 如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.。
初中数学人教版八年级上册第十一章《三角形》练习册(含答案)11.2 与三角形有关的角
![初中数学人教版八年级上册第十一章《三角形》练习册(含答案)11.2 与三角形有关的角](https://img.taocdn.com/s3/m/0840a7a7bcd126fff6050b51.png)
初中数学人教版八年级上册实用资料11.2 与三角形有关的角基础巩固1.(题型三角度a)如图11-2-1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()图11-2-1A.80°B.50°C.30°D.20°2.(题型一)如图11-2-2,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()图11-2-2A.40°B.60°C.80°D.120°3.(题型一)若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.(题型一)如图11-2-3,一根直尺EF压在三角形30°的角∠BAC上,与两边AC,AB分别交于点M,N,那么∠CME+∠BNF=()图11-2-3A.135°B.150°C.180°D.不能确定5.(题型一)如图11-2-4,在△ABC中,∠ABD=∠DBE=∠EBC,∠ACD=∠DCE=∠ECB,若∠BEC=145°,则∠BDC=()图11-2-4A.100°B.105°C.110°D.115°6.(题型三角度a)将一副直角三角板,按图11-2-5叠放在一起,则图中α的度数是.图11-2-57.(题型一)如图11-2-6,EF∥BC,AC平分∠BAF,∠B=80°,则∠C的度数是.图11-2-68.(知识点2)如图11-2-7,在Rt△ACB中,∠ACB=90°,CD⊥AB,则图中互余的角有对.图11-2-79.(知识点3)如图11-2-8,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2= °.图11-2-810.(知识点2)如图11-2-9,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°.求∠DAE的度数.图11-2-911.(题型二角度b)如图11-2-10,∠1,∠2,∠3的大小关系是.图11-2-1012.(题型一)(1)如图11-2-11(1),有一块直角三角板XYZ放置在△ABC下,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.在△ABC中,∠A=30°,则∠ABC+∠ACB=度,∠XBC+∠XCB=度.(2)如图11-2-11(2),改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过点B,C,那么∠ABX+∠ACX的大小是否发生变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.(1)(2)图11-2-1113.(题型一、二)(1)如图11-2-12,在△ABC中,AD⊥BC于点D,AE平分∠BAC,且∠C大于∠B.求证:∠EAD=12(∠C-∠B).(2)若把问题(1)中的“AD⊥BC于点D”改为“点F为EA上一点且FD⊥BC于点D”,画出新的图形,并说明∠EFD=12(∠C-∠B).(3)若把问题(2)中的“F为EA上一点”改为“F为AE延长线上的一点”,则问题(2)中的结论成立吗?说明你的理由.图11-2-1214.(题型一)如图11-2-13,在Rt△ABC中,∠C=90°,点D,E分别是△ABC边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=α.(注:四边形的内角和是360°)(1)若点P在线段AB上,如图11-2-13(1),且α=50°,则∠1+∠2= .(2)若点P在边AB上运动,如图11-2-13(2),则α,∠1,∠2之间的关系为 .(1)(2)(3)(4)图11-2-13(3)若点P运动到边AB的延长线上,图11-2-13(3),则α,∠1,∠2之间有何关系?请写出你的猜想,并说明理由.(4)若点P运动到△ABC外,如图11-2-13(4),则α,∠1,∠2之间的关系为.答案基础巩固1. D 解析:如图D11-2-1,∵BC∥DE,∴∠CBD=∠2=50°.又∵∠CB D为△ABC的外角,∴∠CBD=∠1+∠3,即∠3=∠CBD-∠1=50°-30°=20°.故选D.图D11-2-12. B 解析:∵DE∥BC,∠B=40°,∴∠A DE=∠B=40°.又∵∠A=80°,∴在△ADE中,∠AED=180°-∠A-∠A DE=180°-80°-40°=60°(三角形的内角和定理).故选B.3. B 解析:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意,得∠1=∠3-∠2,∴∠1+∠2=∠3.又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°,∴这个三角形是直角三角形.故选B.4. B 解析:∵∠A+∠AMN+∠ANM=180°,∠A=30°,∴∠AMN+∠ANM=180°-∠A=180°-30°=150°.∵∠AMN=∠CME,∠ANM=∠BNF,∴∠CME+∠BNF=∠AMN+∠ANM=150°.故选B.5. C 解析:在△BCE中,∵∠BEC=145°,∴∠EBC+∠ECB=180°-145°=35°.∵∠DBE=∠EBC,∠DCE=∠ECB,∴∠DBC+∠DCB=2(∠EBC+∠ECB)=2×35°=70°.在△BCD中,∠BDC=180°-(∠DBC+∠DCB)=180°-70°=110°.故选C. 6. 75°解析:如图D11-2-2,∠1=90°-60°=30°,所以α=45°+∠1=45°+30°=75°.图D11-2-2 图D11-2-37. 50°解析:∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAB=12∠BAF=50°.∴∠C=180°-∠B-∠CAB=50°.8. 4 解析:由直角三角形的两个锐角互余,得∠ACD+∠A=90°,∠BCD+∠B=∠90°,∠A+∠B=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°.∴互余的角有4对.9. 220解析:如图D11-2-3,∠1+∠2=(∠A+∠4)+(∠A+∠3)=∠A+(∠A+∠3+∠4)=∠A+180°.∵∠A=40°,∴∠1+∠2=40°+180°=220°.10. 解:在△ABC中,∠B=40°,∠C=60°,∴∠BAC=80°.∵AE平分∠BAC,∴∠BAE=40°.又∵AD⊥BC,∠B=40°,∴∠BAD=90°-40°=50°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.能力提升11. ∠3>∠1>∠2 解析:如图D11-2-4,∵∠3=∠1+∠5,∴∠3>∠1.∵∠1=∠2+∠4,∴∠1>∠2.∴∠3>∠1>∠2.图D11-2-412. 解:(1)∵∠A=30°,∴∠ABC+∠ACB=180°-∠A=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.13.(1)证明:在Rt△ADE中,∵∠AED+∠DAE=90°,∴∠DAE=90°-∠AED.∵∠AED=180°-∠C-∠CAE,且AE平分∠BAC,∴∠CAE=12∠BAC=12(180°-∠C-∠B).∴∠EAD=90°-180°-∠C-1/2(180°-∠C-∠B)=12(∠C-∠B).(2)解:如图D11-2-5(1),由三角形的内角和定理的推论,得∠FED=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形的内角和定理,得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=12(∠C-∠B).(3)解:成立.理由:如图D11-2-5(2),由三角形的内角和定理的推论,得∠FED=∠AEC=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形的内角和定理,得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=1(∠C-∠B).2(1)(2)图D11-2-514. 解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+α.∵∠C=90°,α=50°,∴∠1+∠2=140°.(2)由(1)得α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)∠1=90°+∠2+α.理由如下:如图D11-2-6(1),∵∠2+α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)如图D11-2-6(2),∵∠PFC=∠DFE,∴α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-α.(1)(2)图D11-2-6。
八年级数学上册 第11章 三角形提高题培优练习(word版 )
![八年级数学上册 第11章 三角形提高题培优练习(word版 )](https://img.taocdn.com/s3/m/7d62c7cf9f3143323968011ca300a6c30c22f11c.png)
八年级数学上册第11章三角形提高题培优练习(word版 )1.在三角形ABC中,E是BC上的一点,且EC=2BE。
D是AC的中点。
设三角形ABC、ADF、BEF的面积分别为S1、S2、S3,且S1=24.求S2-S3的值。
2.在四边形ABCD中,对角线AC⊥BD于O点。
证明S四边形ABCD=1/2AC·BD。
3.已知三角形三边长为15、20、25.求三条高的比。
4.在图中,A、B、C分别是线段A1B、B1C、C1A的中点。
若三角形ABC的面积为1,则三角形A1B1C1的面积为1/4.5.化简|a-b+c|-|a-b-c|=|2c-a-b|。
6.在三角形ABC中,O是内部一点,连接OA、OB、OC,得到三个小三角形。
证明:___<OA+OB+OC<___。
7.在三角形ABC中,∠B=∠C,∠BAD=44,并且∠ADE=∠___。
求∠___的度数。
8.(1) 已知四边形ABCD,证明:∠D=∠A+∠B+∠C。
2) 在四边形ABCD中,BE平分∠ABD,CE平分∠ACD,且∠A=60,∠E=100.求∠D的度数。
9.在三角形ABC中,D为BC上一点,∠1=∠2,∠3=∠4,且∠BAC=124.求∠___的度数。
10.在图中,∠xOy=90,点A、B分别在射线Ox、Oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线交于点C。
问∠___的大小是否发生变化。
11.在图中,∠A=55,∠B=85,将纸片的一角折叠,使点C落在△ABC外,且∠2=25.求∠1的度数。
12.在图中,将△___纸片沿DE折叠,使点A落在四边形BCDE的内部,且∠A=45.求∠1+∠2的度数。
13.在图中,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,且∠___。
求∠CAP的度数。
14.在图中,∠ABC=α,∠ABC和∠ACD的平分线交于点A1,得到∠A1;∠___和∠A1CD的平分线相交于点A2,得到∠A2;……;∠A2015BC和∠A2015CD的平分线相交于点A2016,得到∠A2016.求∠A2016的度数。
人教版八年级数学上册 第11章《三角形 》课堂培优卷
![人教版八年级数学上册 第11章《三角形 》课堂培优卷](https://img.taocdn.com/s3/m/31603af8e2bd960591c67764.png)
故选:C.
5.解:根据三角形的三边关系,得 7﹣3<AC<7+3, 4<AC<10. 故选:B.
6.解:∵α+β+γ=180°,α=2γ, ∴β=180°﹣α﹣γ=180°﹣3γ. ∵α≥β≥γ, ∴γ≤180°﹣3γ≤α, ∴4γ≤180°≤5γ, ∴36°≤γ≤45°, ∴180°﹣3×45°≤180°﹣3γ≤180﹣3×36° ∴45°≤β≤72°. 故选:C.
19.如图,BE、CF 是△ABC 的角平分线,BE、CF 相交于点 O. (1)若∠ABC=50°,∠ACB=60°,求∠BOC 的度数; (2)若∠ABC+∠ACB=100°,求∠B0C 的度数; (3)若∠A=n°,你能否用含 n 的式子表示∠BOC 的度数?若能,请直接写出来;若不 4 / 14
P,且∠APB=40°,则∠CBP 的度数为( ) 2 / 14
A.80°
B.60°
C.40°
中,AB=9,BC=2,周长是偶数,则 AC=
,△ABC 是
三角形.
14.如图所示,BE 平分∠ABC,DE∥BC,若∠AED=40°,∠BEC=110°,则∠ADE=
3.现有两根木棒,其长度分别为 4cm 和 9cm,小明想要在墙壁上钉一个三角形木架,则
可选用木棒的长度为( )
A.4cm
B.5cm
C.9cm
D.13cm
4.一张折叠型方桌子如图甲,其主视图如乙,已知 AO=BO=50cm,CO=DO=30cm,
现将桌子放平,要使桌面 a 距离地面 m 为 40cm 高,则两条桌腿需要叉开的角度∠AOB
度.
15.已知一个多边形的内角和为 540 度,则这个多边形为
边形;如果正多边形的一
【教师卷】初中数学八年级数学上册第十一章《三角形》经典题(培优)
![【教师卷】初中数学八年级数学上册第十一章《三角形》经典题(培优)](https://img.taocdn.com/s3/m/97392b01700abb68a882fb3c.png)
一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°C解析:C【分析】 利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍, 如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答. 3.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.4.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4A【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.5.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.6.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm C解析:C【分析】根据三角形三边关系解答.【详解】A 、∵2+3<6,∴以此三条线段不能组成三角形;B 、3+4<8,∴以此三条线段不能组成三角形;C 、∵5+6>10,∴以此三条线段能组成三角形;D 、∵5+6=11,∴以此三条线段不能组成三角形;故选:C .此题考查三角形的三边关系:三角形两边的和大于第三边.7.下列四个图形中,线段CE是ABC的高的是()A.B.C.D. B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A.CE不垂直AB,故CE不是ABC的高,不符合题意,B.CE是ABC中AB边上的高,符合题意,C.CE不是ABC的高,不符合题意,D.CE不是ABC的高,不符合题意.故选B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.8.下列长度的三条线段,能组成三角形的是()A.3,5,6 B.3,2,1 C.2,2,4 D.3,6,10A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意,故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.9.以下列各组线段为边,能组成三角形的是()A.1,2,3 B.2,3,4 C.2,5,8 D.6,3,3B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 10.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键. 二、填空题11.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.50°【分析】连接BC 根据三角形内角和定理可求得∠DBC +∠DCB 的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数即可求得∠A 的度数【详解】解:连接BC ∵∠BDC =130° 解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.12.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B两处,用仪器探测生命迹象C,已知探测线与地面的夹角分别是30︒和60︒(如∠的度数是_________.图),则C【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.13.七边形的外角和为________.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36 解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;的度14.如图,飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,那么APB数为______°.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P在目标A的正上方飞行员测得目标B的俯角为30°∴∠A=∠CPB=∵CP∥AB∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∠=90︒-∠B=60︒,∴APB故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B的俯角为30°得到∠B=30是解题的关键.15.如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=_____.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.16.如图,ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且21AG GD =::.若12ABC S =△,则图中阴影部分的面积是________. 4【分析】根据三角形的中线把三角形的面积分成相等的两部分知△ABC 的面积即为阴影部分的面积的3倍【详解】解:∵△ABC 的三条中线ADBECF 交于点GAG :GD=2:1∴AE=CE ∴S △CGE=S △A解析:4【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC 的面积即为阴影部分的面积的3倍.【详解】解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,AG :GD=2:1,∴AE=CE ,∴S △CGE =S △AGE =13S △ACF ,S △BGF =S △BGD =13S △BCF , ∵S △ACF =S △BCF =12S △ABC =12×12=6, ∴S △CGE =13S △ACF =13×6=2,S △BGF =13S △BCF =13×6=2, ∴S 阴影=S △CGE +S △BGF =4.故阴影部分的面积为4.故答案为:4.【点睛】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键. 17.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.18.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c 先根据三角形的三边关系确定c 的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c 则7-3<c <7+3即4<c <10因为第三解析:15【分析】记三角形的第三边为c ,先根据三角形的三边关系确定c 的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c ,则7-3<c <7+3,即4<c <10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.19.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当 解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 20.如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.45°【分析】如图作射线BF 与射线BE 根据平行线的性质和三角形的外角性质可得∠ABE+∠EDC =90°然后根据角平分线的定义和三角形的外角性质即可求出答案【详解】解:如图作射线BF 与射线BE ∵AB ∥ 解析:45°【分析】如图,作射线BF 与射线BE ,根据平行线的性质和三角形的外角性质可得∠ABE +∠EDC =90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF 与射线BE ,∵AB ∥CD ,∴∠ABE =∠4,∠1=∠2,∵∠BED =90°,∠BED =∠4+∠EDC ,∴∠ABE +∠EDC =90°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠1+∠3=12∠ABE +12∠EDC =45°, ∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD =45°,故答案为:45°.【点睛】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.三、解答题21.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.解析:(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC ,然后以点C 为圆心,BC 为半径画弧,交射线AC 于点D ,连接BD ;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB 即为所求;②如图,直线BC 即为所求;③如图,射线AC ,点D ,线段BD 即为所求(2)如图,在△BCD 中,BC+CD >BD∴AB BC CD AB BD ++>+在△ABD 中,AB+BD >AD∴AB BC CD AB BD AD ++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.22.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.解析:(1)见解析;(2)图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【分析】(1)根据角平分线的定义可得∠DAF =∠CAE ,再根据等角的余角相等、对顶角相等,可得∠CEF =∠CFE ;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB ═90°,CD ⊥AB ,∴∠DAF +∠AFD =90°,∠CAE +∠CEF =90°,又∵AE 是∠CAB 的角平分线,∴∠DAF =∠CAE ,∴∠AFD =∠CEF ,又∵∠AFD =∠CFE ,∴∠CEF =∠CFE ;(2)∵EG ⊥AB 于点G ,∴∠DAF +∠GEA =90°,由(1)可知∠DAF =∠CAE ,∠CAE +∠CEF =90°,∠CEF =∠CFE =∠DFA ,∴图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义. 23.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.解析:50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线,∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.24.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 解析:(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.25.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.解析:110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE ∥AD ,∴∠ABE=∠BAD=20°,∵BE 平分∠ABC ,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.26.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.解析:30°【分析】由三角形的内角和可求得∠BAC ,则由角平分线定义可求得∠EAC ,三角形的内角和可求得∠DAC 即可.【详解】解:在△ABC 中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B -∠C=180°-20°-80°=80°;∵AE 是△ABC 的角平分线,∴∠EAC=12∠BAC=12×80°=40°; ∵AD 是△ABC 的高∴∠ADC=90°;又∵在△ADC 中,∠C=80°∴∠DAC=180°-∠C -∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC -∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中. 27.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】 解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.28.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.解析:(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.。
第11章 三角形 期末培优训练 2021—2022学年人教版数学八年级上册
![第11章 三角形 期末培优训练 2021—2022学年人教版数学八年级上册](https://img.taocdn.com/s3/m/97550eee6037ee06eff9aef8941ea76e58fa4ad3.png)
第11章三角形期末培优训练一、选择题1.下列各组线段中,首尾相接能组成三角形的是( )A.a=2cm,b=3cm,c=5cmB.a=1cm,b=2cm,c=3.5cmC.a=6.3cm,b=6.3cm,c=12.6cmD.a=6cm,b=8cm,c=13cm2.若等腰三角形的底边长是10,则腰长可以是( )A.1B.3C.5D.73.在△ABC中作AB边上的高,下图中不正确的是( )A.B.C.D.4.已知一个多边形的内角和是900∘,则这个多边形是( )A.五边形B.六边形C.七边形D.八边形5.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60∘,则∠BEC等于( )A.15∘B.30∘C.45∘D.60∘6.如图,已知AB∥DE,∠ABC=130∘,∠CDE=110∘,则∠BCD的度数为( )A.50∘B.60∘C.70∘D.80∘7.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.如图,已知AE,BE分别是∠BAO和∠ABO的角平分线,点A,B在运动的过程中,∠AEB的度数为( )A.120∘B.135∘C.100∘D.无法确定8.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠BAC;③ ∠ADC=90∘−∠ABD;④ BD平分∠ACF.以下结论:① AD∥BC;② ∠BDC=12∠ADC.其中正确结论有( )A.1个B.2个C.3个D.4个二、填空题9.某多边形内角和与外角和相等,则这个多边形的边数为.10.三角形三边的长都是正整数,其中最长边的长为10,则这样的三角形有个.11.如图,一副三角板△AOC和△BCD如图摆放,则∠AOB=.12.如图,四边形ABCD中,∠B=88∘,AE,CF分别平分∠BAD和∠BCD,且AE∥CF,若∠BAE=54∘,则∠D的度数等于.13.如图,在△ABC中,D为三角形内一点,∠A=35∘,∠ABD=20∘,∠ACD=25∘,BD∥CE,则∠DCE=.14.如图,线段AD,BE,CF相交于同一点O,连接AB,CD,EF,则∠A+∠B+∠C+∠D+∠E+∠F=.15.如图,在直角三角形ABC中,∠ACB=90∘,∠A=52∘,D是AB上的点,将△ACD沿直线CD翻折,使点A恰好落在BC上的点E处,则∠BDE=.16.如图,AB⊥BC,DC⊥BC,点E在线段BC上,∠AED=80∘,∠1+∠2=80∘,点M,N分别是BA,CD延长线上的点,且∠FAM=13∠EAM,∠FDN=13∠EDN,则∠F的度数为.三、解答题17.三角形的两条边长分别为2cm和5cm,第三边的长是一个偶数.求第三边的长.18.叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)19.如图锐角△ABC,若∠ABC=40∘,∠ACB=70∘,点D,E在边AB,AC上,CD与BE交于点H.(1) 若BE⊥AC,CD⊥AB,求∠BHC的度数.(2) 若BE,CD平分∠ABC和∠ACB,求∠BHC的度数.20.如图,在四边形ABCD中,连接AC,BD交于点O.试说明:(1) AB+BC+CD+AD>AC+BD;(2) AB+BC+CD+AD<2AC+2BD.21.如图,△ABC中,D为AC上一点,且∠ADB=∠ABC=α(0∘<α<180∘),∠ACB的角平分线分别交BD,BA于点E,F.(1) 若α=90∘,判断∠BEF和∠BFE的大小关系并说明理由.(2) 是否存在α,使∠BEF大于∠BFE?如果存在,求出α的范围,如果不存在,请说明理由.22.如图,在Rt△ABC中,∠ACB=90∘,D是AB上一点,且∠ACD=∠B.(1) 求证:CD⊥AB.(2) 如图②,若∠BAC的平分线分别交BC,CD于点E,F,求证:∠AEC=∠CFE;(3) 如图③,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,S△ABC=36.①求S△CEF−S△ADF的值;②四边形BDFE的面积是.。
人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)
![人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)](https://img.taocdn.com/s3/m/17fe1dfc195f312b3069a508.png)
C A B C DE P 图 ⑴八年级数学(上)几何证明专题练习题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
8.如图所示,已知AD 是∠BAC 的平分线,EF 垂直平分AD 交BC 的延长线于点F ,交AD 于点E ,连接AF ,求证:∠B=∠CAF 。
A B COM N9.如图所示,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接EF ,EF 与AD 交于点G ,求证:AD 垂直平分EF 。
C10.如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB 。
人教版八年级上册第11章 《三角形》培优训练题
![人教版八年级上册第11章 《三角形》培优训练题](https://img.taocdn.com/s3/m/349f0544e009581b6ad9eb82.png)
《三角形》培优训练题一.选择题1.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、123.一个正多边形的内角和为720°,则这个正多边形的每一个外角等于()A.50°B.60°C.70°D.80°4.以线段a=7,b=8,c=9,d=10为边作四边形,可以作()A.1个B.2个C.3个D.无数个5.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形6.如图所示的图形中,三角形共有()A.3个B.4个C.5个D.6个7.数学活动课上,小聪将一副三角板按图中方式叠放,则∠a的度数为()A.30°B.45°C.60°D.75°8.如图将三角形纸板的直角顶点放在直尺的一条边上,∠1=30°,∠2=60°,则∠3为()A.50°B.40°C.30°D.20°9.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()A.63°B.113°C.55°D.62°10.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.720°D.900°11.已知三角形的三边长分别为a、b、c,化简|a+b﹣c|﹣2|a﹣b﹣c|+|a+b+c|得()A.4a﹣2c B.2a﹣2b﹣c C.4b+2c D.2a﹣2b+c12.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为()A.50°B.98°C.75°D.80°二.填空题13.一个正n边形的内角和是它外角和的4倍,则n=.14.如图,△ABC为直角三角形,∠ACB=90°,CD⊥AB于点D,与∠1相等的角是.15.已知直角三角形ABC中,∠A=(2x﹣10)°,∠B=(3x)°,则x=.16.如图,△ADC是45°的直角三角板,△ABE是30°的直角三角板,若CD与BE交于点F,则∠DFB的度数为.三.解答题17.已知:△ABC中,D为BC上一点,满足:∠B=∠C=∠BAD,∠ADC=∠DAC,AE是△ABC 中BC边上的高.(1)补全图形.(2)求∠DAE的度数.18.如图,在△ABC中,∠BAC:∠B:∠C=3:5:7,点D是BC边上一点,点E是AC边上一点,连接AD、DE,若∠1=∠2,∠ADB=102°.(1)求∠1的度数;(2)判断ED与AB的位置关系,并说明理由.19.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC 的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵∠BAE、∠CBF、∠ACD是△ABC的三个外角.∴.∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵.∴∠BAE+∠CBF+∠ACD=360°请把证法1补充完整,并用不同的方法完成证法2.20.数学概念百度百科这样定义凹四边形:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图①,在四边形ABCD中,画出DC所在直线MN,边BC、AD分别在直线MN的两旁,则四边形ABCD就是凹四边形.性质初探(1)在图①所示的凹四边形ABCD中,求证:∠BCD=∠A+∠B+∠D.深入研究(2)如图②,在凹四边形ABCD中,AB与CD所在直线垂直,AD与BC所在直线垂直,∠B、∠D的角平分线相交于点E.①求证:∠A+∠BCD=180°;②随着∠A的变化,∠BED的大小会发生变化吗?如果有变化,请探索∠BED与∠A的数量关系;如果没有变化,请求出∠BED的度数.参考答案一.选择题1.解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选:B.2.解:A、1+2=3,不能摆成三角形;B、2+3<6,不能摆成三角形;C、4+6>8,能摆成三角形;D、5+6<12,不能摆成三角形.故选:C.3.解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n﹣2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故选:B.4.解:四条线段组成的四边形可有无数种变化.故选:D.5.解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.∵截去一个角后边数可能增加1,不变或减少1,∴原多边形的边数为5或6或7.故选:A.6.解:三角形的个数有△BED,△AED,△ADC,△ABD,△ABC,故选:C.7.解:∠DBC=∠ABC﹣∠ABD=90°﹣45°=45°.所以∠α=∠DBC+∠C=45°+30°=75°.故选:D.8.解:∵∠1=30°,∠2=60°,∴∠3=60°﹣30°=30°,故选:C.9.解:∵AB∥CD,∴∠DEC=∠A,∵∠A=180°﹣∠B﹣∠C=180°﹣55°﹣63°=62°,∴∠DEC=62°故选:D.10.解:连接DG,则∠1+∠2=∠F+∠E,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠AGF=∠A+∠B+∠C+∠1+∠2+∠CDE+∠AGF=(5﹣2)×180°=540°.故选:B.11.解:∵△ABC的三边长分别是a、b、c,∴必须满足两边之和大于第三边,两边的差小于第三边,则a+b﹣c>0,a﹣b﹣c<0,a+b+c >0∴|a+b﹣c|﹣2|a﹣b﹣c|+|a+b+c|=a+b﹣c+2a﹣2b﹣2c+a+b+c=4a﹣2c.故选:A.12.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°﹣82°=98°.故选:B.二.填空题(共4小题)13.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故答案为:10.14.解:∵∠ACB=90°,∴∠A+∠B=90°,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠1=90°,∴∠B=∠1,故答案为:∠B.15.解:①若∠C=90°,则∠A+∠B=90°,∴2x﹣10+3x=90,解得x=20,此时∠A=30°,∠B=60°,符合题意;②若∠A=90°,则2x﹣10=90,解得x=50,此时∠B=150°,不符合题意,舍去;③若∠B=90°,则3x=90,解得x=30,此时∠A=50°,符合题意;综上x=20或30,故答案为:20或30.16.解:∵∠ADC=45°,∠B=30°,∴∠DFB=∠ADC﹣∠B=15°,故答案为15°.三.解答题(共4小题)17.解:(1)如图所示,AE即为所求;(2)∵∠ADC=∠B+∠BAD,∠B=∠C=∠BAD,∠ADC=∠DAC,∴∠B+∠C+∠BAD+∠DAC=180°,∴5∠B=180°,解得∠B=36°,∴∠ADC=72°.∵AE⊥BC,∴∠DAE=90°﹣∠ADE=90°﹣72°=18°.18.解:(1)∵∠BAC:∠B:∠C=3:5:7,∴设∠BAC=3x,∠B=5x,∠C=7x,∴3x+5x+7x=180°,解得:x=12°,∴∠BAC=36°,∠B=60°,∠C=84°,∵∠ADB=102°,∴∠1=∠ADB﹣∠C=102°﹣84°=18°;(2)ED∥AB.理由:∵∠1=∠2,∴∠2=18°,∵∠BAC=36°,∴∠BAD=∠BAC﹣∠1=36°﹣18°=18°,∴∠2=∠BAD,∴ED∥AB.19.证明:证法1:∵∠BAE、∠CBF、∠ACD是△ABC的三个外角.∴∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2.∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°.∴∠BAE+∠CBF+∠ACD=360°;证法2:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.故答案为:∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2;∠1+∠2+∠3=180°.20.(1)证明:如图①,延长DC交AB于点E,∵∠BEC是△AED的一个外角,∴∠A+∠D=∠BEC,同理,∠B+∠BEC=∠BCD,∴BCD=∠A+∠B+∠D.(2)①证明:如图②,延长BC、DC分别交AD、BC于点F、G,由题意可知,∠AFC=∠AGC=90°,∵在四边形AFCG中,∠AFC+∠AGC+∠A+∠FCG=360°,∴∠A+∠FCG=180°,∵∠FCG=∠BCD,∴∠A+∠BCD=180°;②解:由(1)可知,在凹四边形ABED中,∠A+∠ABE+∠ADE=∠BED①,同理,在凹四边形EBCD中,∠BED+∠EBC+∠EDC=∠BCD②,∵BE平分∠ABC,∴∠ABE=∠EBC,同理,∠ADE=∠EDC,①﹣②得∠A+∠BCD=2∠BED,由(2)①可知,在凹四边形ABCD中,∠A+∠BCD=180°,∴2∠BED=180°,∴∠BED=90°.。
人教版八年级数学上册第十一章 三角形培优综合训练(含答案)
![人教版八年级数学上册第十一章 三角形培优综合训练(含答案)](https://img.taocdn.com/s3/m/34bbda49f90f76c660371a2d.png)
(1)观察上面每个正多边形中的∠α,填写下表:
正多边形边数 3
4
5
6
……
∠α的度数
______° _____° ______° ______° ……
n _____°
(2)根据规律,计算正八边形中的∠α的度数. (3)是否存在正 n 边形使得∠α=21°?若存在,请求出 n 的值,若不存在,请说明理由
C.30°
D.40°
7.若一个多边形的内角和等于 720°,则这个多边形的边数是( )
A.5
B.6
C.7
D.8
8.如图,在平面上将变长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠
放在一起,则 3 1 2 ( )
A. 30°
B. 24
C. 20
D. 28
9.如图,在四边形 ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点 P,则∠P=( )
A.90°- 1 α 2
B.90°+ 1 α 2
C. 1 α 2
D.360°-α
10.如图,已知直线 AB ,CD 被直线 AC 所截,AB//CD ,E 是平面内任意一点(点 E 不 在直线 AB ,CD ,AC 上),设 BAE ,DCE .下列各式:① ,② , ③180 ,④ 360 , AEC 的度数可能是( )
答案 1.B 2.B 3.A 4.B 5.B 6.A 7.B 8.B 9.C 10.D 11.9 12.20° 13.16 14.360° 15.△ABC 各边的长为 14cm、14cm、5cm. 16.∠EAD=10°,∠BAC=60° 17.这个多边形的边数为 18
180 18.(1)60,45,36,30°, n ;(2)22.5;(3)不存在
《易错题》初中八年级数学上册第十一章《三角形》基础练习(专题培优)
![《易错题》初中八年级数学上册第十一章《三角形》基础练习(专题培优)](https://img.taocdn.com/s3/m/d271d0fbeff9aef8951e0646.png)
一、选择题1.一个多边形的外角和是360°,这个多边形是()A.四边形B.五边形C.六边形D.不确定D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.2.如图,ABC中,BC边上的高是()A.AE B.AD C.CD D.CF B解析:B【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【详解】由图可知,过点A作BC的垂线段AD,则ABC中,BC边上的高是AD.故选:B【点睛】本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是()A.7 B.8 C.9 D.10D解析:D【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和4倍可得方程180(n﹣2)=360×4,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n﹣2)=360×4,解得:n =10,故选:D .【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n ﹣2). 4.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、2+3=5,不能组成三角形,不符合题意;B 、4+6<11,不能组成三角形,不符合题意;C 、5+8>10,能组成三角形,符合题意;D 、4+4=8,不能够组成三角形,不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒C解析:C【分析】 根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线,∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.6.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .12B 解析:B【分析】根据三角形的三边关系定理可得7-4<x <7+4,计算出不等式的解集,再确定x 的值即可.【详解】设第三边长为x ,则7-4<x <7+4,3<x <11,∴A 、C 、D 选项不符合题意.故选:B .【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.7.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒C解析:C【分析】 如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∵135∠=︒,∠B=30°∴∠3=∠1+∠B=35°+30°=65°∵//a b∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40D解析:D【分析】 由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.10.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°D解析:D【分析】 根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题11.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm 是腰时3+3=6不符合三角形三边关系故舍去;当解析:15【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm 是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm 是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm .故它的周长为15cm .故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边 解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.13.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.14.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.5度【分析】由∠A1CD=∠A1+∠A1BC ∠ACD=∠ABC+∠A 而A1BA1C 分别平分∠ABC 和∠ACD 得到∠ACD=2∠A1CD ∠ABC=2∠A1BC 于是有∠A=2∠A1同理可得∠A1=2∠A 解析:5度【分析】由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠A=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此推出∠A=25∠A 5,而∠A=80°,即可求出∠A 5.【详解】解:∵A 1B 、A 1C 分别平分∠ABC 和∠ACD ,∴∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,∵∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,∴∠A=2∠A 1同理可得∠A 1=2∠A 2,即∠A=22∠A 2,…,∴∠A=25∠A 5,∵∠A=80°,∴∠A 5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.15.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA ′D=50°,∠ACD=∠A ′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=12×90°=45°, ∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.17.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____.【分析】先根据多边形的内角度数得出每个外角的度数再根据外角和为360°求出多边形的边数最后根据n边形多角线条数为求解即可【详解】∵一个正多边形的每个内角为108°∴每个外角度数为180°﹣108°=解析:【分析】先根据多边形的内角度数得出每个外角的度数,再根据外角和为360°求出多边形的边数,最后根据n边形多角线条数为(3)2n n-求解即可.【详解】∵一个正多边形的每个内角为108°,∴每个外角度数为180°﹣108°=72°,∴这个正多边形的边数为360°÷72°=5,则这个正多边形所有对角线的条数为(3)2n n-=5(53)2⨯-=5,故答案为:5.【点睛】本题主要考查多边形内角与外角、多边形的对角线,解题的关键是掌握多边形外角和度数为360°,n边形多角线条数为()32n n-.18.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案为:直角解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.∠的度数是______.19.一副分别含有30°和45°的直角三角板,拼成如图,则BFD15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数,再由补角的定义得出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠=︒∠=︒,则3150,222∠=_______.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1 5(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°.故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.三、解答题21.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.解析:∠COD=70°【分析】利用对顶角相等可得∠AOM的度数,再利用角平分线的定义和垂线定义进行计算即可.【详解】解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.【点睛】本题考查了垂线,关键是掌握对顶角相等,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.22.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,请直接写出∠P与∠B、∠C之间存在的数量关系.解析:(1)∠A+∠C=∠B+∠D;(2)①3,4;②110°;③3∠P=∠B+2∠C.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C-∠P=∠P-∠B,即∠P=12(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB),∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB).∴2(∠C-∠P)=∠P-∠B,∴3∠P=∠B+2∠C.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.23.已知一个多边形的内角和比它的外角和的3倍还多180度.(1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.解析:(1)9;(2)27【分析】(1)利用多边形的外角和为360°,根据内角和与外角和的关系及多边形内角和公式求出边数即可得答案;(2)根据多边形对角线条数公式计算即可得答案.【详解】(1)设多边形的边数为n,∵多边形的外角和为360°,内角和比它的外角和的3倍还多180度, ∴此多边形的内角和为360°×3+180°=1260°, ∴(n-2)×180°=1260, 解得:n=9,答:这个多边形的边数是9. (2)由(1)可知此多边形为9边形, ∴从一个顶点可引出对角线9-3=6(条),∴这个多边形的对角线的总条数为6×9÷2=27(条), 答:这个多边形的对角线的总条数为27条. 【点睛】本题考查了多边形的内角与外角、多边形的对角线,掌握多边形的内角和定理、多边形的对角线的条数的计算公式是解题的关键.24.题情景:在三角形纸片内部给定-些点,满足这些点连同三角形三个顶点没有三个点在一条直线上,以这些点为顶点,将纸片剪成-些小三角形纸片,一共能得到几个小三角形?问题解决:甲同学绘制了如下三个图,分别在三角形内部取1个点、2个点,如下图所示:继续探究:在三角形内部取三个点,画出分割的图形,并经过观察计数完成表格:内部点的个数 1 2 3n得到三角形个数35成表格: 内部点的个数 123n得到三角形个数n ,得到三角形的个数是x ,请直接写出x 与m 、n 的关系:______________.解析:继续探究:图见解析,7,21n ;拓展联系:4,6,8,22n +;概括提升:22x n m =+-【分析】继续探究:由题意得出这些三角形的个数是从3开始的连续奇数,据此可得结论; 拓展联系:分别画出图形,得到相关数据,总结规律即可;概括提升:根据n边形的内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成(2m+n-2)个互不重叠的小三角形,据此可得.【详解】解:继续探究:如图,在三角形纸片内部给定1个点,得到3个三角形; 在三角形纸片内部给定2个点,得到5个三角形; 在三角形纸片内部给定3个点,得到7个三角形; 在三角形纸片内部给定n个点,得到(2n+1)个三角形;故填表得:内部点的个数123n得到三角形个数3572n+1拓展联系:如图:在四边形纸片内部给定1个点,得到4个三角形; 在四边形纸片内部给定2个点,得到6个三角形; 在四边形纸片内部给定3个点,得到8个三角形; 在四边形纸片内部给定n个点,得到(2n+2)个三角形;填表如下:内部点的个数123n得到三角形个数468(2n+2)(3)设纸片的边数为m,内部给定1个点,得到m个三角形, 内部给定2个点,得到(m+2)个三角形, 内部给定3个点,得到(m+2×2)个三角形, 内部给定n个点,得到(2n+m-2)个三角形,∴x=2n+n-2.【点睛】此题考查图形的变化规律性;得到三角形的个数与三角形内点的个数的变化规律是解决本题的关键.内一点.25.如图,已知:点P是ABC(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数. 解析:(1)证明见解析;(2)110° 【分析】(1)延长BP 交AC 于D ,根据△PDC 外角的性质知∠BPC >∠1;根据△ABD 外角的性质知∠1>∠A ,所以易证∠BPC >∠A .(2)由三角形内角和定理求出∠ABC +∠ACB =140°,由角平分线和三角形内角和定理即可得出结果. 【详解】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角, ∴∠BPC >∠1,∠1>∠A , ∴∠BPC >∠A ;(2)在△ABC 中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°, ∵PB 平分∠ABC ,PC 平分∠ACB , ∴∠PBC=12∠ABC ,∠PCB=12∠ACB , 在△PBC 中,∠P=180°﹣(∠PBC+∠PCB ) =180°﹣(12∠ABC+12∠ACB ) =180°﹣12(∠ABC+∠ACB ) =180°﹣12×140° =110°. 【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.26.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.解析:110° 【分析】根据平行线的性质和三角形外角的性质即可得到结论. 【详解】 ∵BE ∥AD , ∴∠ABE=∠BAD=20°, ∵BE 平分∠ABC , ∴∠EBC=∠ABE=20°, ∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°. 【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.27.(1)一个多边形的内角和等于1800度,求这个多边形的边数. (2)一个多边形的每一个内角都是108°,求这个多边形的边数. 解析:(1)十二边形;(2)五边形 【分析】(1)n 边形的内角和可以表示成(n−2)•180°,设这个正多边形的边数是n ,就得到方程,从而求出边数;(2)根据多边形外角的性质进行计算即可. 【详解】解:(1)设这个多边形是n 边形,根据题意得:2180(10)80n ⨯︒=︒﹣,解得:12n =.故这个多边形是十二边形; (2)18010872︒-︒=︒, 多边形的边数是:360725÷=. 则这个多边形是五边形. 故这个多边形的边数为5. 【点睛】此题考查了多边形的内角和定理和多边形外角和,注意多边形的内角和为:(n−2)×180°.28.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析 【分析】由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论. 【详解】 ∵AB ∥CD ,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P , ∴∠PEF=12∠BEF ,∠PFE=12∠DFE , ∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°. ∵∠PEF+∠PFE+∠P=180°, ∴∠P=90°. 【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学《三角形》培优训练
一、选择题:
1.下列长度的三条线段中,能组成三角形的是()
A、3,5 ,8
B、8,8,18
C、0.1,0.1,0.1
D、3,40,8
2.若三角形两边长分别是4、5,则周长c的范围是()
A. 1<c<9
B. 9<c<14
C. 10<c<18
D. 无法确定
3.一个多边形内角和是1080°,则这个多边形的边数为()
A 6
B 7
C 8
D 9
4.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形
5.能把一个任意三角形分成面积相等的两部分是()
A.角平分线
B.中线
C.高
D..A、B、C都可以
6.如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于()A、90° B、135° C、270° D、315°
7.如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=50°,则∠BPC等于()
A、90°
B、130°
C、120°
D、115°
8.如图,点O是△ABC内一点,∠A=80°,∠1=15
∠2=40°,则∠BOC等于()
A. 95°
B. 120°
C. 135°
D.无法确定
9.在△ABC中,D,E分别为BC上两点,且BD=DE=EC,
则图中面积相等的三角形有() A.3对 B.4对 C.5对 D.6对
10.如图四个图形中,线段BE是△ABC的高的图是()
第7题图
第6题图
A
D
B E
A B C D (D)
E
C
A
(C)
E C
B
A
(B)
E
C
B
A
(A)
E
B
A
11.三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
12. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500
和200
的三角形一定是钝角三角形,④直角三角形中两锐角的和为900
,其中判断正确的有( )A.1个 B.2个 C.3个 D.4个 二、填空题:
1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= _,∠B= _,这个三角形
是 。
5. 如图2,在△ABC 中,AD ⊥BC 于点D ,BE=ED=DC ,∠1=∠2,则 ○
1AD 是△ABC 的边 上的高,也是 的边BD 上的高, 还是△ABE 的边 上的高;
○
2AD 既是 的边 上的中线,又是边 上的高,还是 的角平分线。
6. 若三角形的两条边长分别为6和4,且第三边的边长为偶数,则第三边长为 。
7.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b-c|=_____________。
8.一个多边形的剪去一个角后,所得新的多边形的内角和为2160度,则原来这个多边形的边数是_____
9.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B ,④∠A=
∠B=∠C 中,能确定△ABC 是直角三角形的条件有 10.如图,∠1+∠2+∠3+∠ 4的值为
11.如图,若∠A =70°,∠ABD =120°,则∠ACE =
第12题图 12.如图,AB ∥CD ,∠BAE=∠DCE=45°,则∠E=
1
2
3
4
第10题图 第11题图 B
E
A
C D
图2
C
D E
三、解答下列各题
1.如图直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°
,求∠A和∠D。
(7分)
2.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,
CD⊥AB于D,DF⊥CE于F,求∠CDF的度数。
3. 如图在△ABC,AD是高线,AE、BF是角平分线,它们相交于点O,∠BAC=50°,
∠C=70°,求∠DAC与∠BOA的度数。
4 如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,
交AB于E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
5. 如图,在△ABC中,∠C=88°,外角∠EAB,
∠ABF的平分线AD、BD相交于点D,求∠D的度数.
D
A
E
B
F E
C B
A
D
C
A
B
D
E
F
A B
C D
O
G
F
E
D
A
C 6.如图:∠AC
D 是△ABC 的外角,B
E 平分∠ABC ,CE 平分∠ACD , 且BE 、CE 交于点E 。
求证:∠E =1
2
∠A .
★7.如图、四边形ABCD 中,∠A =∠C =90°,BE 、CF 分别是∠B 、∠D 的平分线. (1)∠1与∠2有何关系,为什么? (2)BE 与DF 有何关系?请说明理由.
★★8.如图,∠ECF =900
,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与 ∠CAB 的外角平分线AG 所在的直线交于一点D ,
(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)
(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变, (1)中结论还成立吗?说说你的理由。
4
3
2
1
E
D
C
B
A
3
2
1F
E
D
C
B A。