福建省福州市2017-2018学年第一学期九年级期末质量检测数学试卷(WORD版)

合集下载

九年级(上)期末数学试卷(解析版) (4)

九年级(上)期末数学试卷(解析版) (4)

九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.方程x(x﹣2)=0的解是()A.x=0 B.x=2 C.x=0或x=﹣2 D.x=0或x=22.下列事件中是必然事件的是()A.实心铁球投入水中会沉入水底B.某投篮高手投篮一次就投中C.打开电视机,正在播放足球比赛D.抛掷一枚硬币,落地后正面朝上3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.若两个相似三角形的周长之比是1:2,则它们的面积之比是()A.1:2 B.1:C.2:1 D.1:46.将抛物线y=x2向左平移2个单位,再向下平移3个单位,则得到的抛物线解析式是()A.y=(x﹣2)2﹣3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x+2)2+37.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)2=256 D.256(1﹣2x)2=289 8.如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴,垂足为B,将△ABO 绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),则点A′的坐标是()A.(2,0)B.(2,﹣1)C.(﹣2,1)D.(﹣1,﹣2)9.已知m<0,则函数y=的图象大致是()A.B.C.D.10.如图,圆内接四边形ABCD,AB=3,∠C=135°,若AB⊥BD,则圆的直径是()A.6 B.5 C.3D.311.已知Rt△ABC的一条直角边AB=8cm,另一条直角边BC=6cm,以AB为轴将Rt△ABC旋转一周,所得到的圆锥的侧面积是()A.120πcm2B.60πcm2C.160πcm2D.80πcm212.已知关于x的方程只有一个实数根,则实数a的取值范围是()A.a>0 B.a<0 C.a≠0 D.a为一切实数二、填空题(共6小题,每小题4分,满分24分)13.已知一元二次方程x2﹣x﹣c=0有一个根为2,则常数c的值是.14.投掷一枚质地均匀的骰子,向上一面的点数大于4的概率是.15.点(﹣2,1)关于原点对称的点的坐标为.16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为20m,那么这根旗杆的高度是m.17.如图所示,一个半径为1的圆内切于一个圆心角为60°的扇形,则扇形的弧长是.18.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是.三、解答题(共9小题,满分90分)19.已知关于x的一元二次方程x2+x+a=0有两个相等的实数根,求a的值.20.解方程:x2﹣2x=1.21.如图,正方形的边长为2,边OA,OC分别在x轴与y轴上,反比例函数y=(k为常数,k≠0)的图象经过正方形的中心D.(1)直接写出点D的坐标;(2)求反比例函数的解析式.22.一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.23.如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.24.某商场销售一种笔记本,进价为每本10元,试营销阶段发现:当销售单价为12元时,每天可卖出100本.如调整价格,每涨价1元,每天要少卖出10本.(1)写出该商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>10);(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.25.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明DE是⊙O的切线;(2)若OA=,CE=1,求△ABC的面积.26.如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).(1)用含t的代数式表示线段PC的长是;(2)当△PCQ为等腰三角形时,求t的值;(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.27.如图,已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H.(1)求A,B两点的坐标;(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;(3)以OB为边最第四象限内作等边△OBM.设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值.2017-2018学年福建省福州市长乐市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.方程x(x﹣2)=0的解是()A.x=0 B.x=2 C.x=0或x=﹣2 D.x=0或x=2【考点】解一元二次方程-因式分解法.【分析】原方程已化为了方程左边为两个一次因式的乘积,方程的右边为0的形式;可令每一个一次因式为零,得到两个一元一次方程,从而求出原方程的解.【解答】解:由题意,得:x=0或x﹣2=0,解得x=0或x=2;故选D.【点评】在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.2.下列事件中是必然事件的是()A.实心铁球投入水中会沉入水底B.某投篮高手投篮一次就投中C.打开电视机,正在播放足球比赛D.抛掷一枚硬币,落地后正面朝上【考点】随机事件.【分析】根据理解必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:实心铁球投入水中会沉入水底是必然事件,A正确;某投篮高手投篮一次就投中是随机事件,B错误;打开电视机,正在播放足球比赛是随机事件,C错误;抛掷一枚硬币,落地后正面朝上是随机事件,D错误,故选:A.【点评】本题考查的是理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°【考点】圆周角定理.【专题】探究型.【分析】直接根据圆周角定理进行解答即可.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.【点评】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.若两个相似三角形的周长之比是1:2,则它们的面积之比是()A.1:2 B.1:C.2:1 D.1:4【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的周长之比是1:2,∴两个相似三角形的相似比是1:2,∴它们的面积之比是:1:4,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.6.将抛物线y=x2向左平移2个单位,再向下平移3个单位,则得到的抛物线解析式是()A.y=(x﹣2)2﹣3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3 D.y=(x+2)2+3【考点】二次函数图象与几何变换.【分析】抛物线y=x2的顶点坐标为(0,0),向左平移2个单位,再向下平移3个单位,所得的抛物线的顶点坐标为(﹣2,﹣3),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,﹣3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2﹣3.故选:C.【点评】本题考查了二次函数图象与几何变换,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.7.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)2=256 D.256(1﹣2x)2=289 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题进行计算,如果设平均每次降价的百分率为x,可以用x表示两次降价后的售价,然后根据已知条件列出方程.【解答】解:根据题意可得两次降价后售价为289(1﹣x)2,∴方程为289(1﹣x)2=256.故选答:A.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a 是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.本题的主要错误是有部分学生没有仔细审题,把答案错看成B.8.如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴,垂足为B,将△ABO 绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),则点A′的坐标是()A.(2,0)B.(2,﹣1)C.(﹣2,1)D.(﹣1,﹣2)【考点】反比例函数与一次函数的交点问题;坐标与图形变化-旋转.【专题】计算题.【分析】通过解方程组可得A(1,2),则AB=2,OB=1,再根据旋转的性质得AB=A′B′=2,OB=OB′=1,∠A′B′O=∠ABO=90°,∠BOB′=90°,所以点B′在y轴的正半轴上,A′B′⊥y轴,然后利用第二象限点的坐标特征写出A′点的坐标.【解答】解:解方程组得或,则A(1,2),∵AB⊥x轴,∴B(1,0),∴AB=2,OB=1,∵△ABO绕点O逆时针旋转90°,得到△A′B′O(点A对应点A′),如图,∴AB=A′B′=2,OB=OB′=1,∠A′B′O=∠ABO=90°,∠BOB′=90°,∴点B′在y轴的正半轴上,A′B′⊥y轴,∴A′点的坐标为(﹣2,1).故选C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了旋转的性质.9.已知m<0,则函数y=的图象大致是()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数的性质,分别分析x>0和x<0时图象所在象限.【解答】解:当x>0时,y==,∵m<0,∴图象在第四象限;当x<0时,y==﹣,∵m<0,∴﹣m>0,∴图象在第三象限;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.10.如图,圆内接四边形ABCD,AB=3,∠C=135°,若AB⊥BD,则圆的直径是()A.6 B.5 C.3D.3【考点】圆内接四边形的性质;等腰直角三角形;圆周角定理.【分析】根据圆内接四边形的性质求出∠A,根据等腰直角三角形的性质和圆周角定理解得即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠C+∠A=180°,∴∠A=45°,又AB⊥BD,∴△ABC为等腰直角三角形,∴AD=AB=3,∵AB⊥BD,∴线段AD为圆的直径,∴圆的直径为3,故选:D.【点评】本题考查的是圆内接四边形的性质、等腰直角三角形的性质和圆周角定理的应用,掌握相关的定理、灵活运用性质是解题的关键.11.已知Rt△ABC的一条直角边AB=8cm,另一条直角边BC=6cm,以AB为轴将Rt△ABC旋转一周,所得到的圆锥的侧面积是()A.120πcm2B.60πcm2C.160πcm2D.80πcm2【考点】圆锥的计算.【分析】根据勾股定理求出Rt△ABC的斜边长,根据题意求出圆锥的底面周长,根据扇形的面积公式计算即可.【解答】解:∵Rt△ABC的一条直角边AB=8cm,另一条直角边BC=6cm,∴斜边AC==10cm,圆锥的底面周长为:2π×6=12πcm,则圆锥的侧面积为:×12π×10=60πcm2.故选:B.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.已知关于x的方程只有一个实数根,则实数a的取值范围是()A.a>0 B.a<0 C.a≠0 D.a为一切实数【考点】二次函数的图象;反比例函数的图象.【分析】方程只有一个实数根,则函数y=和函数y=x2﹣2x+3只有一个交点,根据二次函数所处的象限,即可确定出a的范围.【解答】解:∵方程只有一个实数根,∴函数y=和函数y=x2﹣2x+3只有一个交点,∵函数y=x2﹣2x+3=(x﹣1)2+2,开口向上,对称轴x=1,顶点为(1,2),抛物线交y轴的正半轴,∴反比例函数y=应该在一、三象限,∴a>0,故选A.【点评】本题考查了二次函数的图象和反比例函数的图象,确定二次函数的图象所处的位置是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.已知一元二次方程x2﹣x﹣c=0有一个根为2,则常数c的值是2.【考点】一元二次方程的解.【分析】把x=2代入方程x2﹣x﹣c=0,得出一个关于c的方程,求出方程的解即可.【解答】解:把x=2代入方程x2﹣x﹣c=0得:4﹣2﹣c=0,解得:c=2,故答案为:2.【点评】本题考查了解一元一次方程,一元二次方程的解得应用,能得出关于c的方程是解此题的关键.14.投掷一枚质地均匀的骰子,向上一面的点数大于4的概率是.【考点】概率公式.【分析】由于一枚质地均匀的正方体骰子,骰子向上的一面点数可能为1、2、3、4、5、6,共有6种可能,大于4的点数有5、6,则根据概率公式可计算出骰子向上的一面点数大于4的概率.【解答】解:掷一枚质地均匀的正方体骰子,骰子向上的一面点数共有6种可能,而只有出现点数为5、6才大于4,所以这个骰子向上的一面点数大于4的概率是=.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.15.点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).【考点】关于原点对称的点的坐标.【专题】计算题.【分析】根据点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b)即可得到点(﹣2,1)关于原点对称的点的坐标.【解答】解:点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).故答案为(2,﹣1).【点评】本题考查了关于原点对称的点的坐标特点:点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b).16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为20m,那么这根旗杆的高度是12m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为xm,由题意得,=,解得:x=12.故答案为:12.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.17.如图所示,一个半径为1的圆内切于一个圆心角为60°的扇形,则扇形的弧长是π.【考点】相切两圆的性质.【分析】连接OA、CB,则CB⊥OB,由切线长定理得出∠BOC=×60°=30°,由含30°角的直角三角形的性质得出OC=2CB=2,求出OA=OC+CA=3,扇形的弧长公式即可得出结果.【解答】解:如图所示:连接CB,则CB⊥OB,∴∠OBC=90°,∠BOC=×60°=30°,∵CA=CB=1,∴OC=2CB=2,∴OA=OC+CA=3,∴扇形的弧长==π.故答案为:π.【点评】本题考查了相切两圆的性质、切线长定理、含30°角的直角三角形的性质、弧长公式;熟练掌握相切两圆的性质,求出扇形的半径是解决问题的关键.18.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是4.【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(﹣a,d),代入双曲线得到k1=ab,k2=﹣ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.【解答】解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(﹣a,d),代入得:k1=ab,k2=﹣ad,∵S△AOB=2,∴(b+d)•2a﹣ab﹣ad=2,∴ab+ad=4,∴k1﹣k2=4,故选:4.【点评】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=4,4是解此题的关键.三、解答题(共9小题,满分90分)19.已知关于x的一元二次方程x2+x+a=0有两个相等的实数根,求a的值.【考点】根的判别式.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于a的等式,求出a的值即可.【解答】解:根据题意得:△=b2﹣4ac=12﹣4×1×a=1﹣4a=0,解得a=.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.解方程:x2﹣2x=1.【考点】解一元二次方程-配方法.【专题】配方法.【分析】方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:∵x2﹣2x=1∴(x﹣1)2=2∴x=1±∴x1=1+,x2=1﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,正方形的边长为2,边OA,OC分别在x轴与y轴上,反比例函数y=(k为常数,k≠0)的图象经过正方形的中心D.(1)直接写出点D的坐标;(2)求反比例函数的解析式.【考点】待定系数法求反比例函数解析式.【分析】(1)根据正方形的性质即可求得D的坐标;(2)根据待定系数法即可求得反比例函数的解析式.【解答】解:(1)∵正方形的边长为2,边OA,OC分别在x轴与y轴上,∴A(2,0),C(0,2),B(2,2),∵点D是正方形的中心,∴D(1,1);(2)设反比例函数的解析式为y=,且该函数图象过点D(1,1),∴=1,∴k=1,∴反比例函数的解析式为y=.【点评】本题考查了正方形的性质和待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.22.一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字积为奇数有4种情况,再利用概率公式即可求得答案【解答】解:(1)根据题意,可以画如下的树状图:由树状图可以看出,所有可能的结果共有9种,这些结果出现的可能性相等;(2)由(1)得:其中两次摸出的球上的数字积为奇数的有4种情况,场P(两次摸出的球上的数字积为奇数)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.【考点】旋转的性质.【分析】根据旋转的性质可得△ABC≌△AB′C′,根据全等三角形的性质可得AC=AC′,∠B=∠AB′C′,则△ACC′是等腰直角三角形,然后根据三角形的外角的性质求得∠AB′C′即可.【解答】解:由旋转的性质可得:△ABC≌△AB′C′,点B′在AC上,∴AC=AC′,∠B=∠AB′C′.又∵∠BAC=∠CAC′=90°,∴∠ACC′=∠AC′C=45°.∴∠AB′C′=∠ACC′+∠CC′B′=45°+30°=75°,∴∠B=∠AB′C′=75°.【点评】本题考查了旋转的性质以及全等三角形的性质和三角形的外角的性质,注意到△ACC′是等腰直角三角形是关键.24.某商场销售一种笔记本,进价为每本10元,试营销阶段发现:当销售单价为12元时,每天可卖出100本.如调整价格,每涨价1元,每天要少卖出10本.(1)写出该商场销售这种笔记本,每天所得的销售利润y(元)与销售单价x(元)之间的函数关系式(x>10);(2)若该笔记本的销售单价高于进价且不超过15元,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据题意列方程即可得到结论;(2)把y=﹣10x2+320x﹣2200化为y=﹣10(x﹣16)2+360,根据二次函数的性质即可得到结论.【解答】解:(1)y=(x﹣10)[100﹣10(x﹣12)=(x﹣10)(100﹣10x+120)=﹣10x2+320x﹣2200;(2)y=﹣10x2+320x﹣2200=﹣10(x﹣16)2+360,由题意可得:10<x≤15,∵a=﹣10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y随x的增大而增大,∴当x=15时,y取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.25.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明DE是⊙O的切线;(2)若OA=,CE=1,求△ABC的面积.【考点】切线的判定与性质.【分析】(1)连接AE,OE,∠AEB=90°,∠BAC=90°,在Rt△ACE中,D为AC的中点,则DE=AD=CD=AC,得出∠DEA=∠DAE,由OA=OE,得出∠OAE=∠OEA,则∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,即可得出结论;(2)AB=2AO=2,由△BCA∽△BAE,得出=,求出BE=3,BC=4,由勾股定理得AC==2,则S△ABC=AB•AC代入即可得出结果.【解答】(1)证明:连接AE,OE,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵AC是⊙O的切线,∴∠BAC=90°,∵在Rt△ACE中,D为AC的中点,∴DE=AD=CD=AC,∴∠DEA=∠DAE,∵OA=OE,∴∠OAE=∠OEA,∴∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,∴OE⊥DE,∵OE为半径,∴DE是⊙O的切线;(2)解:∵AO=,∴AB=2AO=2,∵∠CAB=∠AEB=90°,∠B=∠B,∴△BCA∽△BAE,∴=,即AB2=BE•BC=BE(BE+EC),∴(2)2=BE2+BE,解得:BE=3或BE=﹣4(不合题意,舍去),∴BE=3,∴BC=BE+CE=3+1=4,∴在Rt△ABC中,AC===2,∴S△ABC=AB•AC=×2×2=2.【点评】本题考查了切线的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的性质、圆周角定理等知识;本题综合性强,有一定难度.26.如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).(1)用含t的代数式表示线段PC的长是5﹣t;(2)当△PCQ为等腰三角形时,求t的值;(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.【考点】四边形综合题.【分析】(1)根据勾股定理求出AC,根据题意用t表示出AP,结合图形计算即可;(2)分CP=CQ、QP=QC、PQ=PC三种情况,根据等腰三角形的性质和相似三角形的判定和性质计算即可;(3)连接BP、BM,根据直径所对的圆周角是直角、等腰三角形的三线合一得到BP=BQ,根据勾股定理用t表示出BP、BQ,列出方程,解方程即可.【解答】解:(1)∵∠B=90°,AB=3,BC=4,∴AC=5,∵点P的速度是每秒一个单位,移动时间为t秒,∴AP=t,则PC=AC﹣AP=5﹣t,故答案为:5﹣t;(2)当CP=CQ时,t=5﹣t,解得t=,当QP=QC时,过点Q作QH⊥AC于H,如图1,则PH=HC=PC=(5﹣t),QC=t,∵QH⊥AC,∠B=90°,∴△CHQ∽△CBA,∴=,即=,解得t=,当PQ=PC时,如图2,过点P作PN⊥QC于N,则NC=NQ=QC=t,∵△CPN∽△CAB,得=,即=,解得t=,综上所述,当t=或t=或t=时,△PCQ为等腰三角形;(3)连接BP、BM,如图3,则∠BMQ=90°,∵M为PQ的中点,∴BP=BQ,过点P作PK⊥AB于K,∵AP=t,∴PK=t,AK=t,∴BK=3﹣t,在Rt△BPK中,PB2=PK2+BK2=(3﹣t)2+(t)2,又BQ=4﹣t,∴(4﹣t)2=(3﹣t)2+(t)2,解得t=.∴以BQ为直径的圆交PQ于点M,当M为PQ的中点时,t的值为.【点评】本题考查的是矩形的性质、等腰三角形的判定和性质、相似三角形的判定和性质,掌握相关的性质定理、灵活运用数形结合思想、正确作出辅助线是解题的关键.27.如图,已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H.(1)求A,B两点的坐标;(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;(3)以OB为边最第四象限内作等边△OBM.设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值.【考点】二次函数综合题.【分析】(1)令y=0,求得关于x的方程x2﹣2x﹣3=0的解即为点A、B的横坐标;(2)设P(x,x2﹣2x﹣3),根据抛物线解析式求得点D的坐标为D(1,﹣4);结合坐标与图形的性质求得线段CD=,CB=3,BD=2;所以根据勾股定理的逆定理推知∠BCD=90°,则易推知相似三角形△BCD∽△PNB,由该相似三角形的对应边成比例来求x的值,易得点P的坐标;(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.构建全等三角形:△EOM≌△FBM,由该全等三角形的性质和图形中相关角间的和差关系得到:∠OBF=120°为定值,即BF所在直线为定直线.过D点作DK⊥BF,K为垂足线段DF的长的最小值即为DK的长度.【解答】解:(1)令y=0,得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0)(2)设P(x,x2﹣2x﹣3),如图1,过点P作PN⊥x轴,垂足为N.连接BP,设∠NBP=∠CDB.令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).由勾股定理,得CD=,CB=3,BD=2.∴BD2=BC2+CD2,∴∠BCD=90°.∵∠BCD=∠PNB=90°,∠NBP=∠CDB.∴△BCD∽△PNB.∴=,=,即x2﹣5x+6=0,解得x1=2,x2=3(不合题意,舍去).∴当x=2时,y=﹣3∴P(2,﹣3);(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.由题意可得:,∴△EOM≌△FBM,∴∠MBF=∠MOB=60°.∵∠OBF=∠OBM+∠MBF=60°+60°=120°为定值,∴BF所在直线为定直线.过D点作DK⊥BF,K为垂足.在Rt△BGH中,∠HBG=180°﹣120°=60°,∴∠HGB=30°.∵HB=3,∴BG=4,HG=2.∵D(1,﹣4),∴DH=4,∴DG=2+4.在Rt△DGK中,∠DGK=30°.∴DK=DG=2+.∵当点E与点H重合时,这时BF=OH=1,则GF=4+1=5.而GK=DK=3+2>5,即点K在点F运动的路径上,所以线段DF的长的最小值存在,最小值是2+.。

福建省福州市2017-2018学年第一学期九年级期末质量检测数学试卷(WORD版)

福建省福州市2017-2018学年第一学期九年级期末质量检测数学试卷(WORD版)

福州市2017-2018学年第一学期九年级期末质量检测数学试卷一、 选择题1. 一元二次方程230x x -=的解为A. 123,3x x ==-B. 123,0x x =-=C. 123,0x x ==D. 123x x == 2. 下列是中心对称图形但不是轴对称图形的是A. B. C. D.3. 下列事件中,是随机事件的是A.任意画一个三角形,其内角和是360°B.任意抛一枚图钉,钉尖着地C.通常加热到100℃时,水沸腾D.太阳从东方升起 4. 二次函数2(1)2y x =-+图像的顶点坐标是A. (2,1)-B. (2,1)C. (1,2)-D. (1,2)5. 下列图形中,正多边形内接于半径相等的圆,其中正多边形周长最大的是A. B. C. D.6. 某医药厂两年前生产1t 某种药品的成本是5000元,随着生产技术的进步,现在生产1t 该种药品的成本是3000元。

设该种药品生产成本的年平均下降率为x ,则下列所列方程正确的是A.50002(1)3000x ⨯-= B. 25000(1)3000x ⨯-= C. 5000(12)3000x ⨯-= D. 25000(1)3000x ⨯-= 7. 已知反比例函数(0)ky k x=<的图像经过点123(1,),(2,),(3,)A y B y C y -,则123,,y y y 的大小关系是 A. 231y y y << B. 321y y y << C. 132y y y << D. 123y y y <<8. 如图,在6×6的正方形网格中,有6个点,M,N,O,P ,Q,R (除R 外其余5个点均为格点),以O 为圆心,OQ 为半径作圆,则在⊙O 外的点是A. MB. NC. PD. R第8题 第9题9. 如图,已知⊙P 与坐标轴交于点A,O,B ,点C 在⊙P 上,且∠ACO=60°,若点B 的坐标为(0,3),则弧OA 的长为A. 2πB. 3πC.D.10. 若二次函数2y ax bx c =++的图像与x 轴有两个交点A 和B ,顶点为C ,且244b ac -=,则∠ACB 的度数为A.30°B.45°C.60°D.90°二、填空题11. 已知反比例函数的图像过点(2,3),则该函数的解析式为12. 有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为 13. 抛物线24y x x =-不经过第 象限14. 我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”。

2017-2018届福建省福州市九年级上学期期末质检数学试题及答案

2017-2018届福建省福州市九年级上学期期末质检数学试题及答案

福州市2017-2018学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 214(正确一个得2分)三、解答题:(满分90分) 16.(每小题7分,共14分)解:(1) 8×12×18÷27 =22×23×32÷3 3 ……………………………………………………………4分=8. ……………………………………………………………………………………7分(2) 9x +6 x4-2x 1x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分 17.解:(1)△A 1B 1C 1如右下图; ………………………………………………………………3分(2)A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎨⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分解得:⎩⎨⎧a =1b =-4c =3, …………………………………10分∴抛物线的解析式为:y =x 2-4x +3. ……………11分[来源:Z 。

xx 。

](答案用一般式或顶点式表示,否则扣2分) (4) 表格填写合理正确得2分,图像正确得2分.x … 0 1 23[来源:学§科§网]4 …y =x 2-… 3 0 -0 3 …A B C O xy A 1B 1C 1y =x 2-4x +34x +3 1二次函数y =x 2-4x +3的图像如右图.18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种. …………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=612 =12. ………………………………6分 (2) 列树状图如下:……………9分由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现1 2 3 5 1235 1235 1235 小明 小强小明 小强1 2 3 5 1235 12 35 12 35 12 35的可能性相等.其中x与y的积为偶数有7种.……………………………………………………………………………10分∴小明获胜的概率P(x与y的积为偶数)=716<12,……………………………11分(或证明716≠916也可)∴游戏规则不公平. (12)分19.解:(1) 设这两年该县旅游纯收入的年平均增长率为x.根据题意得:………………1分2000(1+x)2=2880.…………………………………………………………4分解得:x1=0.2=20%,x2=-2.2 (不合题意,舍去).………………………6分答:这两年该县旅游纯收入的年平均增长率为20%.………………………7分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该县旅游纯收入为2880(1+0.2)2=4147.2(万元).………………………9分答:预测2015年该县旅游纯收入约4147.2万元. ………………………10分20.解:(1) 连接OC . …………………………………………1分∵AB 是⊙O 的直径,∴∠ACB =90°,即∠ACO +∠OCB =90°. ………2分 ∵OA =OC ,∴∠A =∠ACO , ………………………………3分 ∵∠A =∠PCB ,∴∠ACO =∠PCB . ………………………………4分∴∠PCB +∠OCB =∠ACO +∠OCB =90°,即∠PCO =90°. ∴PC ⊥OC . ………………………………5分 又∵OC 为⊙O 的半径,∴PC 是⊙O 的切线. ………………………………6分(2) ∵AC =PC ,∴∠A =∠P , ………………………………………7分 ∴∠PCB =∠A =∠P .∴BC =BP =1. ………………………………………8分 ∴∠CBO =∠P +∠PCB =2∠PCB . 又∵∠COB =2∠A =2∠PCB ,∴∠COB =∠CBO , …………………………………9分 ∴BC =OC . 又∵OB =OC ,∴OB =OC =BC =1,即△OBC 为等边三角形. ……10分A BCOP∴∠COB =60°. ………………………………11分 ∴l ⌒BC = 1×60π 180= 13π. ……………………………12分21.解:(1) DC +CE =2; …………………………………3分(2) 结论成立.连接PC ,如图. …………………………4分[来源:学,科,网Z,X,X,K]∵△ABC 是等腰直角三角形,P 是AB 的中点, ∴CP =PB ,CP ⊥AB ,∠ACP = 12∠ACB =45°.∴∠ACP =∠B =45°,∠CPB =90°. …………………5分 ∴∠BPE =90°-∠CPE . 又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分 ∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分 ∴DC +CE =EB +CE =BC =2. ……………………8分 (3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分 由(2)可知:PD =PE ,∠PDC =∠PEB ,∴△PDM ≌△PEF , ………………………………11分 ∴∠DPM =∠EPF ,PM =PF .∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM=∠DPE -∠MPNA BCD EPA BCD E MPNF=45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分 ∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM =DC +CE =2.∴△CMN 的周长是2. …………………………………13分 22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分 ∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分 ∴AB 的长为23. ………………………………5分(由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1), 由y =x 2-4x +1=(x ―2)2―3,可知抛物线的对称轴为直线x =2, ……………………6分 设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD , ∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分 解得:n =1, …………………………………………9分 ∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分 (3) 解法一:由(2)知,C 是弧MN 的中点.A BCO xyD在半径DN 上截取EN = MG , ……………………11分 又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) ∴S △CEP =2S △CDP =2× 1 2·CD ·n -1=4,∴n 1=3,n 2=-1. ……………………………………13分[来源:]由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去). ∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎨⎧k = n -1m b =1,∴直线PC 的解析式为y = n -1mx +1. …………………11分ABC O xyDE MPNGABC O xyDMPNG。

〖汇总3套试卷〗福州市2018年九年级上学期数学期末考试试题

〖汇总3套试卷〗福州市2018年九年级上学期数学期末考试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.当m取下列何值时,关于x的一元二次方程2210mx x-+=有两个相等的实数根()A.1. B.2 C.4. D.±1【答案】A【分析】根据一元二次方程的判别式判断即可.【详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【点睛】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.2.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55°B.60°C.65°D.70°【答案】B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=12 ODOC=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=12∠BOC=60°. 故选B.【点睛】 此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.3.下列品牌的运动鞋标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形和中心对称图形的定义即可得出答案.【详解】A 是轴对称图形,但不是中心对称图形,故此选项不符合题意;B 不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C 不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D 既是轴对称图形又是中心对称图形,故此选项符合题意.故选D .【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4.一元二次方程x 2-x =0的根是( )A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-1 【答案】C【分析】利用因式分解法解方程即可解答.【详解】x 2-x =0x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.5.点()sin30,cos30M -︒︒关于x 轴对称的点的坐标是( ) A .31,22⎛⎫ ⎪ ⎪⎝⎭ B .3122⎛⎫-- ⎪ ⎪⎝⎭ C .3221⎛⎫- ⎪ ⎪⎝⎭ D .13,22⎛⎫-- ⎪ ⎪⎝⎭【答案】D【分析】根据特殊锐角的三角函数值,先确定点M的坐标,然后根据关于x轴对称的点的坐标x值不变,y值互为相反数的特点进行选择即可.【详解】因为13 sin30,cos302==,所以1 sin302 -=-,所以点13,2M⎛⎫-⎪⎪⎝⎭所以关于x轴的对称点为13,22⎛⎫--⎪ ⎪⎝⎭故选D.【点睛】本题考查的是特殊角三角函数值和关于x轴对称的点的坐标特点,熟练掌握三角函数值是解题的关键. 6.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°【答案】C【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.7.圆锥的母线长为4,底面半径为2,则它的侧面积为()A.4πB.6πC.8πD.16π【答案】C【分析】求出圆锥的底面圆周长,利用公式12s LR即可求出圆锥的侧面积.【详解】解:圆锥的地面圆周长为2π×2=4π,则圆锥的侧面积为12×4π×4=8π.故选:C.【点睛】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.8.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或5【答案】D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.9.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上B.必有5次正面朝上C.可能有7次正面朝上D.不可能有10次正面朝上【答案】C【分析】利用不管抛多少次,硬币正面朝上的概率都是12,进而得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有7次正面向上;故选:C .【点睛】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕A 逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,是图中阴影部分的面积为( )A .143π﹣6B .259πC .338π﹣3D .33+π【答案】B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=2405253609ππ⨯=,故选B .【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.11.若x 1是方程220ax x c --=(a≠0)的一个根,设()211p ax =-, 1.5q ac =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .不能确定 【答案】A【分析】把x 1代入方程ax 2-2x-c=0得ax 12-2x 1=c ,作差法比较可得.【详解】解:∵x1是方程ax2-2x-c=0(a≠0)的一个根,∴ax12-2x1-c=0,即ax12-2x1=c,则p- q=(ax1-1)2-(ac+1.5)=a2x12-2ax1+1-1.5-ac=a(ax12-2x1)-ac-0.5=ac-ac-0.5=-0.5,∵-0.5<0,∴p- q<0,∴p<q.故选:A.【点睛】本题主要考查一元二次方程的解及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解,利用比差法比较大小是解题的关键.12.已知线段c是线段a和b的比例中项,若a=1,b=2,则c=( )A.1 B.2C.2±D.3±【答案】B【分析】根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意线段不能为负.【详解】解:∵线段c是a、b的比例中项,∴c2=ab=2,解得c=±2,又∵线段是正数,∴c=2.故选:B.【点睛】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.二、填空题(本题包括8个小题)13.如图,在平面直角坐标系中,反比例函数2yx=(x>0)与正比例函数y=kx、xyk=(k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.【答案】2【解析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=xk联立,解得x1=2k,x2=2k,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=12x1y1+12x2y2=12×2+12×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵2yxy kx⎧=⎪⎨⎪=⎩,解得:x12k又∵2yxxyk⎧=⎪⎪⎨⎪=⎪⎩,解得:x22k∴x1x22k2k,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB =45°,OH ⊥AB ,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO ≌△BDO ≌△AHO ≌△BHO ,∴S △ABO =S △AHO +S △BHO =S △ACO +S △BDO =12x 1y 1+ 12x 2y 2= 12×2+ 12×2=2, 故答案为:2.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.14.若抛物线2y ax bx c =++与x 轴的交点为()5,0与()1,0,则抛物线的对称轴为直线x =___________.【答案】3【分析】函数2y ax bx c =++的图象与x 轴的交点的横坐标就是方程20ax bx c ++=的根,再根据两根之和公式与对称轴公式即可求解. 【详解】根据两根之和公式可得15b a +=-,即6b a -= 则抛物线的对称轴:32b a-= 故填:3.【点睛】本题考查二次函数与一元二次方程的关系和两根之和公式与对称轴公式,熟练掌握公式是关键. 15.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.【答案】22(1)2y x =+-【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.16.如图,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = __________.【答案】17【解析】∵Rt△ABC 中,∠C=90°,∴tanA=BC AC , ∵1515,tan 8BC A ==,∴AC=8, ∴AB=22BC AC + =17,故答案为17.17.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.【答案】70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.18.函数y=31x -中的自变量x 的取值范围是____________. 【答案】x≠1【分析】根据分母不等于0列式计算即可得解.【详解】根据题意得,x-1≠0,解得:x≠1.故答案为x≠1.三、解答题(本题包括8个小题)19.如图,点A 是我市某小学,在位于学校南偏西15°方向距离120米的C 点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C 点北偏东75°方向的F 点处突发火灾,消防队必须立即沿路线CF 赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(13≈3.6,结果精确到1秒)【答案】4秒【分析】作AB ⊥CF 于B ,根据方向角、勾股定理求出AB 的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB ⊥CF 于B ,由题意得:∠ACB=60°,AC=120米,则∠CAB=30°∴1602BC AC ==米, ∴cos30603AB AC ==∵603110,∴消防车的警报声对学校会造成影响, 造成影响的路程为222110(603)201372-=≈米,∵600007243600÷≈秒, ∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.20.如图,胡同左右两侧是竖直的墙,一架32米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为45,此时梯子顶端B 恰巧与墙壁顶端重合. 因梯子阻碍交通,故将梯子底端向右移动一段距离到达D 处,此时测得梯子AD 与地面的夹角为60,问:胡同左侧的通道拓宽了多少米(保留根号)?【答案】胡同左侧的通道拓宽了(33)-米.【分析】根据题意,得到△BCE 为等腰直角三角形,得到BE=CE ,再由解直角三角形,求出DE 的长度,然后得到CD 的长度.【详解】解:如图,∵90,45,32BEC BCE BC ∠︒∠==︒=∴△BCE 为等腰直角三角形, ∴232sin 45323CE BE ==︒==, ∵60BDE ∠=︒, ∴3tan 603BE DE ===︒ ∴33DC CE DE =-=;∴胡同左侧的通道拓宽了(33)米.【点睛】本题考查了解直角三角形的应用,解题的关键是掌握题意,正确的进行解直角三角形.21.解答下列各题:(1)计算:2cos31°﹣tan45()21tan 60︒-;(2)解方程:x 2﹣11x+9=1.【答案】(1)1;(2)x1=1,x2=2.【分析】(1)利用特殊角的三角函数值得到原式=2×3﹣1﹣(3﹣1),然后进行二次根式的混合运算;(2)利用因式分解法解方程.【详解】(1)原式=2×3﹣1﹣(3﹣1)=3﹣1﹣3+1=1;(2)(x﹣1)(x﹣2)=1,x﹣1=1或x﹣2=1,∴方程的解为x1=1,x2=2.【点睛】此题主要考查锐角三角函数相关计算以及一元二次方程的求解,熟练掌握,即可解题. 22.如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.【答案】(1)证明见解析;(2)26 2.【解析】试题分析:(1)根据四边形ABCD是正方形,得出AB=AD,∠B=∠D=90°,再根据△AEF是等边三角形,得出AE=AF,最后根据HL即可证出△ABE≌△ADF;(2)根据等边△AEF的周长是6,得出AE=EF=AF的长,再根据(1)的证明得出CE=CF,∠C=90°,从而得出△ECF是等腰直角三角形,再根据勾股定理得出EC的值,设BE=x,则2,在Rt△ABE中,AB2+BE2=AE2,求出x的值,即可得出正方形ABCD的边长.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵AB=AD,AE=AF∴Rt △ABE ≌Rt △ADF ;(2)∵等边△AEF 的周长是6,∴AE=EF=AF=2,又∵Rt △ABE ≌Rt △ADF ,∴BE=DF ,∴CE=CF ,∠C=90°,即△ECF 是等腰直角三角形,由勾股定理得CE 2+CF 2=EF 2,∴EC=2, 设BE=x ,则AB=x+2,在Rt △ABE 中,AB 2+BE 2=AE 2,即(x+2)2+x 2=4,解得x 1=26-+或x 2=26--(舍去), ∴AB=26-++2=26+, ∴正方形ABCD 的边长为26+. 考点: 1.正方形的性质;2.全等三角形的判定与性质;23.如图, ,BD AC 相交于点P ,连结,,,,AB BC CD DA DAP CBP ∠=∠.(1)求证: ADP BCP ∽;(2)直接回答ADP △与BCP 是不是位似图形?(3)若8,4,3AB CD DP ===,求AP 的长.【答案】(1)详见解析;(2)不是;(3)6AP =【分析】(1)根据已知条件可知DAP CBP ∠=∠,根据对顶角相等可知DPA CPB ∠=∠,由此可证明ADP BCP ∽;(2)根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)(3)由△ADP ∽△BCP ,可得AP BP DP CP=,而∠APB 与∠DPC 为对顶角,则可证△APB ∽△DPC ,从而得AP AB DP DC =,再根据8,4,3AB CD DP ===即可求得AP 的长. 【详解】(1)证明:∵,DAP CBP DPA CPB ∠=∠∠=∠, ∴ADP BCP ∽;(2)点A 、D 、P 的对应点依次为点B 、C 、P ,对应点的连线不相交于一点,故ADP △与BCP 不是位似图形;(3)解:∵ADP BCP ∽∴=AP BP DP CP∵APB DPC ∠=∠,∴APB DPC ∽,AP AB DP DC∴= ∴8=43AP ∴6AP =.【点睛】本题考查相似三角形的性质和判定,位似图形的定义.熟练掌握相似三角形的判定定理是解决此题的关键. 24.如图,AB 为⊙O 的直径,AC 是弦,D 为线段AB 延长线上一点,过C ,D 作射线DP ,若∠D=2∠CAD=45º.(1)证明:DP 是⊙O 的切线.(2)若CD=3,求BD 的长.【答案】(1)见解析;(2)323【分析】(1)连接OC ,根据等腰三角形的性质,三角形的内角和与外角的性质,证得∠OCD=90°,即可证得DP 是⊙O 的切线;(2)根据等腰直角三角形的性质得OB=OC=CD=3,而∠OCD=90º ,最后利用勾股定理进行计算即可.【详解】(1)证明:连接OC ,∵OA=OC ,∴∠CAD=∠ACO ,∴∠COD=2∠CAD=45°,∵∠D=2∠CAD=45º,∴∠OCD=180°-45°-45°=90°,∴OC ⊥CD ,∴DP 是⊙O 的切线;(2)由(1)可知∠CDO=∠COD=45º∴OB=OC=CD=3∵∠OCD=90º ∴22223332OD OC CD +=+=∴BD=OD -OB=323-【点睛】本题考查了切线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握切线的性质是解题的关键. 25.如图,抛物线2y x bx c =++与x 轴交于点A 和()3,0B ,与y 轴交于点()0,3,C 顶点为D . ()1求抛物线的解析式;()2求CBD ∠的度数;()3若点N 是线段BC 上一个动点,过N 作//MN y 轴交抛物线于点M ,交x 轴于点H ,设H 点的横坐标为m .①求线段MN 的最大值;②若BMN ∆是等腰三角形,直接写出m 的值.【答案】(1)y=x2-4x+2,(2)90°,(2)①94,②m=2或m2或m=1.【分析】(1)将点B,C代入抛物线的解析式中,利用待定系数法即可得出答案;(2)先求出点D的坐标,然后利用OB=OC,得出∠CBO=45°,过D作DE⊥x 轴,垂足为E,再利用DE=BE,得出∠DBO=45°,则CBD∠的度数可求;(2)①先用待定系数法求出直线BC的表达式,然后设出M,N的坐标,表示出线段MN的长度,利用二次函数的性质即可求出最大值;②分三种情况:BN=BM,BN=MN,NM=BM分别建立方程求解即可.【详解】解:(1)将点B(2,0)、C(0,2)代入抛物线y=x2+bx+c中,得:0933b cc=++⎧⎨=⎩,解得:43bc=-⎧⎨=⎩.故抛物线的解析式为y=x2-4x+2.(2)y=x2-4x+2=(x-2)2-1,∴D点坐标为(2,-1).∵OB=OC=2,∴∠CBO=45°,过D作DE⊥x 轴,垂足为E,则DE=BE=1,∴∠DBO=45°,∴∠CBD=90°.(2)①设直线BC的解析式为y=kx+2,得:0=2k+2,解得:k=-1,∴直线BC的解析式为y=-x+2.点M的坐标为(m,m2-4m+2),点N的坐标为(m,-m+2).线段MN=(-m+2)-(m2-4m+2)=-m2+2m=-(m-32)2+94.∴当m=32时,线段MN取最大值,最大值为94.②在Rt△NBH中,BH=2-m,BN2(2-m).当BN=BM时,NH=MH,则-m+2=-(m2-4m+2),即m2-5m+6=0,解得m1=2,m2=2(舍去),当BN=MN时,-m2+2m2(2-m),解得:m12,m2=2(舍去),当NM=BM时,∠MNB=∠NBM=45°,则MB与x轴重合,点M与点A重合,∴m=1,综合得:m=2或m2或m=1.【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质是解题的关键.26.AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.(1)求证:CE是⊙O的切线;(2)若BC=BE,判定四边形OBCD的形状,并说明理由.【答案】(1)证明见解析;(2)四边形OBCD是菱形,理由见解析.【分析】(1)证明∠OCE=90°问题可解;(2)由同角的余角相等,可得∠BCO=∠BOC,再得到△BCO是等边三角形,故∠AOC=120°,再由垂径定理得到AF=CF,推出△COD是等边三角形问题可解.【详解】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OC=OA,∴∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:四边形OBCD是菱形,理由:∵BC=BE,∴∠E=∠ECB,∵∠BCO+∠BCE=∠COB+∠E=90°,∴∠BCO=∠BOC,∴BC=OB,∴△BCO是等边三角形,∴∠AOC=120°,∵F是AC的中点,∴AF=CF,∵OA=OC,∴∠AOD=∠COD=60°,∵OD=OC,∴△COD是等边三角形,∴CD=OD=OB=BC,∴四边形OBCD是菱形.【点睛】本题考查了切线的判定,菱形的判定,垂径定理,等边三角形的判定和性质,解答关键是根据题意找出并证明题目中的等边三角形.27.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB 的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.【答案】(1)详见解析;(2)详见解析;(3)13 2【分析】(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF =∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=12 AB.∵CD是⊙O的直径,∴OC=12CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=9 2∴AH=92+2=132.【点睛】此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列函数中,y 的值随着x 逐渐增大而减小的是( )A .2y x =B .2y xC .2y x =-D .1y x =- 【答案】D【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【详解】A 选项函数2y x =的图象是y 随着x 增大而增大,故本选项错误;B 选项函数2y x 的对称轴为0x =,当0x ≤时y 随x 增大而减小故本选项错误;C 选项函数2y x=-,当0x <或0x >,y 随着x 增大而增大故本选项错误; D 选项函数1y x =-的图象是y 随着x 增大而减小,故本选项正确;故选D.【点睛】本题考查了三种函数的性质,了解它们的性质是解答本题的关键,难度不大.2.观察下列四个图形,中心对称图形是( )A .B .C .D .【答案】C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C 选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.3.抛物线y=(x ﹣2)2﹣3的顶点坐标是( )A .(2,﹣3)B .(﹣2,3)C .(2,3)D .(﹣2,﹣3)【答案】A【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【详解】:∵y=(x ﹣2)2﹣3为抛物线的顶点式,根据顶点式的坐标特点可知,∴抛物线的顶点坐标为(2,-3).故选A..【点睛】本题考查了将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.4.反比例函数myx=的图象如图所示,以下结论:① 常数m <-1;② 在每个象限内,y随x的增大而增大;③ 若A(-1,h),B(2,k)在图象上,则h<k;④ 若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①②B.②③C.③④D.①④【答案】C【解析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,mk2=,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.5.己知正六边形的边长为2,则它的内切圆的半径为()A.1 B.3C.2 3D.2 【答案】B【解析】由题意得,∠AOB=3606=60°,∴∠AOC=30°,∴OC=2⋅cos30°=2×323故选B.6.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是EPD 上任意一点(不与点E,D重合),则∠EPD=()A.30°B.45°C.60°D.75°【答案】B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=12∠EOD=45°,故选:B.【点睛】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.7.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6,BC=8,则△AEF的面积是()A.3 B.4 C.5 D.6 【答案】A【分析】因为四边形ABCD是矩形,所以AD=BC=8,∠BAD=90°,168124AODS=⨯⨯=,又因为点E,F分别是AO,AD的中点,所以EF为三角形AOD的中位线,推出//EF OD,AEF AOD,AF:AD=1:2由此即可解决问题.【详解】解:∵四边形ABCD是矩形,AB=6,BC=8∴168124AODS=⨯⨯=,∵E,F分别是AO.AD中点,∴//EF OD,∴AEF AOD,∴AF:AD=1:2,∴:1:4AEF AODS S=∴△AEF的面积为3,故选:A.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.8.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.53D.8﹣3【答案】B【分析】如图所示,⊙O滚过的路程即线段EN的长度. EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可.【详解】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=12AD=3,∴OE 33,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N3,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滚过的路程为2.故选:B.【点睛】本题考查了切线的性质,平行四边形的性质及解直角三角形等知识. 关键是计算出AE和BN的长度. 9.下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【答案】B【分析】利用正方形的判定、平行四边形的性质,矩形的判定分别判断后即可确定正确的选项.【详解】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的矩形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选B .【点睛】本题考查了正方形的判定,平行四边形的性质,矩形的判定,熟练运用这些性质解决问题是本题的关键. 10.在△ABC 与△DEF 中,60A D ∠=∠=,AB AC DF DE =,如果∠B=50°,那么∠E 的度数是( ). A .50°;B .60°;C .70°;D .80°. 【答案】C【分析】根据已知可以确定ABCDFE △△;根据对应角相等的性质即可求得C ∠的大小,即可解题. 【详解】解:∵60A D ∠=∠=,AB AC DF DE =, ∴ABC DFE △△B ∴∠与F ∠是对应角,C ∠与E ∠是对应角,故180()180(6050)70E C A B ∠=∠=︒-∠+∠=︒-︒+︒=︒.故选:C .【点睛】本题考查了相似三角形的判定及性质,本题中得出C ∠和E ∠是对应角是解题的关键.11.如图,将△ABC 绕点A 顺时针旋转 60°得到△AED ,若线段AB=3,则BE=( )A .2B .3C .4D .5【答案】B 【解析】分析:根据旋转的性质得出∠BAE=60°,AB=AE ,得出△BAE 是等边三角形,进而得出BE=1即可.详解:∵将△ABC 绕点A 顺时针旋转60°得到△AED ,∴∠BAE=60°,AB=AE ,∴△BAE 是等边三角形,∴BE=1.故选B .点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.12.如图,AB 为O 的直径,点D 是弧AC 的中点,过点D 作DE AB ⊥于点E ,延长DE 交O 于点F ,若12AC =,3AE =,则O 的直径长为( )A .10B .13C .15D .1.【答案】C 【分析】连接OD 交AC 于点G ,根据垂径定理以及弦、弧之间的关系先得出DF=AC ,再由垂径定理及推论得出DE 的长以及OD ⊥AC ,最后在Rt △DOE 中,根据勾股定理列方程求得半径r ,从而求出结果.【详解】解:连接OD 交AC 于点G ,∵AB ⊥DF ,∴AD AF =,DE=EF .又点D 是弧AC 的中点,∴AD CD AF ==,OD ⊥AC ,∴AC DF =,∴AC=DF=12,∴DE=2.设O 的半径为r ,∴OE=AO-AE=r-3,在Rt △ODE 中,根据勾股定理得,OE 2+DE 2=OD 2,∴(r-3)2+22=r 2,解得r=152. ∴O 的直径为3.故选:C .【点睛】本题主要考查垂径定理及其推论,弧、弦之间的关系以及勾股定理,解题的关键是通过作辅助线构造直角三角形,是中考常考题型.二、填空题(本题包括8个小题)13.方程(x﹣3)(x+2)=0的根是_____.【答案】x=3或x=﹣1.【解析】由乘法法则知,(x﹣3)(x+1)=0,则x-3=0或x+1=0,解这两个一元一次方程可求出x的值. 【详解】∵(x﹣3)(x+1)=0,∴x-3=0或x+1=0,∴x=3或x=﹣1.故答案为:x=3或x=﹣1.【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=52S△ABF,其中正确的结论有_____个.【答案】1【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=12AD=12BC,又AD∥BC,所以AEBC=AFFC=12,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④根据△AEF∽△CBF得到12EF AEBF BC==,求出S△AEF=12S△ABF,S△ABF=16S矩形ABCD S四边形CDEF=S△ACD﹣S△AEF=12S矩形ABCD﹣112S矩形ABCD=512S矩形ABCD,即可得到S四边形CDEF=52S△ABF,故④正确.【详解】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC=12,∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;∵△AEF∽△CBF,∴12 EF AEBF BC==,∴S△AEF=12S△ABF,S△ABF=16S矩形ABCD∴S△AEF=112S矩形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=12S矩形ABCD﹣112S矩形ABCD=512S矩形ABCD,∴S四边形CDEF=52S△ABF,故④正确;故答案为:1.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线,根据相似三角形表示出图形面积之间关系是解题的关键.15.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.。

[试卷合集3套]福州市2018年九年级上学期数学期末质量检测试题

[试卷合集3套]福州市2018年九年级上学期数学期末质量检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5 B.2:5 C.5:2 D.5:2【答案】A【分析】首先分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【详解】如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=41°,∴OB=AB=1,由勾股定理得:22215OD=+=,∴扇形的面积是245(5)58ππ⨯=;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=41°,∴MC=MB=22,∴⊙M的面积是22122ππ⎛⎫⨯=⎪⎪⎝⎭,∴扇形和圆形纸板的面积比是515 824ππ⎛⎫÷=⎪⎝⎭,即圆形纸片和扇形纸片的面积比是4:1.故选:A.【点睛】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.2.将抛物线的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是()A. B.C.D.【答案】B【解析】根据“左加右减,上加下减”的规律求解即可.【详解】y=2x2向右平移2个单位得y=2(x﹣2)2,再向上平移3个单位得y=2(x﹣2)2+3.故选B.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【答案】B【解析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.此题考查方差,掌握波动越小,数据越稳定是解题关键4.若抛物线22(21)y x m x m =+-+与坐标轴有一个交点,则m 的取值范围是( )A .14m >B .14m <C .14m ≥D .14m = 【答案】A【分析】根据抛物线y=x 2+(2m-1)x+m 2与坐标轴有一个交点,可知抛物线只与y 轴有一个交点,抛物线与x 轴没有交点,据此可解.【详解】解:∵抛物线y=x 2+(2m-1)x+m 2与坐标轴有一个交点, 抛物线开口向上,m 2≥0,∴抛物线与x 轴没有交点,与y 轴有1个交点, ∴(2m-1)2-4m 2<0解得14m > 故选:A .【点睛】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x 轴交点的关系. 5.如图,有一块直角三角形余料ABC ,∠BAC=90°,D 是AC 的中点,现从中切出一条矩形纸条DEFG ,其中E,F 在BC 上,点G 在AB 上,若BF=4.5cm ,CE=2cm ,则纸条GD 的长为( )A .3 cmB .213C .132cmD .133cm 【答案】C 【详解】∵四边形DEFG 是矩形,∴GD ∥EF,GD=EF,∵D 是AC 的中点,∴GD 是△ABC 的中位线,∴12GD AD BC AC ==, ∴14.522GD GD =++, 解得:GD=132.6.如图,在平面直角坐标系中,点M的坐标为M(5,2),那么cosα的值是()A.5B.23C.252D.53【答案】D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M52),∴OH5MH=2,∴OM22(5)2+=3,∴cosα=5 OHOM=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个B.20个C.30个D.无法确定【答案】B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是501 1503=,设口袋中大约有x个白球,则101103 x=+,解得x=1.经检验:x=1是原方程的解故选B .8.将抛物线y =x 2先向上平移1个单位,再向左平移2个单位,则新的函数解析式为( ). A .2(1)2y x =--B . 2(+1)2y x =-C . 2(+2)+1y x =D . 22()1y x =-+ 【答案】C【分析】由二次函数平移的规律即可求得答案.【详解】解:将抛物线y =x 2先向上平移1个单位,则函数解析式变为y =x 2+1,将y =x 2+1向左平移2个单位,则函数解析式变为y =(x+2)2+1,故选:C .【点睛】本题主要考查二次函数的图象平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”. 9.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。

2018年福州初三质检学试题及答案

2018年福州初三质检学试题及答案

A
D
F
B
EC
(13)不等式 2x+1≥3 的解集是________.
(14)一个不透明的袋子中有 3 个白球和 2 个黑球,这些球除颜色外完全相同
从袋子中随机摸出 1 个球,这个球是白球的概率是________.
(15)如图,矩形 ABCD 中,E 是 BC 上一点,将△ABE 沿 AE 折叠,得到△AFE 若 F 恰好是 CD 的
求 tan∠BDG 的值.
A
A
A
D
D
D
F
B
C
E
图1
F F
B
C
E
B
E
C
图2
图3 G
福州质检数学试题 6 页共 4 页(泉州彭雪林制作)
2018 年福州初三质检学试题及答案(word 版可编辑修改)
(25)( 14 分)如图,抛物线 y ax2 bx(a 0,b 0) 交 x 轴于 O、A 两点,顶点为 B.
C
D
A
B
(20)( 8 分)我国古代数学著作《九章算术》的“方程"一章里,一次方程是由算筹布置而成 的.如图 1,图中各行从左到右列出的算筹数分别表示未知数 x、y 的系数与应的常数项,把 x 4 y 10 图 1 所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是 6x 11y 34 ,请你根 据图 2 所示的算筹图,列出方程组,并求解.
2检数学试题 10 页共 4 页(泉州彭雪林制作)
2018 年福州初三质检学试题及答案(word 版可编辑修改)
福州质检数学试题 11 页共 4 页(泉州彭雪林制作)
2018 年福州初三质检学试题及答案(word 版可编辑修改)

<合集试卷3套>2018年福州市九年级上学期数学期末达标检测试题

<合集试卷3套>2018年福州市九年级上学期数学期末达标检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于反比例函数4y x=-,下列说法错误的是( ) A .它的图象分别位于第二、四象限B .它的图象关于y x =成轴对称C .若点1(2,)A y -,2(1,)B y -在该函数图像上,则12y y <D .y 的值随x 值的增大而减小【答案】D【分析】根据反比例函数的性质对各选项逐一分析即可. 【详解】解:反比例函数4y x =-,40k =-<,图像在二、四象限,故A 正确. 反比例函数k y x=,当0k >时,图像关于y x =-对称; 当k 0<时,图像关于y x =对称,故B 正确当0x <时,y 的值随x 值的增大而增大,21-<-,则12y y <,故C 正确在第二象限或者第四象限,y 的值随x 值的增大而增大,故D 错误故选D【点睛】本题主要考查了反比例函数的性质.2.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A .65B .65C .2D 【答案】C【分析】由样本平均值的计算公式列出关于a 的方程,解出a ,再利用样本方差的计算公式求解即可.【详解】由题意知(a+0+1+2+3)÷5=1,解得a=-1, ∴样本方差为2222221(11)(01)(11)(21)(31)25s ⎡⎤=--+-+-+-+-=⎣⎦ 故选:C .【点睛】本题考查样本的平均数、方差求法,属基础题,熟记样本的平均数、方差公式是解答本题的关键 3.二次函数y =x 1+bx ﹣t 的对称轴为x =1.若关于x 的一元二次方程x 1+bx ﹣t =0在﹣1<x <3的范围内有实数解,则t 的取值范围是( )A .﹣4≤t <5B .﹣4≤t <﹣3C .t ≥﹣4D .﹣3<t <5【答案】A【解析】根据抛物线对称轴公式可先求出b 的值,一元二次方程x 1+bx ﹣t =0在﹣1<x <3的范围内有实数解相当于y =x 1﹣bx 与直线y =t 的在﹣1<x <3的范围内有交点,即直线y =t 应介于过y =x 1﹣bx 在﹣1<x <3的范围内的最大值与最小值的直线之间,由此可确定t 的取值范围.【详解】解:∵抛物线的对称轴x =2b -=1, ∴b =﹣4,则方程x 1+bx ﹣t =0,即x 1﹣4x ﹣t =0的解相当于y =x 1﹣4x 与直线y =t 的交点的横坐标,∵方程x 1+bx ﹣t =0在﹣1<x <3的范围内有实数解,∴当x =﹣1时,y =1+4=5,当x =3时,y =9﹣11=﹣3,又∵y =x 1﹣4x =(x ﹣1)1﹣4,∴当﹣4≤t <5时,在﹣1<x <3的范围内有解.∴t 的取值范围是﹣4≤t <5,故选:A .【点睛】本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程2ax bx c k ++=的解相当于2y ax bx c =++ 与直线y=k 的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.4.如图,四边形ABCD 和四边形A'B'C'D'是以点O 为位似中心的位似图形,若OA :OA'=3:5,则四边形ABCD 和四边形A'B'C'D'的面积比为( )A .3:5B .3:8C .9:25D 35【答案】C 【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,OA :OA′=3:5,∴DA :D′A′=OA :OA′=3:5,∴四边形ABCD 与四边形A′B′C′D′的面积比为:9:1.故选:C .【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.5.用配方法将二次函数267y x x =--化为2()y a x h k =-+的形式为( )A .2(3)2y x =-+B .2(3)16y x =--C .2(3)2y x =++D .2(3)16y x =+-【答案】B【分析】加上一次项系数一半的平方凑成完全平方式,将一般式转化为顶点式即可.【详解】()222676997316=---+--=--y x x x x x =故选:B .【点睛】本题考查二次函数一般式到顶点式的转化,熟练掌握配方法是解题的关键.6.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于( )A .13B .12C .23D .无法确定【答案】C【分析】根据概率P (A )=事件A 可能出现的结果数:所有可能出现的结果数可得答案.【详解】以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此46=23, 故选:C .【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的求解方法.7.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:2【答案】B【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B8.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .10【答案】C 【解析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12,即△PCD 的周长为12,故选:C .【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.9.下列方程中是一元二次方程的是( )A .210x +=B .21y x +=C .210x +=D .211x x+= 【答案】C【分析】根据一元二次方程的定义依次判断后即可解答.【详解】选项A ,210x +=是一元一次方程,不是一元二次方程;选项B ,21y x +=是二元二次方程,不是一元二次方程;选项C ,210x +=是一元二次方程;选项D , 211x x+=是分式方程,不是一元二次方程. 故选C.【点睛】本题考查了一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程是解决问题的关键.10.在比例尺为1:800000的“中国政区”地图上,量得甲市与乙市之间的距离是2.5cm ,则这两市之间的实际距离为( )km .A .20000000B .200000C .200D .2000000 【答案】C【分析】比例尺=图上距离:实际距离.列出比例式,求解即可得出两地的实际距离.【详解】设这两市之间的实际距离为xcm ,则根据比例尺为1:8 000 00,列出比例式:1:8 000 00=2.5:x ,解得x =1.1cm =200km故选:C .【点睛】本题考查了比例尺的意义,注意图上距离跟实际距离单位要统一.11.如图,在平面直角坐标系中,直线OA 过点(4,2),则tan α的值是( )A .12B .5C .5D .2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD ⊥x 轴交OA 于点C ,交x 轴于点D ,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα=CDOD=24=12,故选A.【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.12.如图,△ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A.13cm B.8cm C.6.5cm D.随直线MN的变化而变化【答案】B【分析】如图,设E、F、G分别为⊙O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案.【详解】设E、F、G分别为⊙O与BC、AC、MN的切点,∵⊙O是△ABC的内切圆,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN与⊙O相切于G,∴DM=MG,FN=GN,∵△ABC的周长为18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周长=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【点睛】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.二、填空题(本题包括8个小题)13.如果二次根式3x -有意义,那么x 的取值范围是_________.【答案】x≤1【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】解:二次根式3x -有意义,则1-x≥0,解得:x≤1.故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.如图所示,某河堤的横断面是梯形ABCD ,BCAD ,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 米.【答案】24【解析】试题分析:因为斜坡AB 的坡度为125,所以BE:AE=125,设BE=12x ,则AE=5x ;在Rt △ABE 中,由勾股定理知:222,AB BE AE =+即:22226125,x x =+()()2676169,x =解得:x=2或-2(负值舍去);所以BE=12x=24(米).考点:解直角三角形的应用.15.已知ABC∆DEF ∆,相似比为2,且ABC ∆的面积为4,则DEF ∆的面积为__________. 【答案】1【分析】根据相似三角形的性质,即可求解.【详解】∵ABC ∆DEF ∆,相似比为2,∴ABC ∆与DEF ∆,的面积比等于4:1,∵ABC ∆的面积为4,∴DEF ∆的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键. 16.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.【答案】1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t <3时,即点E 从A 到B 再到O (此时和O 不重合).若△BEF 是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E 与点O 重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E 走过的路程是214或274,则运动时间是74s 或94s . 故答案是t=1或74或94. 考点:圆周角定理.17.已知扇形的半径为8cm ,圆心角为120,则扇形的弧长为__________cm . 【答案】163π 【分析】直接根据弧长公式即可求解.【详解】∵扇形的半径为8cm ,圆心角的度数为120°, ∴扇形的弧长为:1208161801803n r l πππ⨯===. 故答案为:163π. 【点睛】 本题考查了弧长的计算.解答该题需熟记弧长的公式180n r l π=. 18.如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O,则阴影部分的面积为______【答案】3π【分析】作OD ⊥AB 于点D ,连接AO,BO,CO ,求出∠OAD=30°,得到∠AOB=120°,进而求得∠AOC=120°,从而得到阴影面积为圆面积的13,再利用面积公式求解. 【详解】如图,作OD ⊥AB 于点D ,连接AO ,BO ,CO ,∵OD=12AO , ∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形AOC =2120360r π=3π. 故答案为:3π.【点睛】本题考查了学生转化面积的能力,将不规则的面积转化为规则的面积是本题的解题关键.三、解答题(本题包括8个小题)19.已知关于x 的方程222(1)0x m x m -++=(1)当m 取何值时,方程有两个实数根;(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.【答案】(1)m≥—12;(2)x 1=0,x 2=2. 【分析】(1)方程有两个实数根,必须满足△=b2−4ac ≥0,从而建立关于m 的不等式,求出实数m 的取值范围.(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m >−12,在m >−12的范围内选取一个合适的整数求解就可以.【详解】解:(1)△=[-2(m+1)]²-4×1×m²=8m+4∵方程有两个实数根∴△≥0,即8m+4≥0解得,m≥-1 2(2)选取一个整数0,则原方程为,x²-2x=0 解得x1=0,x2=2.【点睛】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.春节期间,支付宝“集五福”活动中的“集五福”福卡共分为5种,分别为富强福、和谐福、友善福、爱国福、敬业福,从国家、社会和个人三个层面体现了社会主义核心价值观的价值目标.(1)小明一家人春节期间参与了支付宝“集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给他们其中一个人,两个人各设计了一个游戏,获胜者得到“敬业福”.在一个不透明盒子里放入标号分别为1,2,3,4的四个小球,这些小球除了标号数字外都相同,将小球摇匀.小明的游戏规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜.请判断,此游戏规则对小明和姐姐公平吗?说明理由.姐姐的游戏规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.请用列表法或画树状图的方法进行判断此游戏规则对小明和姐姐是否公平.(2)“五福”中体现了社会主义核心价值观的价值目标的个人层面有哪些?【答案】(1)游戏1对小明和姐姐是公平的;游戏2对小明和姐姐是公平的;(2)友善福、爱国福、敬业福.【分析】(1)在两种游戏中,分别求出小明和姐姐获胜的概率,即可得答案;(2)分别从国家、社会和个人三个层面解答即可得答案.【详解】(1)小明的游戏:∵共有4种等可能结果,一次摸到小球的标号数字为奇数或为偶数的各有2种,∴小明获胜的概率为24=12,姐姐获胜的概率为24=12,∴游戏1对小明和姐姐是公平的;姐姐的游戏:画树状图如下:共有16种可能情况,其中两次摸到小球的标号数字同为奇数或同为偶数的共有8种,两次摸到小球的标号数字为一奇一偶的结果也共有8种,∴小明获胜的概率为816=12,姐姐获胜的概率为816=12,∴游戏2对小明和姐姐是公平的..(2)“五福”中国家层面是:富强福,“五福”中社会层面是:和谐福,“五福”中个人层面是:友善福、爱国福、敬业福.【点睛】本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.21.如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【答案】(1)32;(2)直线PC与⊙O相切【分析】(1)、连接BD,根据AB为直径,则∠ACB=∠ADB=90°,根据Rt△ABC的勾股定理求出AC的长度,根据CD平分∠ACB得出Rt△ABD是等腰直角三角形,从而得出AD的长度;(2)、连接OC,根据OA=OC得出∠CAO=∠OCA,根据PC=PE得出∠PCE=∠PEC,然后结合CD平分∠ACB得出∠ACE=∠ECB,从而得出∠PCB=∠ACO,根据∠ACB=90°得出∠OCP=90°,从而说明切线.【详解】解:(1)、①如图,连接BD,∵AB是直径∴∠ACB=∠ADB=90°,在RT△ABC中,222210653AB BC-=-=②∵CD 平分∠ACB , ∴AD=BD ,∴Rt △ABD 是直角等腰三角形∴AD=AB=×10=5cm ;(2)、直线PC 与⊙O 相切,理由:连接OC , ∵OC=OA∴∠CAO=∠OCA∵PC=PE∴∠PCE=∠PEC ,∵∠PEC=∠CAE+∠ACE∵CD 平分∠ACB∴∠ACE=∠ECB∴∠PCB=∠ACO∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°, OC ⊥PC ,∴直线PC 与⊙O 相切.考点:(1)、勾股定理;(2)、直线与圆的位置关系.22.如图1,O 的直径4cm AB =,点C 为线段AB 上一动点,过点C 作AB 的垂线交O 于点D ,E ,连结AD ,AE .设AC 的长为cm x ,ADE ∆的面积为2cm y .小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y 与x 的几组对应值,如下表: /cm x 0 0.5 1 1.5 2 2.5 3 3.5 42/cm y 0 0.7 1.7 2.9 a 4.8 5.2 4.6 0 请求出表中小东漏填的数a ;(2)如图2,建立平面直角坐标系xOy ,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当ADE ∆的面积为24cm 时,求出AC 的长.【答案】(1) 4.0a =;(2)详见解析;(3)2.0或者3.7【分析】(1)当x =2时,点C 与点O 重合,此时DE 是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y =4时x 的值即可;【详解】(1)当2x =时,即ED 是直径,可求得ADE ∆的面积为4.0,∴ 4.0a =;(2)函数图象如图所示:(3)由图像可知,当 4.0a =时, 2.0AC x ==或3.7【点睛】本题考查圆综合题,三角形的面积,函数图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.23.如图,AB 是O 的直径,点C ,D 在O 上,且BD 平分∠ABC .过点D 作BC 的垂线,与BC 的延长线相交于点E ,与BA 的延长线相交于点F .(1)求证:EF 与O 相切:(2)若AB=3,BD=22,求CE 的长.【答案】(1)证明见解析;(2)13CE =. 【分析】(1)连接OD ,由角平分线和等边对等角,得到EBD BDO ∠=∠,则BC OD ∥,即可得到结论成立;(2)连接AD ,CD ,CO ,由勾股定理求出AD ,然后证明EDB DAB △∽△,求出DE 的长度,然后即可求出CE 的长度.【详解】(1)证明,如图,连接OD .BD 平分ABC ∠,EBD ABD ∴∠=∠.∵OB OD =,BDO ABD ∴∠=∠.EBD BDO ∴∠=∠.BC OD ∴∥.FDO E ∴∠=∠.∵EF BE ⊥,90E ∴∠=︒.90FDO ∴∠=︒.即EF OD ⊥.EF ∴与O 相切.(2)如图,连接AD ,CD ,CO .AB 是O 的直径,90ADB E ∴∠=︒=∠.在Rt ABD △中,22223(22)1AD AB BD =-=-=.∵ADB E ∠=∠,EBD ABD ∠=∠,EDB DAB ∴△∽△.DE DB AD AB ∴=, 即2213DE =. 223DE ∴=. ∵12EBD COD ∠=∠,12ABD AOD ∠=∠,EBD ABD ∠=∠, COD AOD ∴∠=∠.1CD AD ∴==.在Rt CDE △中,2222221133CE CD DE ⎛⎫=-=-= ⎪ ⎪⎝⎭. 【点睛】本题考查了相似三角形的性质和判定,勾股定理,切线的判定,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,两小题题型都很好,都具有一定的代表性.24.如图,在等腰三角形ABC 中,,AB AC AH BC =⊥于点H ,点E 是AH 上一点,延长AH 至点F ,使FH EH =.求证:四边形EBFC 是菱形.【答案】见解析.【分析】根据等腰三角形的三线合一可得BH=HC ,结合已知条件FH EH =,从而得出四边形EBFC 是平行四边形,再根据AH CB ⊥得出四边形EBFC 是菱形.【详解】证明:,AB AC AH CB =⊥,BH HC ∴=FH EH =,∴四边形EBFC 是平行四边形又AH CB ⊥,∴四边形EBFC 是菱形.【点睛】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键. 25.某校综合实践小组要对一幢建筑物MN 的高度进行测量.如图,该小组在一斜坡坡脚A 处测得该建筑物顶端M 的仰角为45︒,沿斜坡向上走20m 到达B 处,(即20AB m =)测得该建筑物顶端M 的仰角为30.已知斜坡的坡度3:4i =,请你计算建筑物MN 的高度(即MN 的长,结果保留根号).【答案】建筑物MN 的高度为()14326m .【分析】过点B 作BC MN ⊥,根据坡度的定义求出AB ,BD,AD ,再利用三角函数的定义列出方程求解.【详解】解:过点B 作BC MN ⊥,垂足为C .过点B 作BD AN ⊥,垂足为D .∵MN AN ⊥,∴90BCN CND BDN ∠=∠=∠=︒,∴四边形BCND 是矩形,∴BC DN =,BD CN =,90ADB ∠=︒.∵3:4i =, ∴34BD AD =, ∴设3BD k =,4AD k =,∴520AB k ==,∴4x =,∴12BD m =,16AD m =.根据题意,30MBC ∠=︒,45MAN ∠=︒,在Rt BCM ∆中,设CM x m =, ∵3tan 303CM BC ︒==,∴3BC x m =, ∴3DN x m =,∴()316AN DN AD x m =-=-, 在Rt AMN ∆中,∵45MAN ∠=︒,()316MN AN x m ==-. 又∵()12MN MC CN x m =+=+, ∴31612x x -=+,解得14314x =+,∴()14326MN m =+.答:建筑物MN 的高度为()14326m +.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.26.定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC=α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点.①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.【答案】 (1)见解析;(2)①AE=22,DE=42;②tan ∠DBC=77. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可;②连接AC ,由自相似菱形的定义即可得出结论;③由自相似菱形的性质即可得出结论;(2)①由(1)③得△ABE ∽△DEA ,得出AB BE AE DE AE AD==,求出AE =22,DE =42即可; ②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x+4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM =22AE AM -=7,求出BN =7,再由三角函数定义即可得出答案.【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=CD ,BE=CE ,∠ABE=∠DCE=90°,在△ABE 和△DCE 中AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠,∴△ABE ≌△DCE(SAS),∴△ABE ∽△DCE ,∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC ,∵四边形ABCD 是菱形,∴AB=BC=CD ,AD ∥BC ,AB ∥CD ,∵∠B=60°,∴△ABC 是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,故答案为:真命题;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴AB BE AE DE AE AD==∴AE 2=BE•AD=2×4=8,∴AE=22,DE=AB AE BE ⋅=4222⨯=42, 故答案为:AE=22;DE=42;②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形,∴DN=EM ,DM=EN ,∠M=∠N=90°,设AM=x ,则EN=DM=x+4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即(42)2﹣(x+4)2=(22)2﹣x 2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM=22AE AM -=22(22)17-=,在Rt △BDN 中,∵BN=BE+EN=2+5=7,∴tan ∠DBC=7DN BN =, 故答案为:77.【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键. 27.有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【答案】选择A 转盘.理由见解析【解析】试题分析:由题意可以画出树状图,然后根据树状图求得到所有等可能的结果,找全满足条件的所有情况,再利用概率公式即可求得答案.试题解析:选择A转盘.画树状图得:∵共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,∴P(A大于B)=,P(A小于B)=,∴选择A转盘.考点:列表法与树状图法求概率九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点B 、D 、C 是⊙O 上的点,∠BDC=130°,则∠BOC 是( )A .100°B .110°C .120°D .130°【答案】A 【分析】首先在优弧BC 上取点E ,连接BE ,CE ,由点B 、D 、C 是⊙O 上的点,∠BDC=130°,即可求得∠E 的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧BC 上取点E ,连接BE ,CE ,如图所示:∵∠BDC=130°,∴∠E=180°-∠BDC=50°,∴∠BOC=2∠E=100°.故选A .【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.如图.已知O 的半径为3,8OA =,点P 为O 上一动点.以PA 为边作等边PAM ∆,则线段OM 的长的最大值为( )A .9B .11C .12D .14【答案】B 【分析】以OP 为边向下作等边△POH ,连接AH ,根据等边三角形的性质通过“边角边”证明△HPA ≌△OPM ,则AH=OM ,然后根据AH ≤OH+AO 即可得解.【详解】解:如图,以OP为边向下作等边△POH,连接AH,∵△POH,△PAM都是等边三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值为11,则OM的最大值为11.故选B.【点睛】本题主要考查等边三角形的性质,全等三角形的判定与性质等,解此题的关键在于熟练掌握其知识点,难点在于作辅助线构造等边三角形.3.△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为()A.3 B.6 C.12 D.无法确定【答案】B【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.【详解】如图,设⊙O分别与边BC、CA相切于点E、F,连接OE,OF,∵⊙O分别与边AB、BC、CA相切于点D、E、F,∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,∴∠OEC=∠OFC=90°,∵∠C=90°,∴四边形OECF是矩形,∵OE=OF ,∴四边形OECF 是正方形,设EC=FC=r ,∴AC=AF+FC=2+r ,BC=BE+EC=3+r ,AB=AD+BD=2+3=5,在Rt △ABC 中,2AB =2BC +2AC ,∴25=()23r ++()22r +,∴2560r r +-=,即160r r -+=,解得:1r =或6r =-(舍去).∴⊙O 的半径r 为1, ∴()()ABC 113121622S BC AC =⨯=⨯++=. 故选:B【点睛】 本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.4.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD =2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC =D .2AC AE= 【答案】D【分析】只要证明AC AB AE AD=,即可解决问题. 【详解】解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D. 2AC AB AE AD==,可得DE//BC ,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24πB.33πC.56πD.42π【答案】D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.6.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【答案】D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.7.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm【答案】B【解析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.8.一元二次方程x 2+4x =﹣3用配方法变形正确的是( )A .(x ﹣2)2=1B .(x+2)2=1C .(x ﹣2)2=﹣1D .(x+2)2=﹣1 【答案】B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x 2+4x =﹣3,∴x 2+4x+4=1,∴(x+2)2=1,故选:B .【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.下列一元二次方程中,有两个不相等的实数根的方程是( )A .210x x -+=B .240x +=C .2210x x ++=D .2410x x -+= 【答案】D【分析】根据根的判别式△=b 2-4ac 的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用.【详解】解:A.∵△=b2-4ac=1-4×1×1=-3<0,∴此方程没有实数根,故本选项错误;B.240x+=变形为24x=-∴此方程有没有实数根,故本选项错误;C.∵△=b2-4ac=22-4×1×1=0,∴此方程有两个相等的实数根,故本选项错误;D.∵△=b2-4ac=42-4×1×1=12,∴此方程有两个不相等的实数根,故本选项正确.故选:D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→AB→BO的路径以每秒1cm 的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.【答案】C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.。

福建省福州市2017-2018学年九年级(上)期末数学试卷(解析版)

福建省福州市2017-2018学年九年级(上)期末数学试卷(解析版)

2017-2018学年福建省福州市九年级(上)期末数学试卷一、选择题(共10小题,每小题4分)1.一元二次方程x2﹣3x=0的解为()A. x1=3,x2=﹣3B. x1=﹣3,x2=0C. x1=3,x2=0D. x1=x2=3【答案】C【解析】【分析】一元二次方程解法有:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程本身的特点,选择合适的解法,如本题采用因式分解法更合适.【详解】解:【点睛】本题考查了一元二次方程的解法,要根据方程的特点灵活选用合适的方法.2.下列是中心对称图形但不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形; 中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A选项:是中心对称图形但不是轴对称图形,故本选项符合题意;B选项:是中心对称图形,也是轴对称图形,故本选项不符合题意;C选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D选项:不是中心对称图形,也不是轴对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列事件中,是随机事件的是()A. 任意画一个三角形,其内角和是360°B. 任意抛一枚图钉,钉尖着地C. 通常加热到100℃时,水沸腾D. 太阳从东方升起【答案】B【解析】【分析】在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,必然会发生的事件叫做必然事件,肯定不会发生的事件叫做不可能事件. 根据随机事件、必然事件以及不可能事件的定义判断【详解】解:A选项:任意画一个三角形,其内角和是360°是不可能事件,故本选项错误;B选项:任意抛一枚图钉,钉尖着地是随机事件,故本选项正确;C选项:通常加热到100℃时,水沸腾是必然事件,故本选项错误;D选项:太阳从东方升起是必然事件,故本选项错误;故选:B.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.二次函数y=(x﹣1)2+2,它的图象顶点坐标是()A. (﹣2,1)B. (2,1)C. (2,﹣1)D. (1,2)【答案】D【解析】【分析】二次函数的顶点式是,,其中是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解:故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.5.如图图形中,正多边形内接于半径相等的圆,其中正多边形周长最大的是()A. B.C. D.【答案】D【解析】【分析】根据圆内接多边形的周长小于圆周长,再利用逐步逼近法选择答案.【详解】解:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,故选:D.【点睛】此题主要考查了正多边形与圆,关键是知道圆内接多边形的周长小于圆周长.6.某医药厂两年前生产1t某种药品的成本是5000元,随着生产技术的进步,现在生产1t该种药品的成本是3000元.设该种药品生产成本的年平均下降率为x,则下列所列方程正确的是()A. 5000×2(1﹣x)=3000B. 5000×(1﹣x)2=3000C. 5000×(1﹣2x)=3000D. 5000×(1﹣x2)=3000【答案】B【解析】【分析】增长率问题是近几年中考的热点题型,只有掌握增长率问题的本质内涵,才能在中考时以不变应万变。

《试卷3份集锦》福州市2017-2018年九年级上学期数学期末质量跟踪监视试题

《试卷3份集锦》福州市2017-2018年九年级上学期数学期末质量跟踪监视试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于反比例函数2y x =-,下列说法正确的是( ) A .图象过(1,2)点B .图象在第一、三象限C .当x >0时,y 随x 的增大而减小D .当x <0时,y 随x 的增大而增大 【答案】D【解析】试题分析:根据反比例函数y=k x(k≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y 随x 的增大而增大,图象是轴对称图象,故A 、B 、C 错误.故选D .考点:反比例函数图象的性质2.将抛物线y = x 2平移得到抛物线y = (x+2)2,则这个平移过程正确的是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位【答案】A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A .考点:抛物线的平移规律.3.设抛物线2(0)y ax bx c ab =++≠的顶点为M ,与y 轴交于N 点,连接直线MN ,直线MN 与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 ( )A .23(1)1y x =--+B .2(0.5)( 1.5)y x x =-+C .214133y x x =-+D .()22142y a x x =+-+ (a 为任意常数) 【答案】D【分析】求出各选项中M 、N 两点的坐标,再求面积S ,进行判断即可;【详解】A 选项中,M 点坐标为(1,1),N 点坐标为(0,-2),113=1-2-1=3=222S ⨯⨯⨯,故A 选项不满足; B 选项中,M 点坐标为1--22⎛⎫ ⎪⎝⎭,,N 点坐标为(0,3-2),113111=--2--=--=222428S ⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,故B 选项不满足; C 选项中,M 点坐标为(2,1-3),点N 坐标为(0,1),1144=2--1=1=2333S ⨯⨯⨯,故选项C 不满足;D 选项中,M 点坐标为(22a +1,24-+2a +1),点N 坐标为(0,2),()2222221241244=-+2-2==2a +1a +12a +1a +1a +1S ⨯⨯⨯⨯,当a=1时,S=1,故选项D 满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.4.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪的长为ym ,宽为xm ,则y 关于x 的函数解析式为( )A .y =3500xB .x =3500yC .y =3500xD .y =1750x 【答案】C【解析】根据矩形草坪的面积=长乘宽,得3500xy = ,得3500y x= .故选C. 5.如图,网格中的两个三角形是位似图形,它们的位似中心是( )A .点AB .点BC .点CD .点D【答案】D 【分析】利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D .故选D .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.6. “线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有( )A .5 个B .4 个C .3 个D .2 个【答案】B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.7.向空中发射一枚炮弹,第x 秒时的高度为y 米,且高度与时间的关系为2(0)y ax bx c a =++≠,若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒 【答案】C【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第6秒与第17秒时的高度相等, ∴抛物线的对称轴为:61711.52x +==秒, ∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高;故选:C.【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.8.已知函数y =ax 2+bx+c (a≠0)的图象如图,则函数y =ax+b 与y =c x的图象大致为( )A .B .C .D .【答案】C【分析】直接利用二次函数、一次函数、反比例函数的性质分析得出答案.【详解】∵二次函数开口向下,∴a <0,∵二次函数对称轴在y 轴右侧,∴a ,b 异号,∴b >0,∵抛物线与y 轴交在负半轴,∴c <0,∴y =ax+b 图象经过第一、二、四象限,y =c x的图象分布在第二、四象限, 故选:C .【点睛】本题考查了函数的性质以及图象问题,掌握二次函数、一次函数、反比例函数的性质是解题的关键. 9.已知正多边形的一个内角是135°,则这个正多边形的边数是( )A .3B .4C .6D .8 【答案】D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°, ∴边数=360845︒=︒, ∴这个正多边形的边数是1.故选:D .【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键. 10.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD的最小值为()A.5 B.1 C.2 D.3【答案】B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键. 11.如图,在平面直角坐标系中,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是()A.(5,2) B.(2,4) C.(1,4) D.(6,2) 【答案】D【分析】根据切线的判定在网格中作图即可得结论.【详解】解:如图,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是(6,2).故选:D.【点睛】本题考查了切线的判定,掌握切线的判定定理是解题的关键.12.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 【答案】C【分析】根据因式分解法,可得答案.=,【详解】解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.二、填空题(本题包括8个小题)13.在△ABC中,∠C=90°,AC=25,∠CAB的平分线交BC于D,且4153AD=,那么tan∠BAC=_________.【答案】3【分析】根据勾股定理求出DC,推出∠DAC=30°,求出∠BAC的度数,即可得出tan∠BAC的值.【详解】在△DAC中,∠C=90°,由勾股定理得:DC22215AD AC=-=,∴DC12=AD,∴∠DAC=30°,∴∠BAC=2×30°=60°,∴tan∠BAC=tan60°3=.故答案为:3.【点睛】本题考查了含30度角的直角三角形,锐角三角函数的定义,能求出∠DAC的度数是解答本题的关键.14.已知函数12(0)3(0)xxyxx⎧->⎪⎪=⎨⎪<⎪⎩的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB =7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(26,﹣6).其中正确的结论为___.【答案】②③④.【分析】①错误.根据x1<x2<0时,函数y随x的增大而减小可得;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(3m,m),A(﹣12m,m),求出PA、PB,推出PA=4PB,由S AOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正确.设P(0,m),则B(3m,m),A(﹣12m,m),推出PB=﹣3m,PA=﹣12m,OP=﹣m,由△OPB∽△APO,可得OP2=PB•PA,列出方程即可解决问题.【详解】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(3m,m),A(﹣12m,m),∴PB=﹣3m,PA=﹣12m,∴PA=4PB,∵S AOB=S△OPB+S△OPA=32+122=7.5,故③正确.④正确.设P(0,m),则B(3m,m),A(﹣12m,m),∴PB=﹣3m,PA=﹣12m,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴OPAP=PBOP,∴OP2=PB•PA,∴m2=﹣3m•(﹣12m),∴m4=36,∵m<0,∴m,∴A (26,﹣6),故④正确.∴②③④正确,故答案为②③④.【点睛】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题.15.若抛物线 ()22y a x =- 的开口向上,则 a 的取值范围是________.【答案】a >2【分析】利用二次函数图像的性质直接求解.【详解】解:∵抛物线()22y a x =-的开口向上, ∴a-2>0,∴a >2,故答案为a >2.【点睛】本题考查二次函数图像的性质,掌握二次项系数决定开口方向是本题的解题关键.16.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x 名学生,根据题意,列出方程为________.【答案】x (x-1)=1【解析】试题分析:每人要赠送(x ﹣1)张相片,有x 个人,所以全班共送:(x ﹣1)x=1.故答案是(x ﹣1)x=1.考点:列一元二次方程.17.如图,在Rt ABC 中,90C ∠=︒,5AC =,5sin 13B =,点P 为边BC 上一点,3PC =,将ABC 绕点P 旋转得到A B C '''(点A 、B 、C 分别与点A '、B '、C '对应),使B C AB '',边A C ''与边AB交于点G ,那么A G '的长等于__________.【答案】20 13【分析】如图,作PH⊥AB于H.利用相似三角形的性质求出PH,再证明四边形PHGC′是矩形即可解决问题.【详解】如图,作PH⊥AB于H.在Rt△ABC中,∠C=90°,AC=5,sinB=5 13,∴ACAB=513,∴AB=13,2222135AB AC--,∵PC=3,∴PB=9,∵∠BPH∽△BAC,∴PH PB AC AB,∴9 513 PH=,∴PH=45 13,∵AB∥B′C′,∴∠HGC′=∠C′=∠PHG=90°,∴四边形PH GC′是矩形,∴CG′=PH=45 13,∴A′G=5-4513=2013,故答案为20 13.【点睛】此题考查旋转变换,平行线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.若长方形的长和宽分别是关于 x 的方程22630x x -+=的两个根,则长方形的周长是_______.【答案】6【分析】设长方形的长为a ,宽为b ,根据根与系数的关系得a+b=3,即可得到结论.【详解】解:设长方形的长为a ,宽为b ,根据题意得,a+b=3,所以长方形的周长是2×(a+b )=6.故答案为:6.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=b a-. 三、解答题(本题包括8个小题)19.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?【答案】每件降价4元【详解】试题分析:设每件降价元,则可多售出5件,根据题意可得: (44)(205)1600x x -+=化简整理得2401440x x -+=解得:124,36x x ==经检验12,x x 都是方程的解,但是题目要求x≤10∴x=36不符合题意,舍去即x=4答:每件降价4元.考点: 一元二次方程的应用20.已知双曲线m y (m 0)x=≠经过点B (2,1). (1)求双曲线的解析式;(2)若点()111,A x y 与点()222,A x y 都在双曲线m y (m 0)x =≠上,且120x x <<,直接写出1y 、2y 的大小关系.【答案】(1)2y x=;(2)12y y > 【分析】(1)把点B 的坐标代入m y x =可求得函数的解析式; (2)根据反比例函数1y x=,可知函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,进而得到1y ,2y 的大小关系.【详解】解:(1)将2B (,1)代入m y x =,得2m =,则双曲线的解析式为2y x = (2)∵反比例函数2y x=, ∴函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,又∵120x x <<∴12y y >故答案为:.12y y >.【点睛】本题考查了待定系数法求函数解析式、反比例函数的增减性,利用函数的性质比较函数值的大小,解题的关键是明确题意,掌握待定系数法求函数解析式、能利用反比例函数的性质解答.21.解方程:(1)2510x x -+=(公式法)(2)()()2322x x x -=-【答案】(1)152x +=,252x -= (2)12x =,23x = 【分析】(1)利用公式法解一元二次方程,即可得到答案;(2)利用因式分解法解一元二次方程,即可得到答案.【详解】解:(1)2510x x -+=,∵1a =,5b =-,1c =,∴2(5)411210∆=--⨯⨯=>,∴521±=⨯x ,∴1x =,2x =; (2)()()2322x x x -=-,∴()()23220x x x ---=,∴()2(26)0x x --=,∴20x -=或260x -=,∴12x =,23x =.【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的方法和步骤.22.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AB =米,坡度为1:3;将斜坡AB 的高度AE 降低20AC =米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号)【答案】斜坡CD 的长是8017【解析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为3 ∴3tan 3ABE ∠==, ∴30ABE ∠=︒,∴11002AE AB ==, ∵20AC =,∴80CE =, ∵90CED ∠=︒,斜坡CD 的坡度为1:4,∴14CE DE =, 即8014ED =, 解得,320ED =, ∴22803208017CD +=米,答:斜坡CD 的长是8017米.【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.23.已知2222212a b a A a ab b b a a ab⎛⎫-=+÷ ⎪-+--⎝⎭ (1)化简A ;(2)若点P (a ,b )在反比例函数y =﹣2x的图象上,求A 的值. 【答案】(1)ab ;(1)A =﹣1 【分析】(1)先把分子、分母因式分解,再约分,然后同分母分式相加,分母不变,分子相加,最后把除法转化乘法,约分即可;(1)把P 点代入解析式,求得ab =﹣1,即可求得A =﹣1.【详解】解:(1)2()()1[]()()a b a b a A a b b a a a b +-=+÷--- []()a b a a a b a b a b +=---- ()b a a b a b=-- =ab ,(1)∵点P (a ,b )在反比例函数2y x=-的图象上, ∴ab =﹣1,∴A =﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征,分式的运算,把分式化简是解题的关键.24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg ,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x(元/kg)有如下关系:W=280x -+,设这种产品每天的销售利润为y(元) .(1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)221201600y x x =-+-;(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元【分析】(1)每天的销售利润y=每天的销售量×每件产品的利润;(2)根据(1)得到的函数关系式求得相应的最值问题即可.【详解】(1)2(20)(20)(280)21201600y x W x x x x =-=--+=-+-;∴y 与x 之间的函数关系式为221201600y x x =-+-;(2)22212016002(30)200y x x x =-+-=--+,∵20-<,∴当30x =时,y 有最大值,其最大值为1.答:销售价定为30元时,每天的销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的实际应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法求得二次函数的最值问题是常用的解题方法.25.如图1,是一种自卸货车.如图2是货箱的示意图,货箱是一个底边AB水平的矩形,AB=8米,BC=2米,前端档板高DE=0.5米,底边AB离地面的距离为1.3米.卸货时,货箱底边AB的仰角α=37°(如图3),求此时档板最高点E离地面的高度.(精确到0.1米,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】点E离地面的高度为8.1米【分析】延长DA交水平虚线于F,过E作EH⊥BF于H,根据题意,在Rt△ABF中,求出AF,从而得到EF,结合Rt△EFH,求出EH即可求得结果.【详解】解:如图3所示,延长DA交水平虚线于F,过E作EH⊥BF于H,∵∠BAF=90°,∠ABF=37°,∴Rt△ABF中,AF=tan37°×AB≈0.75×8=6(米),∴EF=AF+AD+DE=8.5,∵∠EHF=90°=∠BAF,∠BFA=∠EFH,∴∠E=37°,∴Rt△EFH中,EH=cos37°×EF≈0.80×8.5=6.8(米),又∵底边AB离地面的距离为1.3米,∴点E离地面的高度为6.8+1.3=8.1(米),故答案为:8.1米.【点睛】本题考查了直角三角形中锐角三角函数值的应用,同角的余角相等,仰角的定义,掌握锐角三角函数值的应用是解题的关键.26.已知关于x 的方程x 2﹣(k+1)x+14k 2+1=0有两个实数根. (1)求k 的取值范围; (2)若方程的两实数根分别为x 1,x 2,且x 12+x 22=6x 1x 2﹣15,求k 的值. 【答案】(1)k≥32;(2)1 【分析】(1)根据判别式与根的个数之间的关系,列不等式计算即可;(2)根据一元二次方程根与系数间的关系表示出12x x +,12x x ,再由222121212()2x x x x x x +=+-代入进行计算即可.【详解】解:(1)由题意,得△=[﹣(k+1)]2﹣1(14k 2+1)=2k ﹣3≥0, 解得32k ≥, ∴k 的取值范围为k≥32. (2)∵由根与系数的关系,得x 1+x 2=k+1,x 1•x 2=14k 2+1 , ∵x 12+x 22=6x 1x 2﹣15,∴(x 1+x 2)2﹣8x 1x 2+15=0,∴k 2﹣2k ﹣8=0,解得:k 1=1,k 2=﹣2 ,又∵k≥32, ∴k=1.【点睛】本题考查了一元二次方程根的个数与判别式之间的关系,根与系数的关系,熟知以上运算是解题的关键. 27.在ABC ∆中,AB=6,BC=4,B 为锐角且cosB 12=.(1)求∠B 的度数.(2)求ABC ∆的面积.(3)求tanC .【答案】(1)60°;(2)63;(3)33【解析】(1)直接利用三角函数值,即可求出∠B 的度数;(2) 过A 作AD ⊥BC 于D ,根据cosB 12=,可求出BD的值,利用勾股定理可求出AD的值,即可求得ABC∆的面积;(3)利用正切概念即可求得tanC的值;【详解】解:(1)∵B为锐角且cosB12 =,∴∠B=60°;(2)如图,过A作AD⊥BC于D,在Rt ABD中,cosB1=2 BDAB=,∵AB=6,∴BD=3,∴33 AD=∴1143363 22ABCS BC AD=⨯⨯=⨯⨯=(3)∵BD=3,BC=4,∴CD=1,∴在Rt ACD中,tanC3=3133 ADCD==【点睛】本题考查了三角函数的定义及性质,掌握三角函数的性质是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误; y=3x的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x 的图象在二、四象限,故选项C 错误; y=x ²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;故选B.2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.如图,在△ABC 中,EF ∥BC ,AE 1EB 2=,S 四边形BCFE =8,则S △ABC =( )A .9B .10C .12D .13【答案】A【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵AE1 EB2=,∴AE AE11==AB AE+EB1+23=.又∵EF∥BC,∴△AEF∽△ABC.∴2AEFABCS11=S39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.4.如图,点A,B,C都在O上,20A B∠=∠=︒,则AOB∠等于()A.40︒B.60︒C.80︒D.100︒【答案】C【分析】连接OC,根据等边对等角即可得到∠B=∠BCO,∠A=∠ACO,从而求得∠ACB的度数,然后根据圆周角定理即可求解.【详解】连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO,∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选:C.【点睛】本题考查了圆周角定理,正确作出辅助线,求得∠ACB 的度数是关键.5.对于实数,a b ,定义运算“*”;()()22*a ab a b a b b ab a b ⎧-≤⎪=⎨->⎪⎩关于x 的方程()()21*1x x t +-=恰好有三个不相等的实数根,则t 的取值范围是( )A .122t -<<-B .12t >-C .1024t << D .1204t -<< 【答案】C 【分析】设()()21*1y x x =+-,根据定义得到函数解析式22252(2)2(2)x x x y x x x ⎧++≤-=⎨--+>-⎩,由方程的有三个不同的解去掉函数图象与直线y=t 的交点有三个,即可确定t 的取值范围.【详解】设()()21*1y x x =+-,由定义得到22252(2)2(2)x x x y x x x ⎧++≤-=⎨--+>-⎩, ∵方程()()21*1x x t +-=恰好有三个不相等的实数根,∴函数22252(2)2(2)x x x y x x x ⎧++≤-=⎨--+>-⎩的图象与直线y=t 有三个不同的交点, ∵22(2)y x x x =--+>-的最大值是4(1)2194(1)4⨯-⨯-=⨯- ∴若方程()()21*1x x t +-=恰好有三个不相等的实数根,则t 的取值范围是1024t <<, 故选:C.【点睛】此题考查新定义的公式,抛物线与直线的交点与方程的解的关系,正确理解抛物线与直线的交点与方程的解的关系是解题的关键.6.下列命题①若a b >,则22am bm >②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形 16的平方根是4±.其中真命题的个数是( )A .0B .1C .2D .3【答案】A【分析】①根据不等式的性质进行判断;②根据圆心角、弧、弦的关系进行分析即可;③根据正多边形的定义进行判断;④根据平方根的性质进行判断即可.【详解】①若m 2=0,则22am bm =,此命题是假命题;②在同圆或等圆中,相等的圆心角所对的弧相等,此命题是假命题;③各边相等,各内角相等的多边形是正多边形,此命题是假命题; 16,4的平方根是2±,此命题是假命题.所以原命题是真命题的个数为0,故选:A .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.7.矩形、菱形、正方形都一定具有的性质是( )A .邻边相等B .四个角都是直角C .对角线相等D .对角线互相平分 【答案】D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.8.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A .()11452x x -=B .()11452x x +=C .()145x x -=D .()145x x +=【答案】A【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为()11452x x -=. 【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为()11452x x -=, 故选:A .【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.9.如图,平行四边形ABCD 中,E 是BC 延长线上一点,连结AE 交CD 于F ,则图中相似的三角形共有( )A .1对B .2对C .3对D .4对【答案】C 【分析】根据平行四边形的对边平行,利用“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”找出相似三角形,然后即可选择答案.【详解】在平行四边形ABCD 中,AB ∥CD ,BC ∥AD ,所以,△ABE ∽△FCE ,△FCE ∽△FDA ,△ADF ∽△EBA ,共3对.故选C .【点睛】本题考查了相似三角形的判定,利用平行四边形的对边互相平行的性质,再结合 “平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”即可解题10.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数【答案】B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.11.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)【答案】C【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.12.顺次连结任意四边形各边中点所得到的四边形一定是()A.平行四边形B.菱形C.矩形D.正方形【答案】A【分析】顺次连结任意四边形各边中点所得到的四边形,一组对边平行并且等于原来四边形某一条对角线的一半,说明新四边形的对边平行且相等,所以是平行四边形.【详解】解:如图,连接AC,∵E、F、G、H分别是四边形ABCD边的中点,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC;∴EF=HG且EF∥HG;∴四边形EFGH是平行四边形.故选:A.【点睛】本题考查平行四边形的判定,解题的关键是根据中位线性质证得EF=HG且EF∥HG.二、填空题(本题包括8个小题)13.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___【答案】1【分析】根据AE:ED=1:2,得到BC=3AE,证明△DEF∽△BCF,得到DE EFBC FC=,求出FC,即可求出CE.【详解】解:∵AE:ED=1:2,∴DE=2AE,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴DE EFBC FC=,∴2AE43AE FC=∴FC=6,∴CE=EF+CF=1,故答案为:1.【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键.14.如图,点p是∠a的边OA上的一点,点p的坐标为(12,5),则tanα=_____.【答案】5 12【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出PEtanOEα=,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P (12,5),∴PE=5,OE=12, ∴512PE tan OE α==. 故答案为:512. 【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt △ACB 中,∠C=90°,则AC BC AC sinB cosB tanB AB AB BC===,,. 15.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 【答案】1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.16.如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC ,BC ,若△ABC 的面积为4,则k 的值是_____.【答案】-8【解析】连结OA ,如图,利用三角形面积公式得到S △OAB =S △ABC =4,再根据反比例函数的比例系数k 的几何意义得到12|k|=4,然后去绝对值即可得到满足条件的k 的值. 【详解】解:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △ABC =4,而S △OAB =12|k|, ∴12|k|=4, ∵k <0,∴k =﹣8故答案为﹣8【点睛】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17.如图,已知点A 的坐标为(4,0),点B 的坐标为(0,3),在第一象限内找一点P(a,b) ,使△PAB 为等边三角形,则2(a-b)=___________.【答案】13【分析】根据A 、B 坐标求出直线AB 的解析式后,求得AB 中点M 的坐标,连接PM ,在等边△PAB 中,M 为AB 中点,所以PM ⊥AB ,1302MPA BPA ∠=∠=,再求出直线PM 的解析式,求出点P 坐标;在Rt △PAM 中,AP=AB=5,532PM =22224735(2)()(3)3422PM a a =-+--=且a >0,解得a>0,即4332a +=,将a 代入直线PM 的解析式中求出b 的值,最后计算2(a-b)的值即可; 【详解】解:∵A(4,0),B(0,3),∴AB=5,设AB y kx b =+,∴4003k b b +=⎧⎨+=⎩, ∴343k b ⎧=-⎪⎨⎪=⎩ , ∴334AB y x =-+, ∵A(4,0) B(0,3) ,∴AB 中点3(2,)2M ,连接PM , 在等边△PAB 中,M 为AB 中点,∴PM ⊥AB ,1302MPA BPA ∠=∠=, ∴43pm K =, ∴设直线PM 的解析式为143y x b =+, ∴143232b ⨯+=, ∴176b =-, ∴4736PM y x =-, ∴47(,)36P a a -, 在Rt △PAM 中,AP=AB=5,∴PM =∴2222473(2)()342PM a a =-+--=, ∴2416110a a --=,∴124422a a +-==, ∵a>0,∴a =∴4736b a =-,∴432()2()122a b ++-=⨯-=【点睛】本题主要考查了一次函数的综合应用,掌握一次函数是解题的关键.18.如图,已知A(1,y 1),B(2,y 2)为反比例函数y =2x图象上的两点,一个动点P(x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是_________.【答案】(3,0)【分析】根据图意,连接AB 并延长交x 轴于点P',此时线段AP 与线段BP 之差的最大值为''AP BP AB -=,通过求得直线AB 的解析式,然后令0y =即可求得P 点坐标.【详解】如下图,连接AB 并延长交x 轴于点P',此时线段AP 与线段BP 之差的最大值为''AP BP AB -=, 将1(1,)A y ,2(2,)B y 代入2y x=中得(1,2)A ,(2,1)B , 设直线AB 的解析式为y kx b =+,代入A ,B 点的坐标得221k b k b +=⎧⎨+=⎩,解得13x y =-⎧⎨=⎩, ∴直线AB 的解析式为3y x =-+,令0y =,得3x =,∴此时P 点坐标为(3,0),故答案为:(3,0).【点睛】本题主要考查了线段差最大值的相关内容,熟练掌握相关作图方法及解析式的求解方法是解决本题的关键.三、解答题(本题包括8个小题)19.如图,AB 是⊙O 的直径,⊙O 过AC 的中点D ,DE 切⊙O 于点D ,交BC 于E .。

福建省福州市统考2017-2018学年九年级上期末数学试题(扫描版)

福建省福州市统考2017-2018学年九年级上期末数学试题(扫描版)

福州市2017.2018学年第一学期九年级期末考试 数学试卷f 斶分15口分,考试时间1Z0分钟)一.选择题(共1。

小题,年小题4分,满分如分】在每小题给出的四个选项中,只有一项是符合履目要求的,靖在答题卡的相应位置填诠)(1) 一元二次方程必一期二0的解为(A) = 3>X, = 3 (B) JC)«-3,Xj=0( C ) Jtj = 3, J 2= 0 (D) = jrj = 3(2)下列是中心对称图形但不是轴对称图形的是Q *(A)(B)(3)下列事件中,是随机事件的是(A)任意而一个三前形,其内角和是360° <B)任意抛掷一枚图钉.钉尖石地 (C)通常加热到1001C 时,水沸鹰 (D)太阳从东方升起(4)二次函数F=(』一】)‘十2图象的顶点坐标是(A)(2,-1) S[ (2J) (C) (一!2)(5)下列图形中,正妥造形内接于半狡相等的圆t(6)某医药厂两年前生产It 某种药品的成本是5000元,随着生产技术的进步,现在生 产It 该(D)M 0,2)其中正多边形周长最大的是种药品的成本是3000元.设该种筠品生产成本的年平均卜降率为上,则卜列所列方程正确的是(A) 5000x2(1-x) = 3000 (B) 5000x(13000(C) 5000x(1-2 ) = 3000 (D) 5000x(1-/) = 3000(7)已知反比例函数y = <0)的图象经过点由一hyj .叫2,%),C<3,为)则外,用,乂的大小关系是第1页共4页<A > y 2<y^<y ]《日)蛇父当《乂 (匚》弘《为<必 (口>凶<外<打CS )如图,在6x6的正方形网格中,有6个点,M,NRP,Q 、R (除犬外其余4个点 均为格点》,以O 为网心,。

为半径作网,则在@(?外的点是 ______________________________ I I I I I t 1<A )M CB ) N (C )?<0> RI 广□■阳 I L L 」■1.I t t t I I i 1 - r r »1I • I i I > । - - r r ■ r r 1(的 如图,己知®〃与坐标轴交干点4。

2017-2018学年度上学期期末考试九年级数学试卷(含答案)

2017-2018学年度上学期期末考试九年级数学试卷(含答案)

2017~2018学年度上学期期末考试九年级数学试卷一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .212x x += C .2221x x x +=+ D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( ) A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14B .516C .716 D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π 5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( ) A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A(1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB,CB 于点E ,F,连接OE ,OF,EF,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43 D .27.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .25cm D .32cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图 第7题图 第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3=-+y x 上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.3B.5C.7D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.241y x px p13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转"相当于“袋中摸球"的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:产销商品件数(x/件)10 20 30产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意; B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根, ∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根,∴5=2αβ+,1=2αβ-,∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=cx x a .也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π, 故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点. 综上k 的取值范围是k ≤4. 故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB ,CB于点E ,F,连接OE,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D .2【分析】设E 点坐标为(1,m ),则F 点坐标为(2m,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =(1﹣2m)(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m)=2×(1﹣2m )(2﹣m ),整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23,∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25cmD .32cm【分析】根据已知条件得到CP=6﹣t ,得到22222(6)2(3)18PQ PC CQ t t t +-+++于是得到结论.【解答】解:∵AP=CQ=t , ∴CP=6﹣t ,∴22222(6)2(3)18PQ PC CQ t t t =+-+++ ∵0≤t ≤2,∴当t =2时,PQ 的值最小, ∴线段PQ 的最小值是25故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22bx a=-=-,∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确; ∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确; 由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 1<y 3<y 2,故⑤错误; 故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( ) A .3 B .5 C .7 D .3【分析】连接AP,PQ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C , ∴B (0,3),C (3,0), ∴OB=3,AC=4,∴BC=32,在△APC 与△BOC 中, ∵∠APC=∠BOC=90°,∠ACP=∠OCB , ∴△APC ∽△OBC , ∴AP AC OB BC =, ∴AP=22,∴227PQ AP AQ =-=,故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论. 【解答】解:∵△BPC 是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE ;故①正确; ∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题) 11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33).【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+, 分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴2286=10AB =+. ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解. 14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC= 13+.【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OA=2,即可求得OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴332=6OB OA ==⨯. 过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°, 则2=32OD BD OB ==. Rt △BCD 中,∠OCB=60°,则3=13CD BD =. ∴OC=CD+OD=13+.故答案为:13+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得AD DFCF EF=,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF=,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°,∴∠1+∠2+60°=180°,∴∠2=120°﹣∠1,在等边△ABC中,∠A=∠C=60°,∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A﹣∠1=120°﹣∠1,∴∠2=∠3,又∵∠A=∠C,∴△ADF∽△CFE,∴AD DF CF EF=,∵FD⊥DE,∠DFE=60°,∴∠DEF=90°﹣60°=30°,∴12DF EF=,又∵AF=2,AC=8,∴CF=8﹣2=6,∴1 62 AD=,解得AD=3.故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为52.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B(m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标, ①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,221[4(1)]55052CC =--+==.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,31321x ±=⨯, 所以13132x +=,23132x -=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=?若存在,求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=两边平方可得22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题2:列表得:锁1 锁2钥匙1 (锁1,钥匙1)(锁2,钥匙1)钥匙2 (锁1,钥匙2) (锁2,钥匙2)钥匙3 (锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE,即可得出弦BD 的长. 【解答】(1)证明:连接OB,如图所示: ∵E 是弦BD 的中点,∴BE=DE,OE ⊥BD,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A , ∴∠BOE=∠DBC, ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴2210OC OB BC =+=,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的矩形CDEF 面积最大,点E 应选在何处?【分析】首先在Rt △ABC 中利用∠A=30°、AB=12,求得BC=6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE=x ,则BE=12﹣x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可.【解答】解:在Rt △ABC 中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=31263= ∵四边形CDEF 是矩形, ∴EF ∥AC .∴△BEF ∽△BAC .∴EF BEAC BA=. 设AE=x ,则BE=12﹣x . ∴63(12)3)x EF x --.在Rt △ADE 中,1122DE AE x ==.矩形CDEF 的面积S=DE•EF=2133(12)=33(012)22x x x x -+<<.当336232()bx a=-==⨯-时,S 有最大值.∴点E 应选在AB 的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:产销商品件数(x /件) 10 20 30 产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x =-(每个周期的产销利润=P•x ﹣C ) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围) (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州市2017-2018学年第一学期九年级期末质量检测数学试卷
一、 选择题
1. 一元二次方程230x x -=的解为
A. 123,3x x ==-
B. 123,0x x =-=
C. 123,0x x ==
D. 123x x == 2. 下列是中心对称图形但不是轴对称图形的是
A. B. C. D.
3. 下列事件中,是随机事件的是
A.任意画一个三角形,其内角和是360°
B.任意抛一枚图钉,钉尖着地
C.通常加热到100℃时,水沸腾
D.太阳从东方升起 4. 二次函数2(1)2y x =-+图像的顶点坐标是
A. (2,1)-
B. (2,1)
C. (1,2)-
D. (1,2)
5. 下列图形中,正多边形内接于半径相等的圆,其中正多边形周长最大的是
A. B. C. D.
6. 某医药厂两年前生产1t 某种药品的成本是5000元,随着生产技术的进步,现在生产1t 该种药品的成本是3000
元。

设该种药品生产成本的年平均下降率为x ,则下列所列方程正确的是
A.
50002(1)3000x ⨯-= B. 2
5000(1)3000x ⨯-= C. 5000(12)3000x ⨯-= D. 2
5000(1)3000x ⨯-= 7. 已知反比例函数(0)k
y k x
=
<的图像经过点123(1,),(2,),(3,)A y B y C y -,则123,,y y y 的大小关系是 A. 231y y y << B. 321y y y << C. 132y y y << D. 123y y y <<
8. 如图,在6×6的正方形网格中,有6个点,M,N,O,P ,Q,R (除R 外其余5个点均为格点),以O 为圆心,OQ 为
半径作圆,则在⊙O 外的点是
A. M
B. N
C. P
D. R
第8题 第9题
9. 如图,已知⊙P 与坐标轴交于点A,O,B ,点C 在⊙P 上,且∠ACO=60°,若点B 的坐标为(0,3),则弧OA 的长

A. 2π
B. 3π
C.
D.
10. 若二次函数2y ax bx c =++的图像与x 轴有两个交点A 和B ,顶点为C ,且244b ac -=,则∠ACB 的度数为
A.30°
B.45°
C.60°
D.90°
二、填空题
11. 已知反比例函数的图像过点(2,3),则该函数的解析式为
12. 有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为 13. 抛物线24y x x =-不经过第 象限
14. 我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出
西门七百五十步见木,问:邑方几何?”。

其大意是:如图,一座正方形城池,A 为北门中点,从点A 往正北方向走30步到B 处有一树木,C 为西门中点,从点C 往正西方向走750步到D 处正好看到B 处的树木,则正方形城池的边长为 步
15. 在平面直角坐标系中,点P 关于原点及点(0,-1)的对称点分别为A ,B ,则AB 的长为
16. 如图,在△ABC 中,AB :AC=7:3,∠BAC 的平分线交BC 于点E ,过点B 作AE 的垂线段,垂足为D ,则AE :
ED=
第14题 第16题
三、解答题
17. (8分)解方程:2
210x x --=
18. (8分)已知关于一元二次方程2
(21)(1)0x m x m m ++++=,试说明不论实数m 取何值,方程总有实数根
19. (8分)求证:相似三角形对应高的比等于相似比。

(请根据题意画出图形,写出已知,求证并证明)
20.(8分)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(单位:千帕)随气体体积V
(1)写出一个符合表格数据的p关于V的函数解析式
(2)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数解析式,基于安全考虑,气球的体积至少为多少立方米?
21.(8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋
转后的对应点为P`。

(1)画出旋转后的三角形;
(2)连接PP`,若∠BAP=20°,求∠PP`C的度数;
22.(10分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,
(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)
(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由
23.(12分)如图,AB是半圆O的直径,C,D是半圆O上的两点,弧AC=弧BD,AE与弦CD的延长线垂直,垂足
为E。

(1)求证:AE与半圆O相切;
(2)若DE=2,AE=
24.(12分)已知△ABC,∠ACB=90°,AC=BC=4,D是AB的中点,P是平面上的一点,且DP=1,连接BP,CP
(1)如图,当点P在线段BD上时,求CP的长;
(2)当△BPC是等腰三角形时,求CP的长;
(3)将点B绕点P顺时针旋转90°得到点B`,连接AB`,求AB`的最大值
25. (12分)已知二次函数2
1
(00)2
y ax bx a b =++
>,<的图像与x 轴只有一个公共点A (1) 当1
2
a =
时,求点A 的坐标; (2) 过点A 的直线y x k =+与二次函数的图像相交于另一点B ,当1b ≥-时,求点B 的横坐标m 的取值范
围。

相关文档
最新文档