八年级数学分式专题培优(最新整理)
八年级数学—分式培优练习题(完整答案)精编版
![八年级数学—分式培优练习题(完整答案)精编版](https://img.taocdn.com/s3/m/5b945257680203d8cf2f2454.png)
三年级学生每人买 1 支,则只能按零售价付款,需用
2
m
1 元,( m 为正整数,且
2
m
1
>100)如果多买 60 支,则可按批发价付款,同样需用 m 2 1 元.设初三年级共有 x 名学
生,则① x 的取值范围是
发价每支应为
;②铅笔的零售价每支应为
元.(用含 x 、 m 的代数式表示) .
元;③批
14. A 、B 两地相距 20 km ,甲骑车自 A 地出发向 B 地方向行进 30 分钟后,乙骑车自 B 地 出发,以每小时比甲快 2 倍的速度向 A 地驶去,两车在距 B 地 12 km 的 C 地相遇,求甲、 乙两人的车速 .
3 5
2
2
1 x
x
2
1
1
x
4 32, x
x
x
五 化简得 m+n,当 m=2,n=1 时 m+n=3
4 2 , 0 x 1, x 1 0, x 1
x
x
42
六 1 x=-7
,2 x=1 是增根,原方程无解七 24。
分式 (二 )答案
一、选择题
1. A 2. B 3. A
二、填空题
2 4. 3 5.- 1< x <
1
……………………………………………………………最新资料推荐…………………………………………………
第 n 个式子是 2 7m=3,7 n=5,则 72m-n=
1
01
3 4 2008
2=
3
a
4若
b
a 2 ab b 2 2,则 a 2 b2 =
三 化简
ab 2
3a 2b 2
3
人教版八年级上册第十五章 《分式》培优训练
![人教版八年级上册第十五章 《分式》培优训练](https://img.taocdn.com/s3/m/b4003f6e960590c69fc37604.png)
《分式》培优训练一.选择题1.要使分式有意义,则x的取值应满足()A.x=0 B.x=1 C.x≠0 D.x≠12.计算:的结果是()A.B.C.D.3.如果a﹣b=4,且a≠0,b≠0,那么代数式(﹣b)÷()的值是()A.﹣4 B.4 C.2 D.﹣24.分式方程﹣=0的解是()A.x=4 B.x=C.x=﹣6 D.x=﹣5.如图,在数轴上,表示的值的点可以是()A.P点B.Q点C.M点D.N点6.抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务.设原来每天生产x台呼吸机,下列列出的方程中正确的是()A.+=+2 B.+=+2C.=﹣2 D.=﹣27.若关于x的方程+=2的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m>6且m≠8 D.m<6且m≠0 8.已知x﹣=1,则x2+等于()A.3 B.2 C.1 D.09.根据如图所示的框图,若输入x=()﹣1,y=,则输出的m的值为()A.﹣2 B.2 C.D.﹣0.510.若关于x的一元一次不等式组无解,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.7 B.8 C.14 D.15二.填空题11.分式和的最简公分母为.12.使代数式有意义的x的取值范围是.13.若a2﹣4a+1=0,那么=.14.已知(ab≠0),则代数式的值为.15.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.三.解答题16.化简:(1)x﹣y+;(2)×.17.解方程:(1)=;(2)+2=.18.先化简,再求值:,其中x=﹣6.19.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).20.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案一.选择题1.解:由题意得:x﹣1≠0,解得:x≠1,故选:D.2.解:原式=÷=•=.故选:A.3.解:(﹣b)÷()=•=•=a﹣b,∵a﹣b=4,∴原式=4.故选:B.4.解:分式方程﹣=0,去分母得:2(x+2)﹣3x=0,去括号得:2x+4﹣3x=0,解得:x=4,经检验x=4是分式方程的解.故选:A.5.解:=+=+==1.故选:C.6.解:设原来每天生产x台呼吸机,根据题意可列方程:+=﹣2,整理,得:=﹣2,故选:D.7.解:原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,因为关于x的方程+=2的解为正数,所以2﹣>0,解得:m<6,因为x=2时原方程无解,所以可得2﹣≠2,解得:m≠0.故选:D.8.解:∵x﹣=1,∴(x﹣)2=1,即x2﹣2+=1,则x2+=3,故选:A.9.解:∵x=()﹣1=2,y=,∴x≠y,∴m=y=.故选:C.10.解:解不等式组,得,∵不等式组无解,∴a﹣1≤6,∴a≤7.解分式方程,得y=,∵y=为非负整数,a≤7,∴a=﹣1或1或3或5或7,∵a=1时,y=1,原分式方程无解,故将a=1舍去,∴符合条件的所有整数a的和是﹣1+3+5+7=14,故选:C.二.填空题(共5小题)11.解:分式和的分母分别是2(m﹣n)、(m﹣n).则它们的最简公分母是2(m﹣n).故答案是:2(m﹣n).12.解:由题意,得.解得x≠±3且x≠﹣4.故答案是:x≠±3且x≠﹣4.13.解:∵a2﹣4a+1=0,∴a﹣4+=0,则a+=4,∴原式=4﹣2=2,故答案为:2.14.解:∵(ab≠0),∴,∴(a2+b2)2=4a2b2,∴(a2﹣b2)2=0,∴a2=b2,∴a=±b,当a=b时,=12019﹣12020=1﹣1=0;当a=﹣b时,=(﹣1)2019﹣(﹣1)2020=(﹣1)﹣1=﹣2;故答案为:0或﹣2.15.解:分式方程﹣=1的解为x=且x≠,∵关于x的分式方程﹣=1的解为正数,∴>0且≠,∴a>0且a≠1.,解不等式①得:y>3;解不等式②得:y<a.∵关于y的一元一次不等式组的解集为无解,∴a≤3.∴0<a≤3且a≠1.∵a为整数,∴a=2、3,整数a的和为:2+3=5.故答案为5.三.解答题(共5小题)16.解:(1)原式=+==;(2)原式=×=.17.解:(1)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=6,解得x=3,检验:x=3时,(x+1)(x﹣1)=8≠0,∴分式方程的解为x=3;(2)两边都乘以x﹣4,得:﹣3+2(x﹣4)=1﹣x,解得x=4,检验:当x=4时,x﹣4=0,∴x=4是分式方程的增根,∴原分式方程无解.18.解:原式=×=﹣=,当x=﹣6时,原式==2.19.解:(1)设甲公司有x人,则乙公司有(x+30)人,依题意,得:×=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲公司有150人,乙公司有180人.(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,依题意,得:15000m+12000n=100000+140000,∴m=16﹣n.又∵n≥10,且m,n均为正整数,∴,,∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.20.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.。
八年级数学分式培优试卷
![八年级数学分式培优试卷](https://img.taocdn.com/s3/m/0019aa2ff56527d3240c844769eae009591ba201.png)
一、选择题(每题5分,共25分)1. 下列各式中,不是分式的是()A. 2a + bB. a/bC. 3/xD. a/(2b + 1)2. 已知a、b是实数,且a ≠ 0,b ≠ 0,下列分式中,值为1的是()A. a/bB. b/aC. a/b + b/aD. a/b - b/a3. 已知x + y ≠ 0,下列分式中,分母有理化后为x + y的是()A. x/(x + y)B. y/(x + y)C. x - y/(x + y)D. x + y/(x - y)4. 若a、b、c是等差数列,且a + b + c = 0,则下列分式中,值为0的是()A. a/b + b/cB. b/a + c/bC. c/a + a/bD. a/b + c/a5. 下列各式中,值为-1的是()A. 1 - 1/2B. 1 + 1/2C. 1 - 2/3D. 1 + 2/3二、填空题(每题5分,共25分)6. 已知x + 2/x = 5,则x = __________。
7. 已知a/b + b/a = 2,则a² + b² = __________。
8. 已知a、b、c是等差数列,且a + b + c = 0,则b² + c² = __________。
9. 若x² + y² = 1,则x² - y² = __________。
10. 已知a、b、c是等比数列,且a + b + c = 0,则a² + b² + c² =__________。
三、解答题(每题15分,共45分)11. 已知a、b是实数,且a ≠ 0,b ≠ 0,求证:a² + b² ≥ 2ab。
12. 已知x + y + z = 0,求证:(x + y)² + (y + z)² +(z + x)² = 2(x² + y² + z²)。
苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷
![苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷](https://img.taocdn.com/s3/m/03219ea4846a561252d380eb6294dd88d0d23d02.png)
【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 3.(2023春•六合区校级月考)计算.(1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x ; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ;(2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2; (4)(4x−2−x +2)÷(x−4x−2). 9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b ). 10.(2023春•滨湖区校级期中)化简:(1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1.13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2bc )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b. 16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).17.(2023春•南关区校级月考)计算:(1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−219.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1x −1x−120.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 21.(2023秋•青龙县期中)计算:(1)a 2a−b +b 2a−b −2ab a−b ;(2)(1−1a+1)÷a a 2+2a+1. 22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2x x 2−4−1x−2.23.(2023•九龙坡区校级开学)分式化简:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n(2m−n)2;(2)(a +2−5a−2)÷3−a 2a−4. 25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 29.(2023秋•荔湾区期末)计算:(1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下: •y 2x 2−xy −y 2−x 2x 2−2xy+y 2=x x−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x =2时,y 等于何值时,原分式的值为5.【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题) 班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.【分析】(1)根据分式的减法法则进行计算,再化成最简分式即可;(2)先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,最后根据分式的乘法法则进行计算即可.【解答】解:(1)原式=a 2−1a−1=(a+1)(a−1)a−1 =a +1;(2)原式=[(m−3)(m+3)m+3−7m+3]•2(m+3)m(m−4) =m 2−9−7m+3•2(m+3)m(m−4)=(m+4)(m−4)m+3•2(m+3)m(m−4)=2(m+4)m=2m+8m . 2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 【分析】(1)根据零指数幂、负整数指数幂和有理数的乘方计算即可;(2)先算括号内的式子,再计算括号外的除法即可.【解答】解:(1)(π−3.14)0+(13)−2−(−2)3=1+9﹣(﹣8)=1+9+8=18;(2)(1a+1−1a 2−1)÷a−3a+1 =a−1−1(a+1)(a−1)•a+1a−3=a−2(a−1)(a−3)=a−2a 2−4a+3. 3.(2023春•六合区校级月考)计算. (1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的乘除运算以及加减运算法则即可求出答案.【解答】解:(1)原式=4ab 6a 3b =23a 2. (2)原式=1−a−2a ×a 2+a a 2−4 =1−a−2a ×a(a+1)(a+2)(a−2)=1−a+1a+2=a+2a+2−a+1a+2=1a+2. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a 【分析】(1)利用零指数幂,负指数幂和算术平方根的性质进行计算即可;(2)先利用整式的除法法则,乘法法则进行计算,然后再进行合并即可;(3)先分别利用负指数幂,分式的乘方,分式的乘法法则,除法法则进行计算,然后再进行减法运算;(4)先算括号内的减法,然后再将括号外分式的分子分母进行因式分解,将除法化为乘法再进行约分,最后化为最简分式即可.【解答】解:(1)(π−3)0+(−13)−1−√(−2)2=1+(﹣3)﹣2=﹣4;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a )=2a 3﹣5a 3=﹣3a 3;(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x =x 24y 2⋅xy x 2−xy 2xy 2⋅x 2=x 4y −x 4y=0;(4)(a −1−2a−1a+1)÷a 2−4a+42+2a=(a+1)(a−1)−(2a−1)a+1÷(a−2)22(a+1) =a(a−2)a+1⋅2(a+1)(a−2)2 =2a a−2. 5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .【分析】(1)先通分再加减即可;(2)先因式分解,再根据除法法则计算即可.【解答】解:(1)x 2x+2−x +2 =x 2x+2−x 2+2x x+2+2x+4x+2 =4x+2;(2)x 2−16x+4÷2x−84x =(x+4)(x−4)x+4•4x 2(x−4)=2x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ; (2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 【分析】(1)把除法转为乘法,再约分即可;(2)利用分式的减法法则进行运算即可;(3)先通分,再进行运算即可;(4)先通分,把能分解的进行分解,除法转为乘法,再约分即可.【解答】解:(1)6xy 2÷2y 2x=6xy 2⋅x 2y 2 =3x 2;(2)2x−1x−1−1x−1 =2x−1−1x−1=2(x−1)x−1=2;(3)x x 2−4−12x−4 =2x 2(x−2)(x+2)−x+22(x−2)(x+2) =x−22(x−2)(x+2)=12(x+2)=12x+4;(4)x−y x ÷(x −2xy−y 2x ) =x−y x ÷x 2−2xy+y 2x =x−y x ⋅x(x−y)2 =1x−y .7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9 =1+3−√3−3+3=4−√3;(2)(1+2x )÷x 2+4x+4x 2=x+2x •x 2(x+2)2=x x+2.8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2;(4)(4x−2−x +2)÷(x−4x−2).【分析】(1)根据分式的约分可以解答本题;(2)先对分式的分子分母分解因式,再约分即可;(3)先通分,然后再分解因式,最后约分即可;(4)先对括号内的式子通分,然后计算括号外的除法即可.【解答】解:(1)a 2bc ⋅(−bc 2a )=−a 2; (2)a−2a+3×2a+6a 2−4=a−2a+3•2(a+3)(a+2)(a−2) =2a+2;(3)a 22a−4−2a−2=a 2−42(a−2)=(a+2)(a−2)2(a−2)=a+22;(4)(4x−2−x +2)÷(x−4x−2) =4−(x−2)(x−2)x−2•x−2x−4=4−x 2+4x−4x−4=−x(x−4)x−4 =﹣x .9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b). 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法计算括号里,再算括号外,即可解答.【解答】解:(1)原式=3﹣1﹣3√3−2+√3=﹣2√3;(2)原式=b (a+b)(a−b)÷(a+b−a a+b ) =b (a+b)(a−b)⋅a+b b=1a−b. 10.(2023春•滨湖区校级期中)化简: (1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.【分析】(1)先把除法转化为乘法,然后约分化简即可;(2)把第二个分母变形后根据同分母分式的加减法法则计算;(3)先通分,然后根据同分母分式的加减法法则计算.【解答】解:(1)原式=b 2−27a 3⋅9a 2b ⋅3ab b 4 =−12ab 2;(2)原式=4x 22x−3−92x−3=4x 2−92x−3=(2x−3)(2x+3)2x−3=2x +3; (3)原式=m 2m+2−(m −2)=m 2m+2−m 2−4m+2=m 2−m 2+4m+2=4m+2. 11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的加减运算即可求出答案.【解答】解:(1)原式=−a 2.(2)原式=a 22(a−2)−42(a−2)=a 2−42(a−2) =(a−2)(a+2)2(a−2)=a+22.12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1. 【分析】(1)原式通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−(x+2)(x+2)(x−2)=2x−x−2(x+2)(x−2)=x−2(x+2)(x−2)=1x+2;(2)原式=a−1a ÷(a−1)2(a+1)(a−1) =a−1a •(a+1)(a−1)(a−1)2=a+1a .13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 【分析】(1)根据分式的除法运算进行化简即可求出答案.(2)根据分式的加减运算进行化简即可求出答案.【解答】解:(1)原式=8x 3⋅x 232 =14x. (2)原式=a−c+b−c a−b =a+b a−b . 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).【分析】(1)根据分式的乘法计算即可;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(−m n 2)•n m =﹣(m n 2•n m ) =−1n ;(2)a a−1÷(a 2a 2−1−a a+1) =a a−1÷a 2−a(a−1)(a+1)(a−1)=a a−1⋅(a+1)(a−1)a 2−a 2+a=a a−1⋅(a+1)(a−1)a =a +1.15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b .【分析】(1)按照从左到右的顺序,进行计算即可解答;(2)先算乘方,再算乘除,即可解答;(3)先把除法转化为乘法,进行计算即可解答;(4)先把除法转化为乘法,进行计算即可解答.【解答】解:(1)3x 2y ⋅512ab 2÷(−5a 4b ) =15x 2y12ab 2•(−4b 5a ) =−x 2y a 2b; (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; =−a 6b 3c 3•c 4a 4÷b 4c 4a 4 =−a 6b 3c 3•c 4a 4•a 4b 4c 4 =−a 6c 3b; (3)a+31−a ÷a 2+3aa 2−2a+1=a+31−a •(a−1)2a(a+3)=1−a a ;(4)(ab −b 2)÷a 2−b 2a+b =b (a ﹣b )•a+b (a+b)(a−b)=b .16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).【分析】(1)分式的加减运算以及乘除运算法则即可求出答案.(2)分式的加减运算以及乘除运算法则即可求出答案.【解答】解:(1)原式=x+1−1(x−1)(x+1)•(x−1)2x(x−1)=x (x−1)(x+1)•x−1x=1x+1.(2)原式=2(x−3)x−2÷5−(x+2)(x−2)(x−2) =2(x−3)x−2•x−29−x 2=−2(x−3)(x+3)(x−3) =−2x+3. 17.(2023春•南关区校级月考)计算: (1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 【分析】(1)先分解因式,然后再约分.(2)同分母相减,分母不变,分子相减即可求出答案.【解答】解:(1)原式=x (x+1)(x−1)•x+1x 2=1x(x−1). (2)原式=a 2+2ab+b 2−a 2−b 2ab =2ab ab=2. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−2【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【解答】解:(1)原式=16m 6n 29t 2÷n mt=16m 6n 29t 2×mt n =16m 7n 9t; (2)原式=(x+2)(x−2)(x−2)2−x+1x+2−x x−2 =x+1x−2−x x−2=1x−2. 19.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1【分析】(1)直接进行通分运算进而得出答案;(2)直接进行通分运算进而得出答案;(3)直接利用分式的性质化简,再利用分式的混合运算法则计算得出答案.【解答】解:(1)3x (x−3)2−x 3−x =3x (x−3)2+x(x−3)(x−3)2 =x 2(x−3)2;(2)1x+1+1x−1−x 2+1x 2−1=x−1x 2−1+x+1x 2−1−x 2+1x 2−1=−x 2+2x−1(x+1)(x−1)=−(x−1)2(x+1)(x−1)=−x−1x+1;(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1 =1+x x−1•(x−1)2x+1=x ﹣1.20.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 【分析】(1)先算括号内的减法,把除法变成乘法,再算乘法即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=(a−1)(a+1)−(4a−1)a+1•a+1(a−4)2=a 2−1−4a+1a+1=a 2−4a a+1•a+1(a−4)2 =a(a−4)a+1•a+1(a−4)2=a a−4;(2)原式=[x+2x(x−2)−x−1(x−2)2]•x x−4 =(x+2)(x−2)−x(x−1)x(x−2)2•x x−4 =x 2−4−x 2+x x(x−2)2 =x−4x(x−2)2⋅x x−4 =1(x−2)2 =1x 2−4x+4. 21.(2023秋•青龙县期中)计算: (1)a 2a−b +b 2a−b −2ab a−b; (2)(1−1a+1)÷a a 2+2a+1. 【分析】(1)根据同分母分式加减法则进行计算;(2)先通分计算括号内的减法,再把除法转化为乘法,约分计算便可.【解答】解:(1)a 2a−b +b 2a−b −2ab a−b=a 2+b 2−2ab a−b=(a−b)2a−b =a ﹣b ;(2)(1−1a+1)÷aa 2+2a+1 =a a+1×(a+1)2a =a +1.22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2xx 2−4−1x−2.【分析】(1)先算小括号里面的,然后再算括号外面的;(2)先通分,然后按同分母分式加减法法则进行计算求解.【解答】解:(1)原式=(x +2y )(x ﹣2y )•xy 2y+x ⋅1x(2y−x) =﹣y ;(2)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−x−2(x+2)(x−2) =1x+2. 23.(2023•九龙坡区校级开学)分式化简: (1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 【分析】(1)根据分式的乘除法可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4 =(4+x)(4−x)(x+2)2⋅2(x+2)x ⋅x+2x+4 =2(4−x)x=8−2x x ;(2)1a+1−3−aa 2−6a+9÷a 2+a a−3=1a+1−3−a (a−3)2⋅a−3a(a+1) =1a+1+1a(a+1) =a+1a(a+1)=1a .24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n (2m−n)2; (2)(a +2−5a−2)÷3−a 2a−4.【分析】(1)先约分,再根据分式的减法法则进行计算即可;(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【解答】解:(1)原式=32m−n −12m−n=3−12m−n=22m−n ;(2)原式=(a+2)(a−2)−5a−2÷−(a−3)2(a−2) =a 2−9a−2•2(a−2)−(a−3) =(a+3)(a−3)a−2•2(a−2)−(a−3)=﹣2(a +3)=﹣2a ﹣6.25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 【分析】(1)先通分,再根据同分母分式相加法则求出答案即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)x x−1+3x−11−x 2 =x(x+1)(x+1)(x−1)−3x−1(x+1)(x−1)=x 2+x−3x+1(x+1)(x−1)=x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1) =x−1x+1; (2)(2m m−1−m m+1)÷m m 2−1 =2m(m+1)−m(m−1)(m+1)(m−1)•(m+1)(m−1)m =m 2+3m (m+1)(m−1)•(m+1)(m−1)m =m(m+3)(m+1)(m−1)•(m+1)(m−1)m=m +3.26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 【分析】(1)先算乘方,把除法变成乘法,最后根据分式的乘法法则求出答案即可;(2)先算括号内的加减,再把除法变成乘法,最后根据分式的乘法法则求出答案即可.【解答】解:(1)原式=(﹣3xy )÷2y 23x •y 2x 2 =(﹣3xy )•3x 2y 2•y 2x 2=−9y 2;(2)原式=x−2y x+y ÷x−2y xy •x+y xy=x−2y x+y •xy x−2y •x+y xy =1.27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;(2)(x +1−8x−1)÷x 3−9x x 2−2x+1. 【分析】(1)先变形为同分母分式的加减运算,再根据法则计算即可;(2)先计算括号内分式的减法、将除式的分子、分母因式分解,继而将除法转化为乘法,然后约分即可.【解答】解:(1)原式=2y−x x−y −y x−y +x x−y =2y−x−y+x x−y=y x−y ;(2)原式=(x 2−1x−1−8x−1)÷x(x+3)(x−3)(x−1)2=(x+3)(x−3)x−1•(x−1)2x(x+3)(x−3)=x−1x .28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 【分析】(1)根据完全平方公式.单项式乘多项式可以解答本题;(2)先算括号内的减法,然后计算括号外的除法即可.【解答】解:(1)(a +b )2+a (a ﹣2b );=a 2+2ab +b 2+a 2﹣2ab=2a 2+b 2;(2)(1−x x+2)÷x 2−4x+4x 2−4=x+2−x x+2×(x+2)(x−2)(x−2)2 =2x−2. 29.(2023秋•荔湾区期末)计算: (1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)原式变形后,利用同分母分式的加法法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a−1a−b +1+b a−b=a+b a−b;(2)原式=4−a2+a2−aa−1•a−1(a+4)(a−4)=−a−4a−1•a−1 (a+4)(a−4)=−1a+4.30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•y2x2−xy−y2−x2x2−2xy+y2=xx−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x=2时,y等于何值时,原分式的值为5.【分析】(1)根据被减数、减数、差及因数与积的关系,化简分式求出盖住的部分即可;(2)根据x=2时分式的值是5,得关于y的方程,求解即可.【解答】解:(1)∵(xx−y +y2−x2x2−2xy+y2)÷y2x2−xy=[xx−y +(y+x)(y−x)(x−y)2]×x(x−y)y2=−y x−y ×x(x−y)y2=−x y∴盖住部分化简后的结果为−x y;(2)∵x=2时,原分式的值为5,即22−y=5,∴10﹣5y=2解得y=8 5经检验,y=85是原方程的解.所以当x=2,y=85时,原分式的值为5.。
八年级分式与分式方程培优专题
![八年级分式与分式方程培优专题](https://img.taocdn.com/s3/m/602573dfb9f67c1cfad6195f312b3169a551ea57.png)
八年级分式与分式方程培优专题
1.无论x取何值,分式都有意义的是C。
2.当x=-a时,分式的值为零。
3.当x=2时,分式的值为零。
4.(1)xy+yz+zx/15x+3xy-5y=3,求的值。
2)若x/y=y/z=z/x,求x^3/y^3的值。
5.甲种什锦糖的单价较高,因为10千克A种糖和10千克B种糖混合而成的甲种什锦糖的单价为(10a+10b)/(10+10)=a+b 元/千克,而乙种什锦糖的单价为(100a+100b)/(100+100)=a+b 元/千克,两者单价相同,但甲种什锦糖的混合比例更合理,因此其单价较高。
6.当a-6a+9与|b-1|互为相反数时,(a^2+b^2)/(a^2-b^2)的值为-4.
7.(1)(1/2)x^2-4x+8
2)1/[(x(x+1)(x+2))(x+2)(x+3)(x+9)(x+10)]
8.解方程:x=2或x=-3/2.
9.解方程:x=1或x=-3.
10.如果关于x的方程(-3/2)x-3/(2m)=1有增根,则m的值等于-2.
11.当m=1/2时,关于x的方程2mx^3+2=0会产生增根。
12.设轮船在静水中的速度为v,水流速度为u,则由题意可列出以下方程组:
80/(v+u)+42/(v-u)=7
40/(v+u)+70/(v-u)=7
解得v=28千米/小时,u=6千米/小时。
13.XXX单独完成工程所需的天数为x,乙队单独完成所需天数为y,则由题意可列出以下方程组:
y/x=2
1/x+2/(x+y)=1
解得x=3天,y=6天。
2024年中考数学复习-分式性质的拓展应用考点培优练习
![2024年中考数学复习-分式性质的拓展应用考点培优练习](https://img.taocdn.com/s3/m/d29f6184185f312b3169a45177232f60ddcce787.png)
分式性质的拓展应用考点培优练习考点直击1.分式定义:形如AB的式子叫分式,其中A,B是整式,且B中含有字母.(1) B=0时,分式无意义; B≠0时,分式有意义.(2) 分式的值为0:A=0,B≠0时,分式的值等于0.(3)分式的约分:把一个分式的分子与分母的公因式约去叫作分式的约分.方法是把分子、分母因式分解,再约去公因式.(4)最简分式:一个分式的分子与分母没有公因式时,叫作最简分式.分式运算的最终结果若是分式,一定要化为最简分式.(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫作分式的通分.(6)最简公分母:各分式的分母所有因式的最高次幂的积.(7)有理式:整式和分式统称有理式.2.分式的基本性质:(1)AB =A⋅MB⋅M(M是不为0的整式);(2)AB =A÷MB÷M(M是不为0的整式);(3)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.例题精讲例1若实数a,b,c满足条件1a +1b+1c=1a+b+c,则a,b,c中( )A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等【思路点拨】首先把等式去分母得到b²c+bc²+a²c+ac²+a²b+ab²+2abc=0,用分组分解法将上式左边分解因式得(a+b)(b+c)(a+c)=0,,从而得到a+b=0或b+c=0或a+c=0,根据相反数的定义即可选出选项.举一反三1 (湖北中考)已知分式x+y1−xy的值是a,如果用x,y的相反数代入这个分式所得的值为b,则a,b ( )A. 相等B.互为相反数C.互为倒数D.乘积为−1举一反三2 下列分式从左到右的变形一定正确的是 ( )A.b+xa+x =baB.b2a=b22abC.x−yx+y =y−xx+yD.−x−yx+y=−1举一反三3 要使1x+2=x−3x2−x−6成立,必须满足 ( )1A. x≠-2B.x≠−2且x≠3C. x≠3D.以上都不对例2 (南京统考)已知三个数x,y,z满足xyx+y =−2,yzy+z=43,xzx+z=−43,求xyzxy+yz+zx的值.【思路点拨】分式的分子是单项式,分母是多项式时,可以通过对等号两边同时取倒数来帮助运算.举一反三 4 已知代数式x⁴−x²+6x−8的值等于1,求代数式xx+1的值.举一反三5 已知xx2+x+1=13,求分式x2x4+x2+1的值.举一反三6 已知1x −1y=3,求分式2x−3xy−2yx−2xy−y的值.例3【探索】(1)若3x+4x+1=3+mx+1,则m=;(2) 若5x−3x+2=5+mx+2,则m= .【总结】若ax+bx+c =a+mx+c(其中a,b,c 为常数),则m=.【应用】利用上述结论解决:若代数式4x−3x−1的值为整数,求满足条件的整数x的值.举一反三7 已知x+1x =3,求x2x4+x2+1的值.11举一反三8 (西安统考)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.在分式中,我们定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x−1x+1,x2x−1这样的分式就是假分式;再如3x+1,2xx2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即整式与真分式的和的形式).如x−1x+1=(x+1)−2x+1=1−2x+1;再如x2x−1=x2−1+1x−1=(x+1)(x−1)+11=x+1+1x−1.解决下列问题:(1) 分式2x是 (填“真分式”或“假分式”);(2)将假分式x−1x+2化为带分式:;(3)如果分式2x−1x+1的值为整数,那么整数x的值为 .过关检测基础夯实1.下列各式中2x ,a+2b2,a+bπ,a+1a,(x−1)(x+2)x+2,a+√bb,分式的个数是 ( )A. 2B. 3C.4D. 52.使分式x−1x2−3x+2有意义的x 的取值范围是 ( ) A. x≠1 B. x≠2C. x≠1且x≠2D.x可为任何数3.若分式x2−4x+3(x−1)(x−2)的值为0,则( )A. x=1或x=3B. x=3C. x=1D. x≠1且. x≠24.下列约分正确的是 ( )A.a9a3=a3 B.x+1x+1=0 C.x2+2x+1x+1=x+1 D.a2+b2a+b=a+b5.a5,n2m,12π,ab+1,a+b3,y5−1z中,分式有个.6.当分式1x−3有意义时,则 x 满足的条件是 .7.若分式x+1x−1的值为 0,则 x 的值是8.利用分式的基本性质填空:(1)3a5xy =()10axy(a≠0);(2)a+2a2−4=1().9.约分:(1)a3b3a2b+ab ;(2)x2−2x+1(x2+1)2−4x2.10. 通分: 2m−3,12(m+3).能力拓展11. 当分式62x−3的值为整数时,自然数x 的取值可能有 ( )A.3个B. 4个C.6 个D.8个12. 如果分式a2a+b中的a,b都同时扩大2倍,那么该分式的值 ( ) A. 不变 B. 缩小 2倍C. 扩大 2倍D. 扩大 4 倍13. 设xyz≠0,且3x+2y—7z=0,7x+4y—15z=0,则4x2−5y2−6z2x2+2y2+3z2=¯.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则a−23b12a+2b=15.x 取何值时,下列分式有意义:(1)x+22x−3;(2)6(x+3)|x|−12;(3)x+6x2+1.16. (1) 已知分式2x2−8x−2,x取何值时,分式的值为0?(2)x 为何值时,分式x2+23x−9的值为正数?17.已知实数a,b满足, 6ᵃ=2010,335ᵇ=2 010,求1a +1b的值.综合创新18. 设 a +b +c = abc(abc≠0),化简: a (1−b 2)(1−c 2)+b (1−c 2)(1−a 2)+c (1−a 2)(1−b )2aℎc= .19.若 x²+x −1=0,则x 4+(x−1)2−1x (x−1)的值为 .20.(舟山中考)给定下面一列分式(其中x≠ 0):x 3y,−x 5y2,x 7y3,−x 9y 4,⋯(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式.4 分式性质的拓展应用【例题精讲】 1. B 解析: 1a+1b+1c=1a+b+c,去分母并整理得 b²c +bc²+a²c +ac²+a²b + ab²+2abc =0,即 (b²c +2abc +a²c )+(bc²+ac²)+(a²b +ab²)=0,∴c(a + b)²+c²(a +b )+ab (a +b )=0,(a +b ). (ac +bc +c²+ab )=0,(a +b )(b +c )⋅(a+c)=0,即a+b=0或b+c=0或a+c=0,则a ,b ,c 中必有两个数互为相反数.2. --4 解析:由已知条件可得x+y xy= −12,y+zyz=34,z+xzx=−34,即 1x+ 1y=−12,1y+1z=34,1z+1x=−34,三式相加得 2x+2y+2z=−12,∴1x+ 1y+1z=−14,∴xy+yz+zxxyz=−14, ∴xyz xy+yz+zx=−4.3.【探索】(1)1 (2)-13【总结】b-ac 【应用】x=2或x=0 解析:【探索】(1)将已知等式整理得3x+4x+1=3x+3+m x+1,即3x+4=3x+3+m,解得m=1;(2) 将已知等式整理得5x−3x+2=5x+10+m x+2,即5x-3=5x+10+m,解得:m=-13.【应用】4x−3x−1=4(x−1)+1x−1=4+1x−1,:x 为整数且4x−3x−1为整数,∴x-1=±1,∴x=21或x=0.【举一反三】1.B 解析:根据题意,用x ,y 的相反数代入这个 分 式,即 b =−x−y1−(−x )(−y )= −x+y 1−xy=−a,所以a ,b 互为相反数.2. D 解析:当a≠0且x=0时,等式才能成立,A 错误;当b≠0时,从左到右的变形才能成立,B 错误;分式从左不能变形到右,C 错误;−x−y x+y=−(x+y )x+y=−1,D 正确.3. B 解析:x+2≠0,解得x≠--2,又∵x²-x--6≠0,(x+2)(x -3)≠0,解得x≠-2且x≠3,则x≠-2且x≠3时,等式成立.4.7±√136解析: ∵x⁴−x²+6x −8=1, ∴x⁴−x²+6x −9=0,∴x⁴−(x −3)²= ,∴(x²+x −3)(x²−x +3)=0,∴x²+(x--3=0或 x²−x +3=0.当 x²−x +3=0时,方程无解;当 x²+x −3=0时,x=−1±√132.当 x =−1+√132时, xx+1=−1+√132−1+√132+1√131+√13= 7−√136;当 x =−1−√132时,xx+1=−1−√132−1−√132+1√131−√13=7+√136. 5. 13解析:由x x 2+x+1=13整理变形得1x+1+1x=13,从而得 x +1x=2.而 x 2+x 2x 4+x 2+1=1x 2+1+1x2,1x 2=(x +1x)2−2=2, 故x2x4+x2+1=13.6. 35解析:∵1x−1y=3,∴y−x=3xy,∴x−y=−3xy,∴2x+3xy−2yx−2xy−y=2(x−y)+3xy(x−y)−2xy=2×(−3xy)+3xy−3xy−2xy=−3xy−5xy=35.7. 18解析:将x+1x=3两边同时乘x,得x2+1=3x,x2x4+x2+1=x2(x2+1)2−x2=x29x2−x2=18.8.(1) 真分式(2)1−3x+2(3)2或-4或0或-2解析:(3)2x−1x+1=2x+2−3x+1=2−3x+1.所以当x+1=3或-3或1或-1时,分式的值为整数.解得x=2或x=-4或x=0或x=-2.【过关检测】1. B 解析: a+2b2,a+bπ的分母中均不含有字母,因此它们是整式,而不是分式;a+√bb的分子不是整式,因此不是分式.2. C 解析: ∵x²−3x+2≠0即(x-1)(x-2)≠0,∴x-1≠0且x-2≠0,∴x≠1且x≠2.3. B 解析:∵分式x2−4x+3(x−1)(x−2)的值为0,∴x²−4x+3=0且(x--1)(x--2)≠0,∴x=3.4. C 解析:原式=a⁶,A错误;原式=1,B错误;该分式是最简分式,不需要约分,D错误.5.3 解析: n2m ,ab+1,y5−1z为分式.6. x≠3解析:由题意得x--3≠0,解得x≠3.7.-1 解析:由分式x+1x−1的值为0,得x+1=0且x-1≠0,解得x=-1.8.(1) 6a² (2)a-29.(1) 原式=a3b3ab(a+1)=a2b2a+1(2) 原式=(x−1)2(x2+1+2x)(x2+1−2x)=(x−1)2(x+1)2(x−1)2=1(x+1)210.2m−3=4(m+3)2(m+3)(m−3)12(m+3)=m−32(m+3)(m−3)11. B 解析:要使62x−3的值为整数,则2x-3只能取±1,±2,±3,±6,而x 是自然数,分析知2x-3可取±1或±3,对应得x为0,1,2,3.12. C 解析:∵分式a2a+b 中的a,b都同时扩大2倍, ∴(2a)22a+2b=2a2a+b,∴该分式的值扩大2倍.13.−116解析:∵xyz≠0,∴x≠0且y≠0且z≠0,{3x+2y−7z=0circle17x+4y−15z=0circle2②--①×2得7x-6x--15z+14z=0,∴x=z,将x=z代入①得3z+2y-7z=0,解得y=2x= 2z,原式=4z2−5×4z2−6z2z2+2×4z2+3z2=−22z212z2=−116.14.6a−4b3a+12b 解析a−23b12a+2b=6(a−23b)6(12a+2b)=6a−4b3a+12b.15.(1)x≠32(2)x≠±12 (3) x 为任意实数解析:(1)要使x+22x−3有意义,则2x-3≠0,解得x≠32.当x≠32时, x+22x−3有意义.(2)要使6(x+3)|x|−12有意义,则|x|-12≠0,解得x≠±12.当x≠±12时, 6(x+3)|x|−12有意义.(3)要使x+6x2+1有意义,则x²+1≠0.x为任意实数,x+6x2+1有意义.16.(1) -2 (2)x>3解析:(1)由2x2−8x−2=0,得2x²−8=0且x--2≠0,解得x=-2.当x=-2时,分式的值为0.(2)x2+23x−9的值为正数,得3x-9>0,解得x>3.当x>3时,分式x2+23x−9的值为正数.17. 1 解析: ∵6ᵃ=2010,335ᵇ=2010,∴6ᵃᵇ=2010ᵇ,335ᵃᵇ=2010ᵃ,∴6ᵃᵇ×335ᵃᵇ=2010ᵇ⁺ᵃ,(6×335)ᵃᵇ=2010ᵃ⁺ᵇ,∴ab=a+b,∴1a +1b=a+bab=1.18.4 解析:分子=a(1−b²−c²+b²c²)+b(1−c²−a²+a²c²)+c(1−a²−b²+a²b²)=(a+b+c)−ab(a+b)−bc(b+c)-ac(c+a)+abc(ab+ac+bc).∵a+b+c=abc,∴分子=abc-ab(abc-c)-bc(abc-a)-ac(abc-b)+abc(ab+ac+bc)=abc-abc(ab-1+bc-1+ac-1)+abc(ab+ac+bc)=abc+3abc=4abc.∴原式=4abcabc=4.19. 3 解析: ∵x²+x−1=0,∴x²=−(x−(1),x2+x=1,∴x4+(x−1)2−1x(x−1)=[−(x−1)]2+(x−1)2−1x(x−1)=2x2−4x+1x2+x−2x=2(1−x)−4x+11−2x=3(1−2x)1−2x=3.20.(1)任意一个分式除以前面一个分式恒等于−x2y(2)观察这一列分式:①发现分母上是y¹,y²,y³,…,故第7 个式子的分母是y⁷.②发现分子上是x³, x⁵,x⁷,…,i故第7个式子的分子是:x¹⁵.③再观察符号,发现第偶数个分式为负,第奇数个分式为正.综上,第 7 个分式应该是x15y7.。
八年级数学分式专题培优
![八年级数学分式专题培优](https://img.taocdn.com/s3/m/806a4cd74b35eefdc9d333ab.png)
八年级数学分式专题培优八年级数学培优试题 ----分式 11、学完分式运算后,老师出了一道题“化简:x3 2 x ”x 2x 2 4小明得做法就是:原式( x 3)( x 2)x 2 x 2 x 6 x 2 x 2 8 ;x 2 4 x 2 4 x 2 4 x 2 4 小亮得做法就是:原式( x 3)( x 2)(2x) x 2x 6 2 xx 24 ;小芳得做法就是:原式x 3 x 2 x 3 1x3 1 1.x 2 (x 2)( x 2) x 2 x 2x 2此中正确得就是()A .小明B .小亮C .小芳D .没有正确得2、以下四种说法( 1)分式得分子、分母都乘以(或除以)a 2 ,分式得值不变; (2)分3 得值能够等于零; ( 3)方程 x1 11得解就是 x1 ;( 4)x式8 y1 x 12得xx1最小值为零;此中正确得说法有()A 、1 个B 、 2 个C 、 3 个D 、 4 个3、对于 x 得方程2 x a 1 得解就是正数,则a 得取值范围就是()x1A . a >- 1B . a >- 1 且 a ≠ 0C .a <- 1D . a <- 1 且 a ≠- 24.若解分式方程2x m 1 x 1产生增根,则 m 得值就是()x 1x 2 xxA 、 1或 2B 、 1或 2C 、 1或 2D 、 1或 25. 已知1 15则b a )ab a , a 得值就是(bb1 A 、 5B 、 7C 、 3D 、6x 3得值为整数得36.若 x 取整数,则使分式x 值有 ( ) .2x -1(A)3 个 (B)4 个 (C)6个 (D)8 个7、 已知2 x3 x A B,此中 A 、B 为常数,那么 A +B 得值为()x 2x 1xA 、- 2B 、 2C 、- 4D 、 48、 甲、乙两地相距 S 千米,某人从甲地出发,以 v 千米 /小时得速度步行,走了a 小时后改乘汽车,又过b 小时抵达乙地,则汽车得速度()SS av S av 2SA 、B 、C 、bD 、a bbaa b9、当 x时,分式1无心义.x 23a (a 0)②a 21。
人教版八年级数学上册 第15章 分式 培优训练(含答案)
![人教版八年级数学上册 第15章 分式 培优训练(含答案)](https://img.taocdn.com/s3/m/660ea7f583c4bb4cf6ecd162.png)
人教版 八年级数学 第15章 分式 培优训练一、选择题1. 若分式||x -1(x -2)(x +1)的值为0,则x 等于 ( ) A .-1B .-1或2C .-1或1D .12. 计算2x 2-1 ÷1x -1的结果是( ) A.2x -1B.2x 3-1C.2x +1D .2(x +1)3. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( ) A .3B .4C .5D .64. 若△÷a 2-1a =1a -1,则“△”可能是( ) A.a +1aB.a a -1C.a a +1D.a -1a5. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =420080x - B .3000x +80=4200xC .4200x =3000x -80D .3000x =420080x +6. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A.62103(1)-=x x B.621031=-x C.621031-=x x D.62103=x7. 当分式的值为0时,x 的值是 ( )A .5B .-5C .1或5D .-5或5 8. △△△x △△△x △m x △3△3m3△x △3△△△△△△△m △△△△△△( )A. m <92B. m <92△m ≠32C. m >△94D. m >△94△m ≠△349. 关于x 的方程+=0可能产生的增根是 ( ) A .x=1B .x=2C .x=1或x=2D .x=-1或x=210. 已知=,则的值为 ( ) A .B .C .D .二、填空题11. 计算:y 2x2·x y =________.12. (2020·杭州)若分式11x +的值等于1,则x =________.13. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.14. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.15. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.16. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.三、解答题17. △△△△△△△△aa△b(1b△1a)△a△1b△△△a△2△b△13.18. △△△△△△△△(1△1a△1)÷a2△4a△4a2△a△△△a△△1.19. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?20. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.21. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版八年级数学第15章分式培优训练-答案一、选择题1. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.2. 【答案】C3. 【答案】B【解析】把x=2代入分式方程计算即可求出k的值.解:把x=2代入分式方程得:1=1,解得:k=4.故选:B.4. 【答案】A[解析] △=a2-1a·1a-1=(a+1)(a-1)a·1a-1=a+1a.5. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.6. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A ,因此本题选A .7. 【答案】B [解析] 由分式的值为0,得-5=0,解得x=±5.但当x=5时,x 2-4x -5=0,故舍去,所以分式的值为0时,x 的值是-5.8. 【答案】B △△△△△x △mx △3△3m3△x △3△△x △mx △3△3mx △3△3△△△x △9△2m 2△△△△△⎩⎪⎨⎪⎧9△2m 2>09△2m 2≠3△△m <92△m ≠32△△△B.9. 【答案】C10. 【答案】D [解析] ∵=,∴=6. ∴a+=5.∴a+2=25,即a 2++2=25.∴=a 2++1=24. ∴=.二、填空题11. 【答案】12x12. 【答案】0 【解析】本题考查了分式的值的意义,因为分式11x +的值等于1,所以分子、分母相等,即x +1=1,解得x =0,当x =0时,分母x +1≠0,所以分式11x +的值等于1时,x =0,因此本题答案为0.13. 【答案】10(x +1)(x -1) [解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).14. 【答案】±1 [解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解.故答案为±1.15. 【答案】6 [解析] 因为对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,所以-2+a =0,4-b =0,解得a =2,b =4,则a +b =6.16. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0,所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2),得x(x -1)=2(x +2)+(x -1)(x +2).解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0.所以原分式方程的解为x =-12.(3)方程两边同乘x(x +1)(x -1),得三、解答题17. 【答案】△△△△△a a△b ·a△b ba △a△1b△1b △a△1b△a b .(4△)△△a△2△b△13△△△△△a b △2×3△6.(6△)18. 【答案】△△(1△1a△1)÷a 2△4a△4a 2△a △a△2a△1·a△a△1△△a△2△2△a a△2.△a △△1△△△△△a a△2△△1△1△2△13.19. 【答案】设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得 120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8. 答:现在每天用水量是8吨.20. 【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. 依题意得-=10,解得x=40.经检验,x=40是原方程的解且符合题意.1.5x=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.21. 【答案】 解:(1)1(2)设该商品在乙商场的原价为x 元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。
培优专题分式的运算(含答案)
![培优专题分式的运算(含答案)](https://img.taocdn.com/s3/m/b289e356b84ae45c3b358cd2.png)
八年级数学培优(一)分式的运算及分式方程班级姓名【知识精读】1. 分式的乘除法法则a bcdacbd ⋅=;a bcdabdcadbc ÷=⋅=当分子、分母是多项式时,先进行因式分解再约分。
2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。
求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。
(2)同分母的分式加减法法则a cbca bc ±=±(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。
3. 分式乘方的法则()a babnnn=(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。
学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。
5.关于分式方程(1)分式方程的定义;(2)解分式方程的基本思想方法;(3)解分式方程的一般方法和步骤;(4)分式方程的增根问题:a.产生增根的原因是 。
验根的方法是 。
(5)列分式方程解应用题的步骤: 。
下面我们一起来学习分式的四则运算。
【分类解析】例1:计算: 12442222+--÷--+n m m n m n m mn n解:原式=---⋅-+-1222m n m n m n m n m n ()()()4 =--+=+-++=+1223m nm nm n m n m nn m n 说明:分式运算时,若分子或分母是多项式,应先因式分解。
例2:(分式通分的六大技巧)(1)逐步通分:(2)整体通分:(3)分组通分(4)分解简化通分:(5)列项相消:(6)活用乘法公式:例3、已知:M x y xy y x yx y x y 222222-=--+-+,则M =_________。
初中数学八年级下数学分式培优(1)
![初中数学八年级下数学分式培优(1)](https://img.taocdn.com/s3/m/d7aa10e3760bf78a6529647d27284b73f24236f7.png)
一、选择题一、选择题1、下列式子:b a 23-,112++xx ,3b a +,x7,()b a +¸6中,分式的个数是(中,分式的个数是( )A .2个B .3个C .4个D .5个 2、若分式24x x +的值为正数,则x 的取值范围是( ) A.x>0 B.x>-4 C.C.x≠0x≠0D.x>-4且x≠0 3、如果分式、如果分式111ab a b+=+,那么a b ba+的值为(的值为( )).(A )1 ((B )-1 ((C )2 2 ((D )-24. 4. 分式分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有(中是最简分式的有( ))A A..1个B B..2个C C..3个D D..4个 5.5.如果把分式如果把分式yx y x ++2中的y x ,都扩大2倍,则分式的值(倍,则分式的值( ))A.A.扩大扩大2倍B. B.缩小缩小2倍C. C.是原来的是原来的32 D. D.不变不变不变6.6.一项工程,甲单独干,完成需要一项工程,甲单独干,完成需要a 天,乙单独干,完成需要b 天,若甲、乙合作,完成这项工程所需的天数是(天数是( )) A.ba ab + B.ba 11+ C.abb a + D.)(b a ab +7.7.如果如果,0432¹==z y x 那么zy x z y x -+++的值是(的值是( ))A.7B.8C.9D.10 8、若解分式方程2111x x m x xx x+-++=+产生增根,则m 的值是(的值是( )A. --12或 B. -12或C. 12或 D. 12或-9、甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度(小时到达乙地,则汽车的速度( ) A. S a b+B. S a v b- C. S a v a b-+ D. 2S a b+10.10.已知已知已知k ba c ca b cb a=+=+=+,则直线2y kx k =+一定经过(一定经过()) A.A.第一、二象限第一、二象限第一、二象限 B. B. B.第二、三象限第二、三象限第二、三象限 C. C. C.第三、四象限第三、四象限第三、四象限 D. D. D.第一、四象限第一、四象限第一、四象限 二、填空题二、填空题1、(1)当x___________x___________时,分式时,分式43x x --有意义;(2)当x=_____________x=_____________时,分式时,分式||99x x -+的值等于零.的值等于零.(3)当x ____时,分式422--x x 无意义(4)当x=_____________x=_____________时。
(完整)初二-分式培优题(难度+附答案+免费)_PDF压缩
![(完整)初二-分式培优题(难度+附答案+免费)_PDF压缩](https://img.taocdn.com/s3/m/0292c0064028915f814dc268.png)
9、如图,第( 1)个多边形由正三角形“扩展”而来,边数记为
,第( 2)个多边形由正方形“扩展”而来,
边数记为 ,…,依此类推 , 由正 边形“扩展” 而来的多边形的边数记为
( n≥ 3). 则 的值是
,
当
的结果是
时, n 的值
.
10、先观察下列等式,然后用你发现的规律解答下列问题.
┅┅
(1) 计算
,那么
的值是 (
)
A. C.
B .4
D .14
三、简答题 15 、已知: 四、计算题 16、计算:
的值. 。
17 、给定下面一列分式:
,
, ,一 ,…。 ( 其中 ≠ 0)
(1) 把任意一个分式除以前面一个分式,你发现了什么规律
?
(2) 根据你发现的规律,试写出给定的那列分式中的第
7 个分式。
18 、课常上,李老师出了这样一道题;
一、填空题
1、若 a、 b 满足
,则
的值是
2、当 x _____________ 时,
与
互为倒数.
3 、如果
,则
;
。 .
4、当 m=______时,分式
的值为零 .
5 、已知
,则
。
6、若 a∶ b∶ c=1∶ 3∶5,则
, 。
7 、已知:
,则 =______________ .
8 、已知
,则
=_______________________ 。
.
( 2)探究
.(用含有 的式子表示)
( 3)若
的值为 ,求 的值.
二、选择 11、如果 m 个人完成一项工作需要 d 天,则( m+ n)个人完成这项工作需要的天数为(
人教版八年级下分式培优
![人教版八年级下分式培优](https://img.taocdn.com/s3/m/2ac7d46c48d7c1c708a145a8.png)
分 式一、选择题1.代数式-,23x ,1,87,1,,42ax y x y x -++-π中是分式的有( ) A.1个 B.2个 C.3个 D.4个2.如果把yx y 322-中的x 和y 都扩大5倍,那么分式的值: A. 扩大5倍 B. 不变 C. 缩小5倍 D. 扩大4倍3.如果把分式y x xy +中的x 和y 都扩大2倍,则分式的值( )A 、扩大4倍;B 、扩大2倍;C 、不变;D 缩小2倍4.使分式2-x x 有意义的是( ) A.2≠x B. 2-≠x C. 2±≠x D. 2≠x 或2-≠x5.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++ 6.下列约分正确的是( )A 、326x x x =; B 、0=++y x y x ; C 、x xy x y x 12=++; D 、214222=y x xy 7.下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y-- 8.不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为: A. ba b a b a b a 232331213121-+=-+ B. y x y x y x y x 7208137.028.03.1--=-- C yx y x y x y x 726487414321+-=+- D. xy x x y x 5355.0321-=-9.如果x >y >0,那么xy x y -++11的值是( ) A. 0 B. 正数 C. 负数 D. 不能确定10.若分式6932---a a a 的值恒为正,则它的取值范围是( ) A.a <-2 B.a≠3 C.a >-2 D. a >-2且a≠311.计算()a b a b b a a+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+ 12.如果,0432≠==z y x 那么z y x z y x -+++的值是( ) A.7 B.8 C.9 D.1013.若322=+-b a b a ,则a b 等于 ( ) A .54- B .54 C .1 D .54 14.x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( )克 A.a mx B.x am C.a x am + D.a x mx + 15.桶中装有液状纯农药a 升,刚好一满桶,第一次倒出8升后用水加满,第二次又倒出混合药4升,则这4升混合药液中的含药量为( )升 A.a 32 B.a a )8(4- C.84-a D.2)8(4aa - 16.小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A. 2n m + B. nm mn + C. n m mn +2 D. mn n m + 二、填空题17.在下列各式中,),(32,,1,2,2,1222b a x x y x b a a -++π分式有 . 18.当x 时,分式42-x x 有意义. 19.能使分式22--x x 的值为零的所有x 的值是 .20.已知2+x a 与2-x b 的和等于442-x x ,则b a = .21.若22m x y -=2222xy y x y--+x y x y -+,则=m . 22.已知0≠x ,则xx x 31211++= . 23.如果2a b =,则2222a ab b a b -++= ____________ 24.若-1<a<b<0,把分式 a b 的分子、分母都加1,得分式 1a 1b ++,则分式值的变化是___________.(填:增大、减小或不变) 25.已知a+b=3,ab=1,则a b +b a 的值等于 . 三、解答题26.已知xx y 321--=,x 取哪些值时:(1)y 的值是零;(2)分式无意义;(3)y 的值是正数; (4)y 的值是负数.27.将下列分式约分:(1)23239616bc a bz a --;(2)()c b a c b a -+-+22;(3)m m m m --+2232;(4)222232b ab a b a ---.28.化简:xyx xz xy x z y x y xy x z y x y x --+⋅--++÷---2222222222)(2)(29.若,532-==z y x 求x zyx 232++的值.30.已知1x -1y =3,求5352x xy yx xy y +---的值.31.已知,31=+x x 求1242++x x x 的值.32.已知:0132=+-x x ,求221x x -的值.。
八级数学培优分式总复习
![八级数学培优分式总复习](https://img.taocdn.com/s3/m/3a45145ef524ccbff0218450.png)
13、分式总复习【知识精读】定义:A( A 、B 为整式,B 中含有字母)B通分:性质约分:A A M (M 0)B B MAA M(M 0) B B M分式定义:分母含有未知数的方程。
如5 11 x 3x思想:把分式方程转变成整式方程方法:两边同乘以最简公分母分式方程 解法依照:等式的基天性质注意:一定验根应用:列分式方程解应用题及在其余学科中的应用【分类解读】1. 分式存心义的应用 例 1. 若 ab ab 10 ,试判断 1,1能否存心义。
11a1 b 1剖析: 要判断,能否存心义,须看其分母能否为零,由条件中等式左侧因式分a 1b 1解,即可判断a 1,b 1与零的关系。
解:ab a b 1a(b1) (b 1) 0 即 (b1)(a1)b 1 0 或 a 1 01,1中起码有一个无心义。
a 1b 12. 联合换元法、配方法、拆项法、因式分解等方法简化分式运算。
例 2. 计算:a 2a 1 a 2 3a 1 a1 a 3剖析: 假如先通分,分子运算量较大,察看分子中含分母的项与分母的关系,可采纳“分别分式法”简化计算。
解: 原式a(a 1) 1a( a 3) 1a 1a3a1 (a a 1 )a 1 311a 1 a 3(a3) (a 1)( a 1)( a3)2a 2(a 1)( a 3)例 3. 解方程: 11x 2 5x 57x 6x 2 5x 6x 2剖析: 由于 x 2 7x 6(x 1)( x 6) , x 25x 6 ( x 2)( x 3) ,所以最简公分母为 : ( x 1)( x6)( x 2)( x 3) , 若 采 用 去 分 母 的 通 常 方 法 , 运 算 量 较 大 。
由 于x 2 5x 5x 2 5x 6111故可得以下解法。
x 25x 6x 2 5x 6x 25x 6 解:x 25x 611x 2 5x1x 2 5x 66原方程变成 111 127x6 x 2 5x6x11x 2 7x 6 x 25x 6 x 27 x6 x 2 5x6x 0 经查验, x0 是原方程的根。
《易错题》初中八年级数学上册第十五章《分式》经典题(专题培优)
![《易错题》初中八年级数学上册第十五章《分式》经典题(专题培优)](https://img.taocdn.com/s3/m/9ca3f1019e314332386893cf.png)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28 3.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠4.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N 5.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 6.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 7.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=--8.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( ) A .段① B .段② C .段③ D .段④9.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5 10.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 11.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5 B .-5 C .15 D .15- 12.下列各式中正确的是( )A .263333()22=x x y yB .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 13.在代数式2π,15x +,221x x --,33x -中,分式有( ) A .1个B .2个C .3个D .4个 14.若分式2-3x x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32 D .x ≠3215.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1二、填空题16.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.17.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________. 18.计算22a b a b a b-=-- _________. 19.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.20.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________. 21.关于x 的分式方程3122m x x -=--无解,则m 的值为_____. 22.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 23.关于x 的方程53244x mx x x++=--无解,则m =________. 24.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________ 25.方程111x x x x -+=-的解是______. 26.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________. 三、解答题27.(1)填空:①32(2)(5)x xy ⋅-=____________;②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =. 28.计算:(1)|﹣3|12(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5. 29.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?30.解方程:813(3)x x x x x ++=--.。
八年级数学分式培优专题
![八年级数学分式培优专题](https://img.taocdn.com/s3/m/6dbca12b76a20029bc642d33.png)
郴州菁华园第二课堂培优班资料专题一 分式知识点一、分式的相关概念【小试牛刀】1.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 2.当x _______时,分式2212x x x -+-的值为零. 3.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 4.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零; B .分式无意义 C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零 5.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 【挑战自我】1. 若ab a b +--=10,试判断1111a b -+,是否有意义.知识点二、分式的化简,求分式的值【小试牛刀】1、(1)已知13x y 1-=,求5352x xy y x xy y +---的值. (2) 若432z y x ==,求222z y x zx yz xy ++++的值.2、化简下列各式(1)2481124811111x x x x x -----++++ (2)1111(1)(1)(2)(2)(3)(9)(10)x x x x x x x x +++++++++++【挑战自我】3、111,,,345ab bc ac abc a b b c c a ab bc ca===+++++已知a 、b 、c 为实数,且求的值。
知识点三、分式在实际问题中的应用【小试牛刀】1、商店通常用以下方法来确定两种糖混合而成的什锦糖的价格:设A种糖的单价为a元/千克,B种糖的单价为b元/千克,则m千克A种糖和n千克B种糖混合而成的什锦糖的单价为ma nbm n++元/千克(平均价).现有甲乙两种什锦糖,均由A、B两种糖混合而成;其中甲种什锦糖由10千克A种糖和10千克B种糖混合而成,乙种什锦糖由100元A种糖和100元B种糖混合而成,你认为哪一种什锦糖的单价较高?为什么?【挑战自我】某商店有一架左、右臂不相等的天平,当顾客预购质量为2m千克的货物时,营业员先在左盘上放上m千克的砝码,右盘放货物,待天平平衡后,把货物倒给顾客,然后改为右盘放砝码m千克,左盘放货物,待天平平衡后,把货物倒给顾客,这样顾客两次得到的货物2m千克,你认为这种交易公平吗?试用你所学的数学知识加以解释.【当堂检测】1、如果32=b a ,且a ≠2,那么51-++-b a b a =( ). 2.已知M x y xy y x yx y x y 222222-=--+-+,则M =__________。
人教版 八年级数学上册 15.1 分式 培优训练(含答案)
![人教版 八年级数学上册 15.1 分式 培优训练(含答案)](https://img.taocdn.com/s3/m/97f67e03f5335a8103d2203b.png)
人教版八年级数学15.1 分式培优训练一、选择题(本大题共10道小题)1. 在式子+中,分式的个数是()A.2B.3C.4D.52. 若分式||x-1(x-2)(x+1)的值为0,则x等于()A.-1 B.-1或2C.-1或1 D.13. 当式子的值为0时,x的值是()A.5B.-5C.1或5D.-5或54. [2018·温州] 若分式的值为0,则x的值是()A.2B.0C.-2D.-55. 计算的结果是()A.x-1B.-x+1C.x+1D.-x-16. 下列分式中,最简分式是()A.B.C.D.7. 下列各式中是最简分式的是()A.B.C.D.8. 不改变分式的值,使分子、分母最高次项的系数变为正数,正确的是()A.B.C.D.9. 若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是 ( )A .B .C .D .10. 下列各项中,所求的最简公分母错误的是 ( )A .与的最简公分母是6x 2 B .与的最简公分母是3a 2b 3c C .与的最简公分母是m 2-n 2 D .与的最简公分母是ab (x -y )(y -x ) 二、填空题(本大题共6道小题)11. 计计计x x 计1计1x 计1计________计12. 分式与的最简公分母是 .13. 请你写出一个分母是二项式且能约分的分式: .14. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.15. 当y ≠0时,=,这种变形的依据是 .16. 不改变分式的值,使分子、分母各项系数都化成整数,且首项系数都为正数,则= .三、解答题(本大题共4道小题)17. 若分式215x x -+的值为正数,求x 的取值范围.18. (1)填空:=-=-=,-===-;(2)你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?19. 阅读下列解题过程,然后回答问题:题目:已知==(a,b,c互不相等),求x+y+z的值.解:设===k,则x=k(a-b),y=k(b-c),z=k(c-a),∴x+y+z=k(a-b+b-c+c-a)=k·0=0,即x+y+z=0.依照上述方法解答下列问题:已知==(x+y+z≠0),求的值.20. 已知无论x取何实数,分式总有意义,求m的取值范围.小明对此题刚写了如下的部分过程,便有事离开.解:==.(1)请将小明对此题的解题过程补充完整;(2)利用小明的思路,解决下列问题:无论x取何实数,分式都有意义,求m的取值范围.人教版八年级数学15.1 分式培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.3. 【答案】B[解析] 由|x|-5=0,得x=±5.而x=5时,x2-4x-5=0;x=-5时,x2-4x-5≠0,所以x=-5.4. 【答案】A[解析] 由题意,得x-2=0,解得x=2.当x=2时,x+5≠0,∴x的值是2.5. 【答案】D[解析] ==-x-1.故选D.6. 【答案】B[解析] ==,=,只有选项B是最简分式.7. 【答案】B8. 【答案】D[解析] 分子的最高次项为-3x2,分母的最高次项为-5x3,系数均为负数,所以应同时改变分子、分母的符号,可得===.9. 【答案】A[解析] 根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,有=.所以选项A符合题意.10. 【答案】D二、填空题(本大题共6道小题)11. 【答案】1计计计计计计计x计1x计1计1.12. 【答案】x2-x13. 【答案】答案不唯一,如14. 【答案】6[解析] 因为对于分式x-bx+a,当x=-2时,无意义,当x=4时,值为0,所以-2+a=0,4-b=0,解得a=2,b=4,则a+b=6.15. 【答案】分式的基本性质16. 【答案】[解析] ===.三、解答题(本大题共4道小题)17. 【答案】1x>【解析】∵20x≥,∴250x+>.∴当10x->时,原分式值为正数.即当1x>时,原分式的值为正数.18. 【答案】解:(1)-b-a-b-a a b(2)对于分式的符号、分子的符号、分母的符号,改变其中任意两个,分式的值不变.19. 【答案】解:设===k,则①+②+③,得2x+2y+2z=k(x+y+z).∵x+y+z≠0,∴k=2.∴===.20. 【答案】解:(1)==.因为无论x取何实数,(x-1)2+(m-1)都不等于0,所以m-1>0.所以m>1.(2)==.因为无论x取何实数,3(x-1)2+m-3都不等于0,所以m-3>0.所以m>3.。
八年级上册分式解答题(培优篇)(Word版 含解析)
![八年级上册分式解答题(培优篇)(Word版 含解析)](https://img.taocdn.com/s3/m/217f0bf1a8956bec0875e33c.png)
答:2018年平均每天的垃圾排放量为100万吨.
(2)由(1)得2019年垃圾的排放量为200万吨,
设2020年垃圾的排放量还需要増加m万吨,
90%,
m 98,
∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.
【点睛】
此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.
点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.
2.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍.若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.
【答案】(1)100;(2)98.
【解析】பைடு நூலகம்
【分析】
(1)设2018年平均每天的垃圾排放量为x万吨,根据题意列方程求出x的值即可;
(2)设设2020年垃圾的排放量还需要増加m万吨,根据题意列出不等式,解得m的取值范围即可得到答案.
【详解】
(1)设2018年平均每天的垃圾排放量为x万吨,
,
解得:x=100,
【详解】
解:设规定期限x天完成,则有:
,
解得x=20.
经检验得出x=20是原方程的解;
答:规定期限20天.
方案(1):20×1.5=30(万元)
方案(2):25×1.1=27.5(万元 ),
《易错题》初中八年级数学上册第十五章《分式》知识点(专题培优)
![《易错题》初中八年级数学上册第十五章《分式》知识点(专题培优)](https://img.taocdn.com/s3/m/e4dca21d551810a6f42486cf.png)
一、选择题1.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >-B .1m ≠C .1mD .1m >-且1m ≠ 2.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变3.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .34.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 5.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 6.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0 C .-3 D .-47.已知2,1x y xy +==,则y x x y+的值是( ) A .0 B .1 C .-1 D .28.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .759.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( )A .20本B .25本C .30本D .35本10.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 11.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .612.下列分式中,最简分式是( ) A .211x x +- B .2211x x -+ C .2222x xy y x xy -+- D .21628x x -+ 13.下列各式中错误的是( )A .2c d c d c d c d d a a a a -+-----== B .5212525a a a +=++ C .1x y x y y x -=--- D .2211(1)(1)1x x x x -=--- 14.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a - 15.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x + D .21x x + 二、填空题16.计算2216816a a a -++÷428a a -+=__________. 17.若32a b =,则22a b a+=____. 18.当x _______时,分式22x x -的值为负. 19.计算:()0322--⋅=________. 20.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.21.已知方程3a 1a a 44a --=--,且关于x 的不等式组x a x b >⎧⎪⎨⎪≤⎩只有4个整数解,那么b 的取值范围是____________.22.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.23.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 24.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.25.计算:22824x x-=+-__________. 26.已知:4a b +=,2210a b +=,求11a b +=______. 三、解答题27.(1)解方程.22510111x x x -+=+--.(2)先化简分式(2241442a a a a ---+-)÷212a a a +-,然后在0,1,2中选一个你认为合适的a 值,代入求值.28.计算:(1)|﹣3|12(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5. 29.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 30.(1)不改变分式的值,把下列分子和分母的最高次的系数都化为正数2342n n -=-+________. (2)不改变分式的值,把下列分子和分母的中各项系数都化为整数0.20.50.3x y x y-=-_______. (3)若分式231x x +-的值是整数,求整数x 的值. (4)已知12x x +=,求2421x x x ++的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x - 2+1、学完分式运算后,老师出了一道题“化简:分式提高训练x + 3 + 2 - x ”x + 2 x 2 - 4(x + 3)(x - 2) x - 2 x 2 + x - 6 - x - 2 x 2 - 8小明的做法是:原式= - = = ;x 2 - 4 x 2 - 4 x 2 - 4 x 2 - 4小亮的做法是:原式= (x + 3)(x - 2) + (2 - x ) = x 2 + x - 6 + 2 - x = x 2 - 4 ;x + 3 x - 2 x + 3 1 x + 3 -1 小芳的做法是:原式=- = - = = 1. x + 2 (x + 2)(x - 2) x + 2 x + 2 x + 2其中正确的是( )A. 小明 B .小亮C .小芳D .没有正确的32、下列四种说法(1)分式的分子、分母都乘以(或除以) a + 2 ,分式的值不变;(2)分式的值可以等于零;(3)8 - y方程 x + 1 + x + 1 1 x + 1 = -1的解是 x = -1 ;(4)x 2 + 1的最小值为零;其中正确的说法有()A .1 个B.2 个C. 3 个D. 4 个2x + a3、关于 x 的方程 x -1= 1 的解是正数,则 a 的取值范围是( )A .a >-1B .a >-1 且 a ≠0C .a <-1D .a <-1 且 a ≠-24.若解分式方程2x - x + 1 m + 1 = x 2 + x x + 1 x产生增根,则 m 的值是( )A. -1或- 2B.-1或2C.1或2 D.1或- 21 1 5.已知 a b 5 , 则b a + b a + a 的值是() b1 A 、5B 、7C 、3D 、36x + 3 6. 若 x 取整数,则使分式的值为整数的 x 值有( ).2x -1A 3 个B 4 个C 6 个D 8 个7. 已知 2x - 3 = x 2- xA +x - 1 B,其中 A 、B 为常数,那么 A +B 的值为( )xA 、-2B 、2C 、-4D 、48. 甲、乙两地相距 S 千米,某人从甲地出发,以 v 千米/小时的速度步行,走了 a 小时后改乘汽车,又过 b 小时到达乙地,则汽车的速度()SS - avS - av2SA.B.C.D.a +b b 1 1 1 a + b a + b9、分式方程 - = 3 3 + x x - 9 去分母时,两边都乘以 。
10、若方程1 = x -12 x - a的解为正数,则 a 的取值范围是 .x =⎫ 11.已知: ⎛ x 2 + 2 + 1 ⎝ x 21 42 - a ⎪ ⎭+ x + 3 1 - b = 0 x23,则 a,b 之间的关系式是12. 已知x + 2 y = y - x = 2x +1 ,则 ( y - x ) 的值是 . 313.若 abc ≠ 0 ,且三、计算或化简:a +bc = b + c a = c + ab (a + b )(b +c )(c + a ) ,则 =abc4a 4a⎛ 1 ⎫2x 2 - x +114.(1) (a -1+ )(1+ a - )a -1 a +1 (2) 1- 1- ⎪ 1- x ÷ x 2 - 2x +1⎝ ⎭15. 当 a 为何值时, x -1 - x - 2 x - 2 x +1 = 2x + a (x - 2)(x +1)的解是负数?2mx 3 16. m 为何值时,关于 x 的方程x - 2 +x 2- 4= x + 2会产生增根?17. 有 160 个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作 3 小时后,乙才开始工作,因此比甲迟 20 分钟完成任务,已知乙每小时加工零件的个数是甲的 3 倍,问甲、乙两车间每小时各加工多少零件?18.解方程:1 + x + 10 1 + (x + 1)(x + 2) 1 (x + 2)(x + 3) +… 1 =2 (x + 9)(x + 10)+ +1、若分式x = x 2 - 3x1x - 3八年级数学培优试题 ----- 分式 1,从左到右的变形成立,则 x 的取值范围是;a 2、如果 b= 2 ,那么 a 2 - ab + b 2a 2 +b 2 =;1 1 3、若 a b 1 a b ,则 a + bb a= ;4、不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.2a - 3b(1) 2 2a +b 3(2)0.1x + 0.2 y 0.25x - 0.03yx 2 - 1 5、如果分式的值为 0,求 x 的值。
x - 13a 2 - ab6、先化简,再求值;,其中 9a 2 - 6ab + b 2a = -8,b = 1。
27、已知 1 -1 a b = 4.,求 a - 2ab - b 的值.2a - 2b + 7ab8、已知分式- 6a + 18a 2 - 9的值是正整数,求整数 a 的值。
9、已知 x + 1 x x 2 3 ,求 x 4 + x 2 + 1的值。
a 10、已知 3 =b =c4 5≠ 0 ,求分式 3a + 2b - 3c 的值。
a + b + c = =6x - 611、先将分式x 2 - 2x + 1化简,再讨论 x 取什么整数时,能使分式的值是正整数。
12、已知 x + 1= 3 ,求分式 x 2+ 1 x x 2的值,能求出 x 3 + 1 x 3 , x 4 + 1 x 4的值吗?13、已知 x 2 - 5x + 1 = 0 ,求 x 2 + 1x 2的值。
14、已知 a + 1aa 4 + a 2 + 15 ,求a 2的值。
x 2 + y 2 + z 215、已知3x - 4 y - z = 0,2x + y - 8z = o ,求的值。
xy + yz + 2xz16、已知x a - b= y b - c = z c - a ,(a , b , c 互不相等),求 x + y + z 的值。
17、已知 a , b , c 为实数,且 ab a + b = 1 , 3 bc b + c = 1 , 4 ac a + c = 1 ,那么5 abc ab + bc + ca的值是多少?18、由, 你能总结出 1 (n 为正整数)的通式吗? 2 3 n (n + 1)并试着化简: x (x + 1) + (x + 1)(x + 2) + (x + 2)(x + 3) + + (x + 8)(x + 9) .= 1 = 1 = 1 - 1 , 1 = 1 = 1 - 1 , 1 = 1 = 1 - 1 1⨯ 2 2 2 ⨯ 3 6 2113 ⨯4 1213 4,1“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。