2020年高考理科数学《立体几何》题型归纳与训练教学教材

合集下载

2020学年高考数学理一轮复习精选新题和好题归纳总结讲义:第7章 立体几何 第3讲 Word版含解析

2020学年高考数学理一轮复习精选新题和好题归纳总结讲义:第7章 立体几何 第3讲 Word版含解析

第3讲 空间点、直线、平面之间的位置关系[考纲解读] 1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理,并运用它们证明一些空间图形的位置关系的简单命题.(重点) 2.主要考查平面的基本性质,空间两直线的位置关系及线面、面面的位置关系,能正确求出异面直线所成的角.(重点、难点)[考向预测] 从近三年高考情况来看,尽管空间点、线、面的位置关系是立体几何的理论基础,但却很少独立命题.预测2020年高考会有以下两点命题方式:①以命题形式考查空间点、线、面的位置关系;②以几何体为载体考查线、面的位置关系或求异面直线所成的角.题型为客观题,难度一般不大,属中档题型.1.空间两条直线的位置关系 (1)位置关系分类:位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧ □01相交直线:同一平面内,有且只有一个 公共点.□02平行直线:同一平面内,没有公共点.异面直线:不同在□03任何一个平面内,没有公共点.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的□04锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:□05⎝ ⎛⎦⎥⎤0,π2.(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角□06相等或互补.2.空间直线与平面、平面与平面的位置关系3.必记结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过一点有且只有一条直线与已知平面垂直.(2)异面直线的判定定理平面外一点A与平面内一点B的连线与平面内不经过B点的直线互为异面直线.(1)两两相交的三条直线最少可以确定三个平面.()(2)如果两个平面有三个公共点,则这两个平面重合.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平行直线.()(4)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()答案(1)×(2)×(3)√(4)×2.小题热身(1)对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线答案 C解析不论l∥α,l⊂α还是l与α相交,α内都存在直线m使得m⊥l.(2)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3答案 B解析①显然是正确的,可用反证法证明;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③构造长方体或正方体,如图显然b,c异面,故不正确;④中空间四边形中四条线段不共面.故正确的个数为1.(3)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A .30°B .45°C .60°D .90°答案 C解析 连接B 1D 1,D 1C ,则B 1D 1∥EF ,故∠D 1B 1C 即为所求的角.又B 1D 1=B 1C =D 1C ,∴△B 1D 1C 为等边三角形,∴∠D 1B 1C =60°.(4)设P 表示一个点,a ,b 表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P ∈a ,P ∈α⇒a ⊂α;②a ∩b =P ,b ⊂β⇒a ⊂β;③a ∥b ,a ⊂α,P ∈b ,P ∈α⇒b ⊂α;④α∩β=b ,P ∈α,P ∈β⇒P ∈b .答案 ③④题型 一 平面的基本性质如图所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G ,H分别为F A,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?解(1)证明:由已知FG=GA,FH=HD,得GH綊12AD.又BC綊12AD,所以GH綊BC,所以四边形BCHG是平行四边形.(2)由BE綊12AF,G为F A中点,知BE綊GF,所以四边形BEFG为平行四边形,所以EF∥BG.由(1)知BG∥CH,所以EF∥CH.所以EF与CH共面,又D∈FH,所以C,D,F,E四点共面.结论探究若举例说明中条件不变,证明:FE,AB,DC交于一点.证明由举例说明可知,四边形EBGF和四边形BCHG都是平行四边形,故可得四边形ECHF为平行四边形,∴EC∥HF,且EC=12DF,∴四边形ECDF为梯形.∴FE,DC交于一点,设FE∩DC=M.∵M∈FE,FE⊂平面BAFE,∴M∈平面BAFE.同理M∈平面BADC.又平面BAFE∩平面BADC=BA,∴M∈BA,∴FE,AB,DC交于一点.1.证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.如举例说明(2).(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上.(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.如举例说明中的结论探究.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.题型二空间两直线的位置关系序号).答案 ②④解析 在图①中,直线GH ∥MN ;在图②中,G ,H ,N 三点共面,但M ∉平面GHN ,N ∉GH ,因此直线GH 与MN 异面;在图③中,连接GM ,GM ∥HN ,因此GH 与MN 共面; 在图④中,G ,M ,N 共面,但H ∉平面GMN ,G ∉MN , 因此GH 与MN 异面.所以在图②④中GH 与MN 异面.2.(2018·邯郸调研)在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案 G 1G 2∥BC解析 如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM 为△SAB 的中线,且SG 1=23SM ,SN 为△SAC 的中线,且SG 2=23SN ,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,因此可得G1G2∥BC.1.异面直线的判定方法(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.此法在异面直线的判定中经常用到.(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.2.判定平行直线的常用方法(1)三角形中位线的性质.(2)平行四边形的对边平行.(3)平行线分线段成比例定理.(4)公理4.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B平行答案 D解析如图,连接C1D,∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,B正确;在三角形C1DB中,MN∥BD,故C正确.∵A1B与BD相交,MN∥BD,∴MN与A1B不可能平行,D错误.题型三异面直线所成的角(2017·全国卷Ⅱ)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC =CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32B.155C.105D.33答案 C解析解法一:如图所示,分别延长CB,C1B1至D,D1,使CB=BD,C1B1=B1D1,连接DD1,B1D.由题意知,C1B綊B1D,则∠AB1D即为异面直线AB1与BC1所成的角.连接AD,在△ABD中,由AD2=AB2+BD2-2AB·BD·cos∠ABD,得AD= 3.又B1D=BC1=2,AB1=5,∴cos∠AB1D=AB21+B1D2-AD22AB1·B1D=5+2-32×5×2=105.解法二:将直三棱柱ABC-A1B1C1补形为直四棱柱ABCD-A1B1C1D1,如图所示,连接AD1,B1D1,BD.由题意知∠ABC=120°,AB=2,BC=CC1=1,所以AD1=BC1=2,AB1=5,∠DAB=60°.在△ABD中,由余弦定理知BD2=22+12-2×2×1×cos60°=3,所以BD=3,所以B1D1= 3.又AB1与AD1所成的角即为AB1与BC1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212AB 1·AD 1=5+2-32×5×2=105. 解法三:过B 作BH ⊥BC ,交AC 于H .以B 为原点,以BC →,BH →,BB 1→所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Bxyz .则A (-1,3,0),B 1(0,0,1),C 1(1,0,1),∴AB 1→=(1,-3,1),BC 1→=(1,0,1), ∴cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=1+15×2=105, ∴异面直线AB 1与BC 1所成角的余弦值为105.条件探究 把举例说明的条件改为“正三棱柱ABC -A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1”,求异面直线AB 1与BD 所成的角.解 取A 1C 1的中点E ,连接B 1E ,ED ,AE ,易知BD ∥B 1E .在Rt △AB 1E 中,∠AB 1E 为异面直线AB 1与BD 所成的角.设AB =1,则A 1A =2,AB 1=3,B 1E =32,所以cos ∠AB 1E =B 1E AB 1=12, 因此∠AB 1E =π3,故异面直线AB 1与BD 所成的角为π3.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.②证:证明作出的角为所求角.③求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=⎪⎪⎪⎪⎪⎪m ·n |m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15B .56C .55D .22答案 C解析 以D 为坐标原点,DA →,DC →,DD 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,则D (0,0,0),A (1,0,0),B 1(1,1,3),D 1(0,0,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3),因为cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→||DB 1→|=-1+32×5=55,所以异面直线AD 1与DB 1所成角的余弦值为55,选C.。

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

一一一一一一一一一2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。

(新课标)2020年高考数学一轮总复习专题5立体几何课件文新人教A版

(新课标)2020年高考数学一轮总复习专题5立体几何课件文新人教A版

【例2】 (2018·高考全国卷Ⅱ)如图,在三棱锥P-ABC中,AB=BC=2 2 ,PA= PB=PC=AC=4,O为AC的中点. (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.
[解析] (1)证明:∵AB=BC=2 2,AC=4,∴AB2+BC2=AC2,即△ABC是直角 三角形.连接OB, 又O为AC的中点,∴OA=OB=OC. ∵PA=PB=PC,∴△POA≌△POB≌△POC, ∴∠POA=∠POB=∠POC=90°, ∴PO⊥AC,PO⊥OB,OB∩AC=O,∴PO⊥平面ABC.
(2)由(1)得PO⊥平面ABC,PO= PA2-AO2=2 3,
在△COM中,OM=
OC2+CM2-2OC·CMcos
45°=2
3
5 .
S△POM=12×PO×OM=12×2 3×235=2 315,
S△COM=12×23×S△ABC=43.
设点C到平面POM的距离为d.
由VP-OMC=VC-POM,得13×S△POM·d=13×S△OCM×PO,
[答案] B
跟踪训练 (2018·西安八校联考)在平行四边形ABCD中,∠ABD=90°,且AB=
1,BD= 2 ,若将其沿BD折起使平面ABD⊥平面BCD,则三棱锥A-BDC的外接
球的表面积为( )
A.2π
B.8π
C.16π
D.4π
解析:画出对应的平面图形和立体图形,如图所示.在立体图形中,设AC的中点 为O,连接OB,OD,因为平面ABD⊥平面BCD,CD⊥BD,所以CD⊥平面ABD. 又AB⊥BD,所以AB⊥平面BCD,所以△CDA与△CBA都是以AC为斜边的直角三 角形,所以OA=OC=OB=OD,所以点O为三棱锥A-BDC的外接球的球心.于 是,外接球的半径r=12AC=12 CD2+DA2=12 12+ 32=1.故外接球的表面积S= 4πr2=4π.故选D.

2020新课标高考数学(理)二轮总复习课件:1-3-3 立体几何综合

2020新课标高考数学(理)二轮总复习课件:1-3-3 立体几何综合

上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
建系:依托于题中的垂直条件,建立空间直角坐标系,利用空间向量求解. 立体几何在高考中的考查情况总体上比较稳定.在平时的学习中,要加强“一题 两法(几何法与向量法)”的训练,切勿顾此失彼;要重视识图训练,能正确确定关 键点或线的位置,将局部空间问题转化为平面模型;能依托于题中的垂直条件, 建立适当的空间直角坐标系,将几何问题化归为代数问题的计算模型.
——采点得分说明
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
1.(2018·洛阳模拟)如图,在四棱锥 P-ABCD 中,E,F 分别是 PC,PD 的中点, 底面 ABCD 是边长为 2 的正方形,PA=PD=2,且平面 PAD⊥平面 ABCD.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
[自我总结] _____________________________________ _____________________________________ _____________________________________ _____________________________________
专题三 立体几何 第三讲 立体几何综合
栏目 导航
解答题专项练 选择填空题专项练 题型专项练
专题限时训练
新课标高考第二轮总复习•理科数学
1.利用向量证明平行与垂直 设直线 l 的方向向量为 a=(a1,b1,c1),平面 α,β 的法向量分别为 μ=(a2,b2,c2), v=(a3,b3,c3),则有: (1)线面平行(其中 l⊄α) l∥α⇔a⊥μ⇔a·μ=0⇔ a1a2+b1b2+c1c2=0 .

2020版高考数学大一轮复习第八章立体几何高考专题突破四高考中的立体几何问题教案文含解析新人教A版

2020版高考数学大一轮复习第八章立体几何高考专题突破四高考中的立体几何问题教案文含解析新人教A版

高考专题突破四高考中的立体几何问题题型一平行、垂直关系的证明例1如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.证明(1)∵三棱柱ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵AD⊂平面ABC,∴AD⊥CC1.又∵AD⊥DE,DE∩CC1=E,DE,CC1⊂平面BCC1B1,∴AD⊥平面BCC1B1.∵AD⊂平面ADE,∴平面ADE⊥平面BCC1B1.(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点,∴A1F⊥B1C1.∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1.又∵B1C1∩CC1=C1,B1C1,CC1⊂平面BCC1B1,∴A1F⊥平面BCC1B1.又∵AD⊥平面BCC1B1,∴A1F∥AD.∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练1(2018·北京)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.证明(1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD , 又PD ⊂平面PAD , 所以AB ⊥PD .又因为PA ⊥PD ,PA ∩AB =A ,PA ,AB ⊂平面PAB , 所以PD ⊥平面PAB . 又PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC ,因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形, 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .题型二 立体几何中的计算问题例2如图,在多面体ABCA 1B 1C 1中,四边形ABB 1A 1是正方形,△A 1CB 是等边三角形,AC =AB =1,B 1C 1∥BC ,BC =2B 1C 1.(1)求证:AB1∥平面A1C1C;(2)求多面体ABCA1B1C1的体积.(1)证明如图,取BC的中点D,连接AD,B1D,C1D,∵B1C1∥BC,BC=2B1C1,∴BD∥B1C1,BD=B1C1,CD∥B1C1,CD=B1C1,∴四边形BDC1B1,CDB1C1是平行四边形,∴C1D∥B1B,C1D=B1B,CC1∥B1D,又B1D⊄平面A1C1C,C1C⊂平面A1C1C,∴B1D∥平面A1C1C.在正方形ABB1A1中,BB1∥AA1,BB1=AA1,∴C1D∥AA1,C1D=AA1,∴四边形ADC1A1为平行四边形,∴AD∥A1C1.又AD⊄平面A1C1C,A1C1⊂平面A1C1C,∴AD∥平面A1C1C,∵B1D∩AD=D,B1D,AD⊂平面ADB1,∴平面ADB1∥平面A1C1C,又AB1⊂平面ADB1,∴AB1∥平面A1C1C.(2)解在正方形ABB1A1中,A1B=2,∵△A1BC是等边三角形,∴A1C=BC=2,∴AC2+AA21=A1C2,AB2+AC2=BC2,∴AA1⊥AC,AC⊥AB.又AA1⊥AB,∴AA1⊥平面ABC,∴AA1⊥CD,易得CD⊥AD,又AD∩AA1=A,∴CD⊥平面ADC1A1.易知多面体ABCA1B1C1是由直三棱柱ABD-A1B1C1和四棱锥C-ADC1A1组成的,直三棱柱ABD -A 1B 1C 1的体积为12×⎝ ⎛⎭⎪⎫12×1×1×1=14, 四棱锥C -ADC 1A 1的体积为13×22×1×22=16,∴多面体ABCA 1B 1C 1的体积为14+16=512.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪训练2(2019·阜新调研)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,PA ⊥底面ABCD ,ED ∥PA ,且PA =2ED =2.(1)证明:平面PAC ⊥平面PCE ;(2)若∠ABC =60°,求三棱锥P -ACE 的体积. (1)证明 如图,连接BD ,交AC 于点O , 设PC 的中点为F ,连接OF ,EF .易知O 为AC 的中点, 所以OF ∥PA ,且OF =12PA .因为DE ∥PA ,且DE =12PA ,所以OF ∥DE ,且OF =DE , 所以四边形OFED 为平行四边形,所以OD ∥EF ,即BD ∥EF .因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD .因为四边形ABCD 是菱形, 所以BD ⊥AC .因为PA ∩AC =A ,PA ,AC ⊂平面PAC , 所以BD ⊥平面PAC .因为BD ∥EF ,所以EF ⊥平面PAC . 因为EF ⊂平面PCE , 所以平面PAC ⊥平面PCE . (2)解 因为∠ABC =60°,所以△ABC 是等边三角形,所以AC =2. 又PA ⊥平面ABCD ,AC ⊂平面ABCD , 所以PA ⊥AC .所以S △PAC =12PA ×AC =2.因为EF ⊥平面PAC ,所以EF 是三棱锥E -PAC 的高. 易知EF =DO =BO =3,所以三棱锥P -ACE 的体积V 三棱锥P -ACE =V 三棱锥E -PAC =13S △PAC ×EF =13×2×3=233.题型三 立体几何中的探索性问题例3如图,梯形ABCD 中,∠BAD =∠ADC =90°,CD =2,AD =AB =1,四边形BDEF 为正方形,且平面BDEF ⊥平面ABCD .(1)求证:DF ⊥CE ;(2)若AC 与BD 相交于点O ,那么在棱AE 上是否存在点G ,使得平面OBG ∥平面EFC ?并说明理由.(1)证明 连接EB .∵在梯形ABCD 中,∠BAD =∠ADC =90°,AB =AD =1,DC =2,∴BD =2,BC =2, ∴BD 2+BC 2=CD 2, ∴BC ⊥BD .又∵平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,BC ⊂平面ABCD , ∴BC ⊥平面BDEF ,∴BC ⊥DF .又∵正方形BDEF 中,DF ⊥EB ,且EB ,BC ⊂平面BCE ,EB ∩BC =B , ∴DF ⊥平面BCE .又∵CE ⊂平面BCE ,∴DF ⊥CE .(2)解 在棱AE 上存在点G ,使得平面OBG ∥平面EFC ,且AG GE =12.理由如下:连接OG ,BG ,在梯形ABCD 中,∠BAD =∠ADC =90°,AB =1,DC =2, ∴AB ∥DC ,∴AO OC =AB DC =12.又∵AG GE =12,∴OG ∥CE .又∵正方形BDEF 中,EF ∥OB ,且OB ,OG ⊄平面EFC ,EF ,CE ⊂平面EFC , ∴OB ∥平面EFC ,OG ∥平面EFC . 又∵OB ∩OG =O ,且OB ,OG ⊂平面OBG , ∴平面OBG ∥平面EFC .思维升华对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.跟踪训练3(2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.(1)证明由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,又DM⊂平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,BC,CM⊂平面BMC,所以DM⊥平面BMC.又DM⊂平面AMD,故平面AMD⊥平面BMC.(2)解当P为AM的中点时,MC∥平面PBD.证明如下:连接AC,BD,交于点O.因为ABCD为矩形,所以O为AC的中点.连接OP,因为P为AM的中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.1.如图所示,直角梯形ACDE与等腰直角三角形ABC所在平面互相垂直,F为BC的中点,∠BAC =∠ACD=90°,AE∥CD,DC=AC=2AE=2.(1)求证:平面BCD ⊥平面ABC ; (2)求证:AF ∥平面BDE .证明 (1)∵平面ABC ⊥平面ACDE ,平面ABC ∩平面ACDE =AC ,CD ⊥AC ,CD ⊂平面ACDE , ∴DC ⊥平面ABC .又DC ⊂平面BCD ,∴平面BCD ⊥平面ABC .(2)如图,取BD 的中点P ,连接EP ,FP ,则PF ∥DC ,PF =12DC ,∵EA ∥DC ,EA =12DC ,∴EA ∥PF ,EA =PF ,∴四边形AFPE 是平行四边形, ∴AF ∥EP ,∵AF ⊄平面BDE ,EP ⊂平面BDE , ∴AF ∥平面BDE .2.如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,BC =CE ,点F 为CE 的中点.(1)证明:AE ∥平面BDF ;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM ⊥BE ?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.(1)证明连接AC交BD于点O,连接OF.∵四边形ABCD是矩形,∴O为AC的中点.又F为EC的中点,∴OF∥AE.又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)解当点P为AE的中点时,有PM⊥BE,证明如下:取BE的中点H,连接DP,PH,CH.∵P为AE的中点,H为BE的中点,∴PH∥AB.又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,CD⊥BC,CD⊂平面ABCD,∴CD⊥平面BCE.又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,且H为BE的中点,∴CH⊥BE.又CH∩CD=C,且CH,CD⊂平面DPHC,∴BE⊥平面DPHC.又PM⊂平面DPHC,∴PM⊥BE.3.(2018·江苏)如图,在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.证明(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.4.如图,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,AB1∩A1B=E,D为AC上的点,B1C∥平面A1BD.(1)求证:BD⊥平面A1ACC1;(2)若AB=1,且AC·AD=1,求三棱锥A-BCB1的体积.(1)证明如图,连接ED,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD ,∴B 1C ∥ED ,∵E 为AB 1的中点,∴D 为AC 的中点,∵AB =BC ,∴BD ⊥AC ,①由A 1A ⊥平面ABC ,BD ⊂平面ABC ,得A 1A ⊥BD ,②又AC ∩A 1A =A ,AC ,A 1A ⊂平面A 1ACC 1,∴BD ⊥平面A 1ACC 1.(2)解 由AB =1,得BC =BB 1=1,由(1)知AD =12AC , 又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC ,∴S △ABC =12AB ·BC =12, ∴1A BCB V -=1B ABC V -=13S △ABC ·BB 1 =13×12×1=16.5.(2019·呼伦贝尔联考)如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.(1)证明 ∵AC =AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos45°=8,∴AB 2=AC 2+BC 2=16,∴AC ⊥BC ,∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,BC ⊂平面ABC ,∴BC ⊥平面ACD .(2)解 ∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF ,∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,V F -BCE =V B -CEF =13×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=12,∴V F -BCE =13×12×22=23.6.如图,在底面是菱形的四棱柱ABCD -A 1B 1C 1D 1中,∠ABC =60°,AA 1=AC =2,A 1B =A 1D =22,点E 在A 1D 上.(1)证明:AA 1⊥平面ABCD ;(2)当A 1E ED为何值时,A 1B ∥平面EAC ,并求出此时直线A 1B 与平面EAC 之间的距离. (1)证明 因为四边形ABCD 是菱形,∠ABC =60°,所以AB =AD =AC =2,在△AA 1B 中,由AA 21+AB 2=A 1B 2,知AA 1⊥AB ,同理AA 1⊥AD ,又AB ∩AD =A ,AB ,AD ⊂平面ABCD ,所以AA 1⊥平面ABCD .(2)解 当A 1E ED =1时,A 1B ∥平面EAC .证明如下:如图,连接BD 交AC 于点O ,当A 1E ED =1,即点E 为A 1D 的中点时,连接OE ,则OE ∥A 1B ,又A 1B ⊄平面EAC ,OE ⊂平面EAC , 所以A 1B ∥平面EAC .直线A 1B 与平面EAC 之间的距离等于点A 1到平面EAC 的距离,因为E 为A 1D 的中点,所以点A 1到平面EAC 的距离等于点D 到平面EAC 的距离, V D -EAC =V E -ACD ,设AD 的中点为F ,连接EF ,则EF ∥AA 1,且EF =1,所以EF ⊥平面ACD ,可求得S △ACD =3, 所以V E -ACD =13×1×3=33.又AE =2,AC =2,CE =2,所以S △EAC =72, 所以13S △EAC ·d =33(d 表示点D 到平面EAC 的距离), 解得d =2217,所以直线A 1B 与平面EAC 之间的距离为2217.。

(教师用书)2020届高考数学第一轮复习 第七篇 立体几何细致讲解练 理 新人教A版

(教师用书)2020届高考数学第一轮复习 第七篇 立体几何细致讲解练 理 新人教A版

第七篇立体几何第1讲空间几何体的结构及其三视图和直观图[最新考纲]1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).知识梳理1.多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆锥可以由直角三角形绕其任一直角边旋转得到.(2)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(3)球可以由半圆面或圆面绕直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.辨析感悟1.对棱柱、棱锥、棱台的结构特征的认识(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.(√)2.对圆柱、圆锥、圆台、球的结构特征的认识(4)夹在圆柱的两个平行截面间的几何体还是圆柱.(×)(5)上下底面是两个平行的圆面的旋转体是圆台.(×)(6)用一个平面去截一个球,截面是一个圆面.(√)3.对直观图和三视图的画法的理解(7)在用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中∠A=45°.(×)(8)(教材习题改编)正方体、球、圆锥各自的三视图中,三个视图均相同.(×)[感悟·提升]1.两点提醒一是从棱柱、棱锥、棱台、圆柱、圆锥、圆台的定义入手,借助几何模型强化空间几何体的结构特征.如(1)中例如;(2)中例如.二是图形中与x轴、y轴、z轴都不平行的线段可通过确定端点的办法来解,即过端点作坐标轴的平行线段,再借助所作的平行线段来确定端点在直观图中的位置.如(7).2.一个防范三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.如(8)中正方体与球各自的三视图相同,但圆锥的不同.学生用书第106页考点一空间几何体的结构特征【例1】给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( ).A.0 B.1 C.2 D.3解析①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.答案 B规律方法 (1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.【训练1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中错误的命题的序号是________.解析认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不准确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.答案①②③④考点二由空间几何体的直观图识别三视图【例2】(2013·新课标全国Ⅱ卷)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( ).审题路线在空间直角坐标系中画出四面体⇒以zOx平面为投影面⇒可得正视图.解析在空间直角坐标系中,先画出四面体O-ABC的直观图,如图,设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体被还原成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.答案 A规律方法空间几何体的三视图是分别从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【训练2】(2014·济宁一模)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过A,M,N和D,N,C1的两个截面截去正方体的两个角后得到的几何体如图1,则该几何体的正视图,侧视图、俯视图依次为图2中的( ).A.①②③ B.②③④ C.①③④ D.②④③解析由正视图的定义可知;点A,B,B1在后面的投影点分别是点D,C,C1,线段AN在后面的投影面上的投影是以D为端点且与线段CC1平行且相等的线段,即正视图为正方形,另外线段AM在后面的投影线要画成实线,被遮挡的线段DC1要画成虚线,正视图为②;同理可得侧视图为③,俯视图为④.答案 B考点三由空间几何体的三视图还原直观图【例3】(1)(2013·四川卷)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).(2)若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析(1)由于俯视图是两个圆,所以排除A,B,C,故选D.(2)A,B的正视图不符合要求,C的俯视图显然不符合要求,答案选D.答案(1)D (2)D学生用书第107页规律方法图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.【训练3】若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).解析所给选项中,A,C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合.答案 B1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”.易错辨析7——三视图识图不准致误【典例】(2012·陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为( ).[错解] 选A或D.[错因] 致错原因是根据提示观测位置确定三视图时其实质是正投影,将几何体中的可见轮廓线在三视图中为实线,不可见轮廓线为虚线,错选A或D都是没有抓住看到的轮廓线在面上的投影位置,从而导致失误.[正解] 还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.[答案] B[防范措施] 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图问题时,就要抓住正投影,结合具体问题和空间几何体的结构特征进行解答.【自主体验】(2014·东北三校模拟)如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).解析注意BE,BG在平面CDGF上的投影为实线,且由已知长度关系确定投影位置,排除A,C选项,观察B,D选项,侧视图是指光线从几何体的左面向右面正投影,则BG,BF的投影为虚线,故选D.答案 D对应学生用书P307基础巩固题组(建议用时:40分钟)一、选择题1.一个棱柱是正四棱柱的条件是( ).A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱解析A,B两选项中侧棱与底面不一定垂直,D选项中底面四边形不一定为正方形,故选C.答案 C2.(2014·福州模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( ).解析给几何体的各顶点标上字母,如图1.A,E在侧投影面上的投影重合,C,G在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B(而不是A).答案 B3.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).A .①②B .①③C .①④D .②④解析 正方体的三视图都是正方形,不合题意;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆,符合题意;三棱台的正视图和侧视图、俯视图各不相同,不合题意;正四棱锥的正视图和侧视图都是三角形,而俯视图是正方形,符合题意,所以②④正确. 答案 D4.(2013·汕头二模)如图,某简单几何体的正视图和侧视图都是边长为1的正方形,且其体积为π4,则该几何体的俯视图可以是( ).解析 若该几何体的俯视是选项A ,则其体积为1,不满足题意;由正视图、侧视图可知俯视图不可能是B 项;若该几何体的俯视图是选项C ,则其体积为12,不符合题意;若该几何体的俯视图是选项D ,则其体积为π4,满足题意.答案 D 5.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( ).解析空间几何体的正视图和侧视图的“高平齐”,故正视图的高一定是2,正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是C.答案 C二、填空题6.利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号).①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.解析①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.答案①②④7.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析显然,三棱锥、圆锥的正视图可以是三角形;三棱柱的正视图也可以是三角形(把三棱柱放倒,使一侧面贴在地面上,并让其底面面对我们,如图所示);只要形状合适、摆放适当(如一个侧面正对着观察者的正四棱锥),四棱锥的正视图也可以是三角形(当然,不是任意摆放的四棱锥的正视图都是三角形),即正视图为三角形的几何体完全有可能是四棱锥;不论四棱柱、圆柱如何摆放,正视图都不可能是三角形(可以验证,随意摆放的任意四棱柱的正视图都是四边形,圆柱的正视图可以是圆或四边形).综上所述,应填①②③⑤.答案①②③⑤8. 如图,用斜二测画法得到四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.解析作DE⊥AB于E,CF⊥AB于F,则AE=BF=AD cos 45°=1,∴CD=EF=3.将原图复原(如图),则原四边形应为直角梯形,∠A =90°,AB =5,CD =3,AD =22,∴ S 四边形ABCD =12×(5+3)×22=8 2. 答案 8 2三、解答题9.如图所示的是一个零件的直观图,试画出这个几何体的三视图. 解 这个几何体的三视图如图.10.如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积; (3)求出该几何体的体积. 解 (1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12 3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.能力提升题组 (建议用时:25分钟)一、选择题1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ). A .球 B .三棱锥 C .正方体 D .圆柱解析 球的正视图、侧视图和俯视图均为圆,且形状相同、大小相等;三棱锥的正视图、侧视图和俯视图可以为全等的三角形;正方体的正视图、侧视图和俯视图可以为形状相同、大小相等的正方形;圆柱的正视图、侧视图均为矩形,俯视图为圆. 答案 D2.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于( ).A.24a2 B.22a2 C.22a2 D.223a2解析根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=24S,本题中直观图的面积为a2,所以原平面四边形的面积等于a224=22a2.答案 B二、填空题3.如图所示,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E 在该正方体的面上的正投影可能是________(填序号).解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③三、解答题4.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解(1)直观图如图所示:(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.学生用书第108页第2讲空间几何体的表面积与体积[最新考纲]1.了解球体、柱体、锥体、台体的表面积的计算公式.2.了解球体、柱体、锥体、台体的体积计算公式.知识梳理1.柱、锥、台和球的侧面积和体积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨 析 感 悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .(×) (2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为3πa 2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)(2013·浙江卷改编)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24 cm 3.(√)(5)在△ABC 中,AB =2,BC =3,∠ABC =120°,使△ABC 绕直线BC 旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(6)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(7)(2014·青州模拟改编)将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为312a 3.(×) [感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.学生用书第109页考点一空间几何体的表面积【例1】(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是( ).A.8 B.20+8 2C.16 D.24+8 2解析由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S =2×12×2×2+22×4+2×2×4=20+8 2. 答案 B规律方法 (1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【训练1】 一个几何体的三视图如图所示,则该几何体的表面积为________.解析如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分.∴S表=(4×1+3×4+3×1)×2+2π×1×1-2π×12=38.答案38考点二空间几何体的体积【例2】(1)(2013·新课标全国Ⅰ卷)某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8π B.8+8πC.16+16π D.8+16π(2)(2014·福州模拟)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为 ( ).A.312B.34C.612D.64解析 (1)由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2、高为4.所以V =2×2×4+12×22×π×4=16+8π.故选A.(2)三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 答案 (1)A (2)A规律方法 (1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.【训练2】 如图所示,已知E ,F 分别是棱长为a 的正方体ABCD -A 1B 1C 1D 1的棱A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解 法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF , 过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,EF ⊂平面B 1EDF .∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. ∵平面B 1D 1D ⊥平面B 1EDF ,且平面B 1D 1D ∩平面B 1EDF =B 1D , ∴O 1H ⊥平面B 1EDF , 即O 1H 为棱锥的高. ∵△B 1O 1H ∽△B 1DD 1, ∴O 1H =B 1O 1·DD 1B 1D =66a .O 1H =13·12·2a ·3a ·66a =16a 3. 法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,=13·S △C 1EF ·(h 1+h 2)=16a 3.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·福建卷)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是______________.(2)(2013·辽宁卷)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为A.3172B .210 C.132D .310审题路线 (1)正方体内接于球⇒正方体的体对角线长等于球的直径⇒求得球的半径⇒代入球的表面积公式(注意只算球的表面积).(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解.解析 (1)由三视图知,棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为S =4π·⎝⎛⎭⎪⎫2322=12π. (2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)12π (2)C学生用书第110页规律方法 关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】 (2013·新课标全国Ⅰ卷)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为 ( ). A.500π3 cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3解析 作出该球的轴截面,如图所示,依题意BE =2 cm ,AE =CE =4 cm ,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3(cm),故该球的半径AD =5 cm ,所以V =43πR 3=500π3(cm 3).答案 A考点四 几何体的展开与折叠问题【例4】 (1)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O ,剪去△AOB ,将剩余部分沿OC ,OD 折叠,使OA ,OB 重合,则以A ,B ,C ,D ,O 为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC =CC1=3.P是BC1上一动点,则CP+PA1的最小值为________(其中PA1表示P,A1两点沿棱柱的表面距离).解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823. (2)由题意知,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +PA 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3, ∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8, ∴A 1C =82+32=73.故CP +PA 1的最小值为73.答案 (1)823(2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】 如图为一几何体的展开图,其中ABCD 是边长为6的正方形,SD =PD =6,CR =SC ,AQ =AP ,点S ,D ,A ,Q 共线,点P ,D ,C ,R 共线,沿图中虚线将它们折叠起来,使P ,Q ,R ,S 四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析 由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P -ABCD (如图所示), 其中PD ⊥平面ABCD ,因此该四棱锥的体积V =13×6×6×6=72,而棱长为6的正方体的体积V =6×6×6=216,故需要21672=3个这样的几何体,才能拼成一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以=13×12×1=16.[优美解法] E 点移到A 点,F 点移到C 点,则==13×12×1×1×1=16. [答案] 16。

2020新课标高考数学讲义:立体几何含解析

2020新课标高考数学讲义:立体几何含解析
V= (S上+S下+ )h

S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).

2020版高考数学北师大版(理)一轮复习课件:高考大题专项四 高考中的立体几何

2020版高考数学北师大版(理)一轮复习课件:高考大题专项四 高考中的立体几何

∴O(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0),∵PA= 2,OP⊥AB, ∴PO= ������������2 -������������2 =1, ∴OA=OD=OP,∴H 是△ADP 的外心, ∵AD=PD=AP= 2, ∴H 是△ADP 的重心,∴ ������������ = ������������ + ������������ = ������������ + 3 ������������=
高考大题专项四
高考中的立体几何
核心考点
-2-
从近五年的高考试题来看,立体几何是历年高考的重点,约占整 个试卷的15%,通常以一大两小的模式命题,以中、低档难度为主. 简单几何体的表面积与体积、点、线、面位置关系的判定与证明 以及空间角的计算是考查的重点内容,前者多以客观题的形式命题, 后者主要以解答题的形式加以考查.着重考查推理论证能力和空间 想象能力,而且对数学运算的要求有加强的趋势.转化与化归思想 贯穿整个立体几何的始终.
随堂巩固
题型一
题型二
-20-
题型三
题型四
(1)证明 连接OE,∵AB=2,O是AB中点,CD=1, ∴OB=CD,∵AB∥CD, ∴四边形BCDO是平行四边形, ∴OD=1, ∵PO⊥平面ABCD,AD⫋平面ABCD, ∴PO⊥AD,∵O在平面PAD的正投影为H,∴OH⊥平面 PAD,∴OH⊥AD, 又∵OH∩PO=O,∴AD⊥平面POE,∴AD⊥OE, 又∵AO=OD=1,∴E是AD的中点.
随堂巩固
题型一
题型二
-3-
题型三
题型四
题型一 平行与垂直关系的证明(多维探究) 类型一 适合用几何法证明 例1
(2018北京一零一中学模拟,18)如图,在三棱柱ABC-A1B1C1中,底 面ABC为正三角形,侧棱AA1⊥底面ABC.已知D是BC的中 点,AB=AA1=2. (1)求证:平面AB1D⊥平面BB1C1C; (2)求证:A1C∥平面AB1D; (3)求三棱锥A1-AB1D的体积.

(新课标)2020年高考数学一轮总复习专题4立体几何综合课件理新人教A版

(新课标)2020年高考数学一轮总复习专题4立体几何综合课件理新人教A版

主要考查向量的坐标运算,以及向量的平行与垂直的充要条件,如何用向量法解 决空间角问题等,同时注重考查学生的空间想象能力、运算能力.高考考查的热 点可能以锥体或斜棱柱为几何背景,第一问以线面平行,面面平行为主要考查 点,第二问可能是求二面角或探索性命题,突出考查空间想象能力和逻辑推理能 力,以及分析问题、解决问题的能力,也有可能求线面角.
题型二|立体几何综合 从近几年的高考试题来看,线线垂直的判定、线面垂直的判定、面面垂直的判定 与性质、二面角等是高考的热点,题型既有选择题、填空题又有解答题,难度中 等偏高.客观题主要考查线面垂直、面面垂直的判定与性质,考查二面角的概念 及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推 理能力以及分析问题、解决问题的能力.从高考试题来看,利用空间向量证明平 行与垂直,以及求空间角是高考的热点,题型主要为解答题,难度属于中等,
专题四 立体几何综合
专题四 立体几何综合 题型一|几何体与球相切、接的问题 纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热 点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和 准确的计算能力.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模 糊.分析原因,除了这类题目的入手确实不易之外,主要是没有形成解题的模式 和套路,以至于遇到类似的题目便产生畏惧心理.学习中应结合近几年高考题对 球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的 命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容 以选择题、填空题为主,大题很少见.
3 2
为平面ABFD的法向量.
设DP与平面ABFD所成角为θ,则sin
θ=
→→ HP·DP →→

2020年高考数学(理)热点专练08 立体几何(解析版)

2020年高考数学(理)热点专练08  立体几何(解析版)

热点08 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到. 【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求. 内切圆问题:转化成正方体的内切圆去求. 求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标. 【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2019·安徽高考模拟(理))已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( ) A .若//,//m n αα,则//m n B .若,αγβγ⊥⊥,则//αβC .若//,//m n αα,且,m n ββ⊂⊂,则//αβD .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥【答案】D 【解析】 【分析】根据空间中直线和平面的位置关系分别去判断各个选项,,,A B C 均可举出反例;D 可证明得出. 【详解】若//m α,//n α,则//m n 或m 与n 异面或m 与n 相交,故选项A 错误; 若αγ⊥,βγ⊥,则α与β可能相交,故选项B 错误; 若直线,m n 不相交,则平面,αβ不一定平行,故选项C 错误;αβ⊥Q ,m α⊥ //m β∴或m β⊂,又n β⊥ m n ∴⊥,故选项D 正确.本题正确选项:D 【名师点睛】本题考查空间中直线、平面之间位置关系有关命题的判断,考查学生的空间想象能力和对定理的掌握程度.2.(2019·四川射洪中学高三月考(理))已知某几何体的三视图如图所示,则该几何体的最大边长为( )A B C D .【答案】B 【解析】根据三视图作出原几何体(四棱锥P ABCD -)的直观图如下:可计算PB PD BC PC ====.【名师点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.(2019·安徽高考模拟(理))当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( ) A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出BP 与AD 1所成角的取值范围. 【详解】以D 为原点,DA u u u v ,DC u u uv ,1DD u u u u v 分别为x ,y ,z 轴正向,建立空间直角坐标系D xyz -,则()11,0,1AD =-u u u u v ,()11,1,1CA =-u u u v ,设1CP CA λ=u u u v u u u v ,则[]0,1λ∈, (),,CP λλλ∴=-u u u v ,()1,,BP u u u vλλλ∴=--,故1cos ,AD BP u u u u v u u u v 11··AD BPAD BP=u u u u v u u u vu u u u v u u u v=对于函数()2321h x λλ=-+ 212333λ⎛⎫=-+ ⎪⎝⎭,[]0,1λ∈有:()min 1233h x h ⎛⎫== ⎪⎝⎭,()()max 12h x h ==,故11cos ,2AD BP ⎡∈⎢⎣⎦u u u u v u u u v ,又[]1,0,AD BP π∈u u u u v u u u v ,故1,,63AD BP u u u u v u u u v ππ⎡⎤∈⎢⎥⎣⎦.故选B .【名师点睛】本题考查异面直线所成角的取值范围的求法,考查异面直线所成角的概念等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2019·湖南高三期末(理))设a ,b 是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( ) A .a b ∥,b α⊂,则a P αB .a α⊂,b β⊂,αβ∥,则a b ∥C .a α⊂,b α⊂,a β∥,b β∥,则αβ∥D .αβ∥,a α⊂,则a β∥【答案】D 【解析】分析:在A 中,a ∥α或a ⊂α;在B 中,a 与b 平行或异面;在C 中,α与β相交或平行;在D 中,由面面平行的性质定理得a ∥β.详解:由a ,b 是空间中不同的直线,α,β是不同的平面,知:在A 中,a ∥b ,b ⊂α,则a ∥α或a ⊂ α,故A 错误; 在B 中,a ⊂α,b ⊂ β,α∥β,则a 与b 平行或异面,故B 错误; 在C 中,a ⊂α,b ⊂ α,α∥β,b ∥β,则α与β相交或平行,故C 错误; 在D 中,α∥β,a ⊂α,则由面面平行的性质定理得a ∥β,故D 正确. 故选:D .【名师点睛】:本题考查线面位置关系的判断,考查空间想象能力,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.5.(2019·贵州高考模拟(理))如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A.[,1]3 B.[3C.3D.[,1]3【答案】B 【解析】 【详解】设正方体的棱长为1,则11111A C A C A O OC OC ======所以1111332122cos ,sin 33322AOC AOC +-∠==∠=⨯,11313cos 33AOC AOC +-∠==-∠=. 又直线与平面所成的角小于等于90o ,而1A OC ∠为钝角,所以sin α的范围为,选B. 【考点定位】空间直线与平面所成的角.6.(2019·宁夏吴忠中学高考模拟(理))已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD【答案】C 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos BC BC D C D ∠===C .平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.7.(2019·广东高考模拟(理))已知三棱锥P ABC -的底面ABC 是边长为2的等边三角形,PA ⊥平面ABC ,且2PA =,则该三棱锥外接球的表面积为( ) A .683πB .20πC .48πD .283π【答案】D【解析】 【分析】由于球中球心与球的小圆圆心的连线垂直于这个小圆,利用PA 也垂直于这个小圆,即可利用球心与小圆圆心建立起直角三角形,1'12d OO PA ===,根据题意可求出r 是底面三角形的外接圆的半径,利用d =R 即可,最后即可求出球的表面积.【详解】 由已知得,作下图PA ABC ⊥平面,连结PO ,延长至圆上交于H , 过O 作'OO PA P 交ABC 平面于'O ,则PAH ∆为Rt ∆,所以,O 为斜边PH 的中点,所以,'OO 为PAH ∆的中位线,'O 为小圆圆心,则'O 为AH 的中点,则''12OO O H PA AH ==,则''O H AO ===,1'12OO PA ==,则球的半径R OH ====球的表面积为22843R ππ= 答案选D.【名师点睛】本题考查计算球的表面积,关键在于利用222d R r =-进行计算R ,难点在于构造三要素相关的直角三角形进行求解,难度属于中等.8.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC ,所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C .【名师点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.9.(2019·河北高考模拟(理))正方体1111ABCD A B C D -的棱上(除去棱AD)到直线1A B 与1CC 的距离相等的点有3个,记这3个点分别为,,E F G ,则直线1AC 与平面EFG 所成角的正弦值为( )A B C D 【答案】D 【解析】 【分析】正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为:D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出直线AC 1与平面EFG 所成角的正弦值. 【详解】解:正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为: D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设AB =2,则E (1,2,0),F (32,2,2),G (0,0,2),A (2,0,0),C 1(0,2,2),∴EF =u u u r (1022,,),GF u u u r =(3202,,),1AC =u u u u r (﹣2,2,2), 设平面EFG 的法向量n =r(x ,y ,z ),则00n EF n GF ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,即12023202x z x y ⎧+=⎪⎪⎨⎪+=⎪⎩,取x =4,得n =r (4,﹣3,﹣1). 设直线AC 1与平面EFG 所成角为θ,则直线AC 1与平面EFG 所成角的正弦值为sinθ=|cos 1n AC u u u u r r <,>|=. 故选:D .【名师点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10.(2019·湖北高考模拟(理))如图,已知四面体ABCD 为正四面体,2,AB E F =, 分别是,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( ).A .1 BCD .2【答案】A【解析】 【分析】通过补体,在正方体内利用截面为平行四边形MNKL ,有2NK KL +=,进而利用基本不等式可得解. 【详解】补成正方体,如图.,EF α⊥Q∴截面为平行四边形MNKL ,可得2NK KL +=, 又//,//,MN AD KL BC 且,AD BC KN KL ⊥∴⊥ 可得L MNK S NK KL =⋅四边形2()1,2NK KL +≤=当且仅当NK KL =时取等号,选A. 【名师点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.二、填空题11.(2019·重庆南开中学高考模拟(理))三棱锥P ABC -的4的球面上,PA ⊥平面ABC ,V ABC A 到平面PBC 的距离为______. 【答案】65【解析】 【分析】由题意,球心在三棱锥各顶点的距离相等,球心到底面的距离等于三棱锥的高PA 的一半,求出PA,,然后利用等体积求点A 到平面PBC 的距离 【详解】△ABC 的正三角形,可得外接圆的半径2r asin60==︒2,即r =1.∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h2,那么球的半径R ==,解得h=2,又PBC S ∆=由P ABC A PBC V V --= 知'113?2=?33 ,得'65d = 故点A 到平面PBC 的距离为65故答案为65. 【名师点睛】本题考查外接球问题,锥的体积,考查计算求解能力,是基础题 12.(2019·广东高考模拟(理))《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开, 得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是_________________【答案】50S π= 【解析】 【分析】根据堑堵定义以及长方体性质可得阳马111C ABB A -的外接球的直径为1A C ,再根据球的表面积公式求结果. 【详解】由于1CB,,BA BB 两两相互垂直,所以阳马111C ABB A -的外接球的直径为1A C ,即2R ==2450R ππ=.【名师点睛】若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,PA a PB b PC c ===,一般把有关元素“补形”成为一个球内接长方体,利用22224R a b c =++求解.13.(2019·山东高考模拟(理))如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.【答案】4【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,11BC C D BD ===1cos C BD ∠==.【名师点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.14.(2018·栖霞市第一中学高考模拟(理))如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①, AC BD =②, //AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45o .【答案】①③④ 【解析】 【分析】由截面PQMN 是正方形出发,利用线面平行的判定和性质,可以推出////PQ AC MN ,////PN BD MQ ,从而得到//AC 平面PQMN ,异面直线PM 与BD 所成的角和PM 与PN 所成角相等为45o ,AC BD ⊥,M N P Q 、、、不一定是中点从而AC BD ,不一定相等.【详解】解:在四面体ABCD 中,Q 截面PQMN 是正方形,//PQ MN ∴,PQ ⊄平面ACD ,MN ⊂平面ACD ,//PQ ∴平面ACD .Q 平面ACB ⋂平面ACD AC =,//PQ AC ∴,可得//AC 平面PQMN .同理可得//BD 平面PQMN ,//BD PN .PN PQ ⊥Q ,AC BD ∴⊥.由//BD PN ,MPN ∴∠是异面直线PM 与BD 所成的角,且为45o .由上面可知://BD PN ,//PQ AC .PN AN BD AD ∴=,MN DNAC AD=, 而AN DN ≠,PN MN =,BD AC ∴≠.综上可知:①③④都正确. 故答案为:①③④.利用线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角即可得出. 【名师点睛】本题考查了线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角,属于基础题.15.(2019·深圳市高级中学高考模拟(理))在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π 【解析】 【分析】在等边三角形ABC 中,取AB 的中点F ,设其中心为O ,则23AO BO CO CF ====,再利用勾股定理可得OP =O 为棱锥P ABC -的外接球球心,利用球的表面积公式可得结果.【详解】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =,得23AO BO CO CF ====, PAB ∆Q 是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,OP =则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(2448ππ⨯=,故答案为48π. 【名师点睛】本题考查主要四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题16.(2019·山东高考模拟(理))如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.【答案】(1)见解析(2)7【解析】 【分析】(1)在BAD ∆中,由余弦定理可得BD =AD DB ⊥,在直平行六面体中,GD ⊥平面ABCD ,则可得GD DB ⊥,由此说明BD ⊥平面ADG ,即可证明平面BDG ⊥平面ADG ;(2)以D 为原点建立空间直角坐标系D xyz -,表示出各点的坐标,求出平面AEFG 的法向量,由直线与平面所成角正弦值的公式即可得到直线GB 与平面AEFG 所成角的正弦值. 【详解】(1)证明:在BAD ∆中,因为22AB AD ==,60BAD ∠=︒. 由余弦定理得,2222cos60BD AD AB AB AD =+-⋅︒,解得BD =∴222AB AD DB =+,∴AD DB ⊥, 在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD , ∴GD DB ⊥ 又AD GD D ⋂=, ∴BD ⊥平面ADG ,∴平面BDG ⊥平面ADG . (2)解:如图以D 为原点建立空间直角坐标系D xyz -,因为45BAE GAD ∠=∠=︒,22AB AD ==, 所以()1,0,0A,()B,()E ,()0,0,1G ,()AE →=-,()1,0,1AG →=-,()1GB →=-.设平面AEFG 的法向量(),,n x y z →=,200n AE x z n AG x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩u u u v r u u uv r , 令1x =,得y =1z =,∴1,n →⎛⎫= ⎪ ⎪⎝⎭.设直线GB 和平面AEFG 的夹角为θ,所以sin cos ,7GB n GB n GB n θ→→→→→→⋅====⋅, 所以直线GB 与平面AEFG 所成角的正弦值为7. 【名师点睛】本题考查面面垂直的证明,以及利用空间向量求线面所成角的正弦值,熟练掌握面面垂直的判定以及线面所成角的公式是解题关键,考查学生基本的算能力,属于中档题. 17.(2019·辽宁高考模拟(理))如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(Ⅰ)证明:AE PB ⊥;(Ⅰ)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的余弦值.【答案】(I )见解析;(II ). 【解析】 【分析】(I )先证明AE POB ⊥平面,再证明AE PB ⊥;(II )在平面POB 内作PQ ⊥OB,垂足为Q ,证明OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法求二面角A PE C --的余弦值. 【详解】(I )证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,∵AB||CE,AB=CE ,∴四边形ABCE 为平行四边形,∴AE=BC=AD=DE , ∴△ADE 为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,23DAB ABC π∠=∠=, ∴在等腰ADB ∆中,6ADB ABD π∠=∠=∴2362DBC πππ∠=-=,即BD ⊥BC , ∴BD ⊥AE ,翻折后可得:OP ⊥AE,OB ⊥AE ,又,,OP POB OB POB OP OB O ⊂⊂=Q I 平面平面,AE POB ∴⊥平面,,PB POB AE PB ⊂∴⊥Q 平面;(II )解:在平面POB 内作PQ ⊥OB,垂足为Q , 因为AE ⊥平面POB ,∴AE ⊥PQ ,因为OB ⊂平面ABCE, AE ⊂平面ABCE,AE∩OB=O∴PQ ⊥平面ABCE ,∴直线PB 与平面ABCE 夹角为4PBQ π∠=,又因为OP=OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,由题意得,各点坐标为111(,0,0),(,0,(222P E C PE EC ∴==u u u r u u u r , 设平面PCE 的一个法向量为1(,,)n x y z =u r,则111002,,0102x z PE n EC n x y ⎧=⎪⎧⋅=⎪⎪∴⎨⎨⋅=⎪⎩⎪+=⎪⎩u u u v u v u u u v u v设x =y=-1,z=1,∴1n =u r,由题意得平面PAE 的一个法向量2(0,1,0)n =u u r, 设二面角A -EP -C 为α,1212|||cos |=||||n n n n α⋅==u r u u rur u u r . 易知二面角A -EP -C为钝角,所以cos α.【名师点睛】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.18.(2019·江苏高考模拟)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=u u u r u u u r.(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.【答案】(1(21 【解析】【详解】试题分析:(1)直接按照求直线与平面所成角的步骤来求即可;直线与平面α所成角θ 可先求出平面α的法向量n 与直线的方向向量,则sin cos a n a n a nθ⋅=〈⋅〉=r r r r r r ;(2)根据求二面角的步骤,列出关于实数λ的方程来求;求出二面角l αβ--的大小,可先求出两个半平面α与β的法向量12n n u r u u r ,,若二面角l αβ--所成的角θ为锐角,则1212cos cos cos n n n n θ〈〉=〈〉u r u u r u r u u r =,,;若二面角l αβ--所成的角θ钝角,则1212cos cos cos n n n n θ〈⋅〉=-〈⋅〉u r u u r u r u u r =-.试题解析:解:分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C(1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-u u u u r ,11(0,4,0)AC =u u u u r ,1(1,2,2)AD =-u u u u r ,设平面11AC D 的法向量为1(,,)n x y z =u r 则40{20y x z =-=,所以取1(2,0,1)n =u r,又111111cos ,DB n DB n DB n ⋅===u u u u r u r u u u u r u r u u u u r u r 所以直线1DB 与平面11AC D. (2)BD DC λ=u u u r u u u r Q ,24(,,0)11D λλλ∴++,11(0,4,0)AC =u u u u r Q ,124(,,2)11A D λλλ=-++u u u u r , 设平面11AC D 的法向量为1(,,)n x y z =u r ,则40{2201y x z λ=-=+, 所以取1(1,0,1)n λ=+u r .又平面111A B C 的一个法向量为2(0,0,1)n =u u r ,由题意得121cos ,2n n =u r u u r ,12=,解得1λ=-或1λ=-(不合题意,舍去), 所以实数λ1.考点:二面角;直线与平面所成角的方法.19 (2019·山东高考模拟(理))如图,在多面体ABCDEF 中,四边形ABCD 的菱形,60BCD ∠=︒,AC 与BD 交于点O ,平面FBC ⊥平面ABCD ,//EF AB ,FB FC =,3EF =.(1)求证:OE ⊥平面ABCD ;(2)若FBC ∆为等边三角形,点Q 为AE 的中点,求二面角Q BC A --的余弦值.【答案】(1)见证明;(2)13【解析】【分析】 (1)可证FH BC ⊥,再利用平面FBC ⊥平面ABCD 证得FH ⊥平面ABCD ,通过证明//OE FH ,可得要求证的线面垂直.(2)建立空间直角坐标系,求出平面BCQ 的法向量和平面ABC 的一个法向量后可求二面角Q BC A --的余弦值.【详解】(1)证明:取BC 的中点H ,连结OH 、FH 、OE ,因为FB FC =,所以FH BC ⊥,因为平面FBC ⊥平面ABCD ,平面FBC I 平面ABCD BC =,FH⊂平面FBC , 所以FH ⊥平面ABCD ,因为H 、O 分别为BC 、AC 的中点,所以//OH AB 且123OH AB ==.又//EF AB,EF =,所以//EF OH ,所以四边形OEFH 为平行四边形, 所以//OE FH ,所以OE ⊥平面ABCD .(2)解:因为菱形ABCD ,所以2OA OC OE FH ====.所以OA ,OB ,OE 两两垂直,建立空间直角坐标系O xyz -,如图所示,则(2,0,0)A,(0,3B ,(2,0,0)C -,(0,0,2)E , 所以(1,0,1)Q ,所以(2,BC =-u u u r ,(3,0,1)CQ =u u u r , 设平面BCQ 的法向量为(,,)m x y z =u r ,由00BC m CQ m ⎧⋅=⎨⋅=⎩u u u v v u u u v v得2030x y x z ⎧--=⎪⎨⎪+=⎩, 取1x =,可得(1,3)m =-u r ,平面ABC 的一个法向量为(0,0,1)n =r ,设二面角Q BC A --的平面角为θ,则cos 13m n m n θ⋅-===u r r u r r , 因为二面角Q BC A --的平面角为锐角,所以二面角Q BC A -- 【名师点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为2π得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.。

人教A版2020届高考数学二轮复习讲义及题型归纳(拔高):立体几何第一章 空间直线、平面平行垂直

人教A版2020届高考数学二轮复习讲义及题型归纳(拔高):立体几何第一章 空间直线、平面平行垂直

第一章空间直线、平面平行垂直一、考纲解读1.要理解空间直线和平面各种位置关系的定义.2.以立体几何的定义,公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定,理解其判定定理与性质定理.二、命题趋势探究有关平行的问题是高考的必考内容,主要分为两大类:一类是空间线面关系的判定和推理;一类是几何量的计算,主要考查学生的空间想象能力,思维能力和解决问题的能力.平行关系是立体几何中的一种重要位置关系,在高考中,选择题、填空题几乎每年都考,难度一般为中档题,且常常以棱柱、棱锥为背景.(1)高考始终把直线与平面、平面与平面平行的判定与性质作为考查的重点,通常以棱柱、棱锥为背景设计命题.考查的方向是直线与平面、平面与平面的位置关系,结合平面几何有关知识考查.(2)以棱柱、棱锥为依托考查两平行平面的距离,可转化为点面距离,线面距离和两异面直线间的距离问题,通常是算、证结合,考查学生的渗透转化思想.三、知识点精讲(一).直线和平面平行1.定义直线与平面没有公共点,则称此直线l与平面α平行,记作l∥α2.判定方法(文字语言、图形语言、符号语言)(见表8-9)表8-9文字语言图形语言符号语言线∥线⇒线∥面如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行(简记为“线线平行⇒线面平行11l ll llααα⎫⎪⊂⇒⎬⎪⊄⎭∥∥面∥面⇒线∥面如果两个平面平行,那么在一个平面内的所有直线都平行于另一个平面aaαββα⎫⇒⎬⊂⎭∥∥3.性质定理(文字语言、图形语言、符号语言)(见表8-10)表8-10文字语言图形语言符号语言线∥面⇒线∥线如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ll l llαβαβ⎫⎪'⊂⇒⎬⎪'=⎭I∥∥(二).两个平面平行1.定义没有公共点的两个平面叫作平行平面,用符号表示为:对于平面α和β,若αβφ=I,则α∥β2.判定方法(文字语言、图形语言、符号语言)(见表8-11)表8-11文字语言图形语言符号语言判定定理线∥面⇒面∥面如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行(简记为“线面平行⇒面面平行,,a b a b Pαα⊂⊂=Ia bββαβ⇒∥,∥∥线⊥面⇒面∥面如果两个平面同垂直于一条直线,那么这两个平面平行llααβ⊥⎫⇒⎬⊥⎭∥β3.性质定理(文字语言、图形语言、符号语言)(见表8-12)表8-12文字语言图形语言符号语言面//面⇒线//面如果两个平面平行,那么在一个平面中的所有直线都平行于另外一个平面////aaαββα⎫⇒⎬⊂⎭性质定理如果两个平行平面同时和第三个平面相交,那么他们的交线平行(简记为“面面平行⇒////.a a bbαβαγβγ⎫⎪=⇒⎬⎪=⎭II线面平行”)面//面⇒线⊥面如果两个平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线//llαββα⎫⇒⊥⎬⊥⎭(三).线面垂直1.定义:如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.2.判定定理(文字语言、图形语言、符号语言)(见表1)表1文字语言图形语言符号语言判断定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直面⊥面⇒线⊥面两个平面垂直,则在一个平面内垂直于交线的直线与另一个平面垂直αββαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥babba,a ba llb la b Pαα⊂⎫⎪⊥⎪⇒⊥⎬⊥⎪⎪=⎭I__a平行与垂直的关系1一条直线与两平行平面中的一个平面垂直,则该直线与另一个平面也垂直βαβα⊥⇒⎭⎬⎫⊥aa//平行与垂直的关系2两平行直线中有一条与平面垂直,则另一条直线与该平面也垂直αα⊥⇒⎭⎬⎫⊥baba//3.性质定理(文字语言、图形语言、符号语言)(见表2)表2文字语言图形语言符号语言性质定理垂直于同一平面的两条直线平行babaa////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα文字语言图形语言符号语言垂直与平行的关系垂直于同一直线的两个平面平行βαβα//⇒⎭⎬⎫⊥⊥aa线垂直于面的性质如果一条直线垂直于一个平面,则该直线与,l a l aαα⊥⊂⇒⊥_α_b_aα_b_a_平面内所有直线都垂直(四).斜线在平面内的射影1.斜线的定义一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和这个平面的交点叫做斜足.2.射影的定义过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.3.直线与平面所成的角平面内的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.特别地,一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是的角,故直线与平面所成的角的范围是.如图8-122所示,是平面的斜线,为斜足;是平面的垂线,为垂足;是在平面的射影,的大小即为直线与平面所成的角的大小.0,2π⎡⎤⎢⎥⎣⎦PAαA POαO AO PAαPAO∠PAα(五).平面与平面垂直 1.二面角的定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面;如图8-123所示,在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角,二面角的范围是.平面角是直角的二面角叫做直二面角.2.平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直.(如图8-124所示,若,,且,,,则)l αβ--l O O αβl OA OB OA OB AOB ∠[]0,πCD αβ=I CD γ⊥AB αγ=I BE βγ=I AB BE ⊥αβ⊥一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.3.判定定理(文字语言、图形语言、符号语言)文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直βαβα⊥⇒⎭⎬⎫⊂⊥bb4.性质定理(文字语言、图形语言、符号语言)文字语言图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直αββαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥babba___a四、思路小结(一).线线平行、线面平行、面面平行的转换如图0所示.(1) 证明直线与平面平行的常用方法:①利用定义,证明直线a 与平面α没有公共点,一般结合反证法证明;②利用线面平行的判定定理,即线线平行⇒线面平行.辅助线的作法为:平面外直线的端点进平面,同向进面,得平行四边形的对边,不同向进面,延长交于一点得平行于第三边的线段;③利用面面平行的性质定理,把面面平行转化成线面平行; (2) 证明面面平行的常用方法:①利用面面平行的定义,此法一般与反证法结合; ②利用面面平行的判定定理; ③利用两个平面垂直于同一条直线; ④证明两个平面同时平行于第三个平面.(3) 证明线线平行的常用方法:○1利用直线和平面平行的判定定理;○2利用平行公理; (二).证明空间中直线、平面的垂直关系线线线面面面 ⊥−−−−→←−−−−判定定理性质定理⊥−−−−→←−−−−判定定理性质定理⊥性质 性质性质 判定判定判定 线∥面 线∥线面∥面图 0(1)证明线线垂直的方法 ①等腰三角形底边上的中线是高; ②勾股定理逆定理; ③菱形对角线互相垂直; ④直径所对的圆周角是直角; ⑤向量的数量积为零;⑥线面垂直的性质(); ⑦平行线垂直直线的传递性(∥). (2)证明线面垂直的方法 ①线面垂直的定义;②线面垂直的判定(); ③面面垂直的性质(); 平行线垂直平面的传递性(∥); ⑤面面垂直的性质(). (3)证明面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理().,a b a b αα⊥⊂⇒⊥,a c a ⊥b b c ⇒⊥,,,,a b a c c b b c P a ααα⊥⊥⊂⊂=⇒⊥I ,,,b a b a a αβαβαβ⊥=⊥⊂⇒⊥I ,a b α⊥a b α⇒⊥,,l l αγβγαβγ⊥⊥=⇒⊥I ,a a βααβ⊥⊂⇒⊥性质性质性质性质性质 判定判定 判定 判定 判定线∥面 线∥线面∥面线⊥面 线⊥线面⊥面图 3空间中的线面平行、垂直的位置关系结构图如图3所示,由图可知,线面垂直在所有关系中处于核心位置. 五、解答题题型总结 核心考点一:平行证明【例1】 如图所示,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点.在棱11C D 上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.原图:【解析】 在棱11C D 上存在点F ,使1B F ∥平面1A BE .且F 为11C D 的中点. 法一:分别取11C D 和CD 的中点F ,G ,连结EG ,BG ,1CD ,FG . 由四边形11A BCD 是平行四边形,有11D C A B ∥.又E ,G 分别为1D D ,CD 的中点,有1EG D C ∥,∴1EG A B ∥. 这说明1A 、B 、G 、E 共面,所以BG ⊂平面1A BE .BACD A 1B 1D 1C 1E E C 1D 1B 1A 1DCAB G F因四边形11C CDD 与11B BCC 皆为正方形,F ,G 分别为11C D 和CD 的中点, 所以11FG C C B B ∥∥,且11FG C C B B ==, ∴四边形1B BGF 是平行四边形,所以1B F BG ∥. 而1B F ⊄ 平面1A BE ,BG ⊂平面1A BE ,故1B F ∥平面1A BE .法二:连结1C D ,EF ,1AB ,且1AB 与1A B 交于点K ,连结EK , (要证线面平行转化为线线平行即1B F EK ∥) 由平行四边形11B C DA 有11B A C D ∥, 又,F E 为棱中点,有1EF C D ∥, ∴1EF B A ∥,∴1EF B K ∥,且1EF B K =. ∴1B F EK ∥,且1B F ⊄面1A BE ,EK ⊂面1A BE , ∴棱11C D 上存在中点F ,使得1B F ∥面1A BE .【例2】如图,已知正方体1111ABCD A B C D -中,E 、F 分别为AB 、BC 的中点,在棱1DD 上是否存在一点K ,使得AK ∥平面1EFD ?证明你的结论.原图:法一: 取K 使得12DKKD =,则这样的K 满足要求. K F ED 1C 1B 1A 1DCBAKFE DCBAD 1C 1B 1A 1KF EB 1A 1DCBA延长AK 交11A D 于S ,连接CS 、AC . 由1112D S D K AD KD ==,得112D S AD =. 又12CF BC =,AD BC =,∴1D S CF =易知1D S CF ∥,∴1D S FC ∥,1CFD S 是平行四边形 ∴1CS D F ∥.另外,由E 、F 分别为AB 、BC 的中点,知EF AC ∥. ∵CS AC C =I ,∴面ACS ∥面1EFD ∵AK ⊂面ACS ,∴AK ∥面1EFD . 法二:延长EF 交DC 于P ,则111122CP EB CD C D ===.连接1PD 交1CC 于Q ,则11112CQ CP QC C D ==. 连接FQ ,平面1EFD 与面11BB C C 的交线即为FQ ,要想AK ∥面1EFD ,则只需AK FQ ∥即可.由113:232FC CQ ==知,只需32AD DK =即可,即12233DK AD DD ==.此时的K 满足要求.【例3】 如图,已知四棱锥B ACDE -的底面为直角梯形ACDE ,90BAC ACD ∠=∠=︒,60EAC ∠=︒,AB AC AE ==.在直线BC 上是否存在一点P ,使得DP ∥平面EAB ?请证明你的结论.原图:线段BC 的中点就是满足条件的点P . 证明如下:取AB 的中点F 连结DP 、PF 、EF ,则FP AC ∥,12FP AC =. 取AC 的中点M ,连结EM 、EC ,∵AE AC =且60EAC ∠=︒,∴EAC △是正三角形,∴EM AC ⊥. ∴四边形EMCD 为矩形,∴12ED MC AC ==. 又∵ED AC ∥,∴ED FP ∥且ED FP =,四边形EFPD 是平行四边形. ∴DP EF ∥,而EF ⊂平面EAB ,DP ⊄平面EAB , ∴DP ∥平面EAB . 核心考点 :垂直证明【例1】在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =,点M 是SD 的中点,AN SC ⊥,且交SC 于点N ,证明:平面SAC ⊥平面AMN .BA CDEM NDCBA SMF PBA CDE● ∵SA ⊥底面ABCD ,CD ⊂平面ABCD ,∴SA CD ⊥;又∵CD AD ⊥,SA ⊂平面SAD ,AD ⊂平面SAD ,SA AD A =I , ∴CD ⊥平面SAD .AM ⊂平面SAD ,∴CD AM ⊥.又∵SA AD AB ==,M 是SD 的中点, ∴AM SD ⊥;SD ⊂平面SCD ,CD ⊂平面SCD ,SD CD D =I ,∴AM ⊥平面SCD .SC ⊂平面SCD ,∴AM SC ⊥.又∵AN SC ⊥,AM 、AN ⊂平面AMN ,AM AN A =I , ∴SC ⊥平面AMN ,又∵SC ⊂平面SAC , ∴平面SAC ⊥平面AMN .【例2】如图,已知BCD △中,90BCD ∠=︒,1BC CD ==,AB ⊥平面BCD ,60ADB ∠=︒,E 、F分别是AC 、AD 上的动点,且()01AE AFAC ADλλ==<<. ⑴ 求证:不论λ为何值,总有平面BEF ⊥平面ABC ;⑵ 当λ为何值时,平面BEF ⊥平面ACD ?● ⑴ ∵AB ⊥平面BCD ,∴AB CD ⊥.∵CD BC ⊥,且AB BC B =I ,∴CD ⊥平面ABC .FEDCBA又AE AFAC ADλ==,故EF CD ∥. ∴EF ⊥平面ABC .又∵EF ⊂平面BEF ,∴不论λ为何值,总有平面BEF ⊥平面ABC . ⑵ 由⑴知,BE EF ⊥,又平面BEF ⊥平面ACD , ∴BE ⊥平面ACD ,∴BE AC ⊥. ∵90BCD ∠=︒,1BC CD ==,60ADB ∠=︒∴2BD =,2tan 606AB =︒=,227AC AB BC =+=. 由射影定理2AB AE AC =⋅,解得67AE =,∴67AE AC λ==. 因此67λ=时,平面BEF ⊥平面ACD .【例3】在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =,点M 是SD 的中点,AN SC ⊥,且交SC 于点N ,证明:平面SAC ⊥平面AMN .【解析】∵SA ⊥底面ABCD ,CD ⊂平面ABCD , ∴SA CD ⊥;又∵CD AD ⊥,SA ⊂平面SAD ,AD ⊂平面SAD ,SA AD A =I ,M NDCBA S∴CD ⊥平面SAD .AM ⊂平面SAD ,∴CD AM ⊥.又∵SA AD AB ==,M 是SD 的中点, ∴AM SD ⊥;SD ⊂平面SCD ,CD ⊂平面SCD ,SD CD D =I ,∴AM ⊥平面SCD .SC ⊂平面SCD ,∴AM SC ⊥.又∵AN SC ⊥,AM 、AN ⊂平面AMN ,AM AN A =I , ∴SC ⊥平面AMN ,又∵SC ⊂平面SAC , ∴平面SAC ⊥平面AMN .【例4】如图,已知BCD △中,90BCD ∠=︒,1BC CD ==,AB ⊥平面BCD ,60ADB ∠=︒,E 、F分别是AC 、AD 上的动点,且()01AE AFAC ADλλ==<<. ⑴ 求证:不论λ为何值,总有平面BEF ⊥平面ABC ; ⑵ 当λ为何值时,平面BEF ⊥平面ACD ?⑴ ∵AB ⊥平面BCD ,∴AB CD ⊥.∵CD BC ⊥,且AB BC B =I ,∴CD ⊥平面ABC . 又AE AFAC ADλ==,故EF CD ∥. ∴EF ⊥平面ABC .又∵EF ⊂平面BEF ,∴不论λ为何值,总有平面BEF ⊥平面ABC .FEDCBA⑵ 由⑴知,BE EF ⊥,又平面BEF ⊥平面ACD , ∴BE ⊥平面ACD ,∴BE AC ⊥. ∵90BCD ∠=︒,1BC CD ==,60ADB ∠=︒∴2BD =,2tan 606AB =︒=,227AC AB BC =+=. 由射影定理2AB AE AC =⋅,解得67AE =,∴67AE AC λ==. 因此67λ=时,平面BEF ⊥平面ACD。

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。

3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。

注:球的有关问题转化为圆的问题解决。

球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。

常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。

常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。

解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。

2020年高考数学 专题四 立体几何题型分析 理

2020年高考数学 专题四 立体几何题型分析 理

2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ­ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ­ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ­ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD ­A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD ­A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D ­A 1C ­E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q ­PB ­A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ­ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。

2020年高考理科数学《立体几何》题型归纳与训练

2020年高考理科数学《立体几何》题型归纳与训练

2020年高考理科数学《立体几何》题型归纳与训练2020年高考理科数学《立体几何》题型归纳与训练题型一:线面平行的证明例1:如图,高为1的等腰梯形ABCD中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC。

试判断:在AB边上是否存在点P,使AD∥平面MPC?并说明理由。

答案:当AP=AB时,有AD∥平面MPC。

理由如下:连接BD交MC于点N,连接NP。

在梯形MBCD中,DC∥MB,DN/DC=NB/MB=1/2.在△ADB中,AP/PB=AD/DB,∴AD∥PN。

因为AD⊄平面MPC,PN⊂平面MPC,∴AD∥平面MPC。

解析:线面平行可以通过线线平行或面面平行推出。

此类题的难点在于如何构造辅助线。

构造完辅助线后,证明过程只需要注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

易错点:不能正确地分析DN与BN的比例关系,导致结果错误。

思维点拨:此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造需要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD做了一个平面ADB与平面MPC相交于线PN。

最后我们只需要严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形:方法一:方法二:方法三:2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

2020年高考数学立体几何专题复习(后附答案)

2020年高考数学立体几何专题复习(后附答案)

2020年高考数学立体几何专题复习(后附答案)教学目的1. 复习《立体几何初步》的相关知识及基本应用2. 掌握典型题型及其处理方法教学重点、难点《立体几何初步》的知识梳理和题型归类以及重点题型的处理方法知识分析1. 多面体的结构特征对于多面体的结构要从其反应的几何体的本质去把握,棱柱、棱锥、棱台是不同的多面体,但它们也有联系,棱柱可以看成是上、下底面全等的棱台;棱锥又可以看作是一底面缩为一点的棱台,因此它们的侧面积和体积公式可分别统一为一个公式。

2. 旋转体的结构特征旋转体是一个平面封闭图形绕一个轴旋转生成的,一定要弄清圆柱、圆锥、圆台、球分别是由哪一种平面图形旋转生成的,从而可掌握旋转体中各元素的关系,也就掌握了它们各自的性质。

3. 表面积与体积的计算有关柱、锥、台、球的面积和体积的计算,应以公式法为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素。

4. 三视图与直观图的画法三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化。

5. 线线平行的判定方法(1)定义:同一平面内没有公共点的两条直线是平行直线; (2)公理4:a b b c a c //////,,⇒; (3)平面几何中判定两直线平行的方法;(4)线面平行的性质:a a b a b ////αβαβ,,⊂=⇒ ; (5)线面垂直的性质:a b a b ⊥⊥⇒αα,//;(6)面面平行的性质:αβαγβγ////,, ==a a b 。

6. 直线和平面平行的判定方法 (1)定义:a a αα=∅⇒//;(2)判定定理:a b a b a ////,,⊄⊂⇒ααα; (3)线面垂直的性质:b a b a a ⊥⊥⊄,,,ααα//;(4)面面平行的性质:αβαβ////,a a ⊂⇒。

7. 判定两个平面平行的方法 (1)依定义采用反证法; (2)利用判定定理:αββαααβ//////,,,,b a b a b A ⊂⊂=⇒ ; (3)垂直于同一条直线的两个平面平行; a a ⊥⊥⇒αβαβ,//;(4)平行于同一平面的两个平面平行;αγβγαβ////,/⇒/。

2020版高考理数:专题(8)立体几何ppt课件二

2020版高考理数:专题(8)立体几何ppt课件二
12
考点二 空间点、直线、平面之间的位置关系
(2)异面直线的画法 为了表示异面直线不共面的特点,作图时,通常用一个或两个平面衬托,如图.
(3)异面直线的判定方法 ①定义法. ②过平面外一点与平面内一点的直线,和平面内不经过该点的直线是 异面直线. ③反证法:证明两条直线既不平行也不相交.先假设两条直线不是异 面直线,即两条直线平行或相交,由假设的条件出发,经过严密的推 理,导出矛盾,从而否定假设,肯定两条直线异面.
8
考点二 空间点、直线、平面之间的位置关系 5.平面的基本性质
(1)公理
9
考点二 空间点、直线、平面之间的位置关系
“不在一条直线上”和“三点”是公理2的关键词,如果没 有前者,那么只能说“有一个平面”,但不唯一.如果将“三点” 改成“四点”,那么过四点不一定存在一个平面.这里的“确定” 是“有且只有”的意思,包括存在性和唯一性.
【答案】D
21
考点二 空间点、直线、平面之间的位置关系 方法2 三线共点问题
证明三线共点问题的基本方法:先确定待证的三线中的两条相 交于一点,再证明第三条直线也过该点.结合公理3,该点在不 重合的两个平面内,故该点在它们的交线(第三条线)上,从而证 明了三线共点.
22
考点二 空间点、直线、平面之间的位置关系
A.四边形AEC1F一定是菱形 B.四边形AEC1F在底面ABCD内的投影不可能是正方形 C.四边形AEC1F所在平面不可能垂直于平面ACC1A1 D.【四解边析形】A只E有C1当F一E,定F不分是别梯是形BB1,DD1的中点时四边形AEC1F才是
菱形,A错误;四边形AEC1F在底面ABCD内的投影一定是正方形, B错误;当E,F分别是BB1,DD1的中点时,EF⊥平面ACC1A1,此 时四边形AEC1F所在平面垂直于平面ACC1A1,C错误;四边形AEC1F 一定是平行四边形,不可能是梯形,D正确.故选D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考理科数学《立体几何》题型归纳与训练2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由 【答案】当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12,在△ADB 中,AP PB =12,∴AD ∥PN .∵AD ⊄平面MPC ,PN ⊂平面MPC , ∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1. 构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

2. 构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

可总结为下图例2如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.方法三方法二方法一方法一求证:GF ∥平面ADE ;【答案】解法一:(1)证明:如图,取AE 的中点H ,连接HG ,HD , 又G 是BE 的中点,所以GH ∥AB ,且GH =12AB.又F 是CD 的中点,所以DF =12CD.由四边形ABCD 是矩形得,AB ∥CD ,AB =CD ,所以GH ∥DF ,且GH =DF , 从而四边形HGFD 是平行四边形,所以GF ∥DH. 又DH ⊂平面ADE ,GF ⊄平面ADE ,所以GF ∥平面ADE. 解法2:(1)证明:如下图,取AB 中点M ,连接MG ,MF. 又G 是BE 的中点,可知GM ∥AE.又AE ⊂平面ADE ,GM ⊄平面ADE ,所以GM ∥平面ADE. 在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点得MF ∥AD.又AD ⊂平面ADE ,MF ⊄平面ADE , 所以MF ∥平面ADE.又因为GM∩MF =M ,GM ⊂平面GMF ,MF ⊂平面GMF , 所以平面GMF ∥平面ADE.因为GF ⊂平面GMF ,所以GF ∥平面ADE.【解析】解法一为构造线线平行,解法二为构造面面平行。

【易错点】线段比例关系【思维点拨】同例一题型二线线垂直、面面垂直的证明例1如图,在三棱锥P-ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC【答案】(1)证明:因为P A⊥AB,P A⊥BC,AB∩BC=B,所以P A⊥平面ABC.又因为BD⊂平面ABC,所以P A⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,P A⊥BD,又AC∩P A=A,所以BD⊥平面P AC.因为BD⊂平面BDE,所以平面BDE⊥平面P AC.【解析】(一)找突破口第(1)问:欲证线线垂直,应转化到证线面垂直,再得线线垂直;第(2)问:欲证面面垂直,应转化到证线面垂直,进而转化到先证线线垂直,借助(1)的结论和已知条件可证;(二)寻关键点在平面,再由线面垂直的定义可得(3)求点到面的距离时要想到借助锥体的“等体积性”信息④:平面BDE⊥平面P AC 面面垂直的判定定理,线线垂直⇒线面垂直⇒面面垂直信息⑤:P A∥平面BDE 线面平行的性质定理,线面平行,则线线平行,可得P A∥DE【易错点】规范的符号语言描述,正确的逻辑推理过程。

【思维点拨】(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,空间向平面的转化,面面⇔线面⇔线线.题型三空间向量例1如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,ABD CBD∠=∠,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.【答案】(1)证明:由题设可得,△ABD≌△CBD,从而AD=DC.又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC . 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1). 由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎫-1,32,12. 设n =(x 1,y 1,z 1)是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0.可取n =⎝⎛⎭⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量,则⎩⎪⎨⎪⎧ m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0,可取m=(0,-1,3).则cos〈n,m〉=n·m|n||m|=-33+3213×2=77.由图知二面角D-AE-C为锐角,所以二面角D-AE-C的余弦值为7 7.【解析】(一)找突破口第(1)问:欲证面面垂直,应转化去证线面垂直或证其二面角为直角,即找出二面角的平面角,并求其大小为90°;第(2)问:欲求二面角的余弦值,应转化去求两平面所对应法向量的夹角的余弦值,即通过建系,求所对应法向量来解决问题.(二)寻关键点【易错点】正确建立空间直角坐标系,确定点的坐标,平面法向量的计算。

【思维点拨】1.利用空间向量求空间角的一般步骤(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标;(3)结合公式进行论证、计算;(4)转化为几何结论.2.求空间角应注意的3个问题(1)两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.(2)直线与平面所成的角的正弦值等于平面的法向量与直线的方向向量夹角的余弦值的绝对值,注意函数名称的变化.(3)两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.【巩固训练】题型一线面平行的证明1.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【答案】详见解析【解析】(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.2.如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱P A⊥底面ABCD,且P A=2,E是侧棱P A上的中点.求证:PC∥平面BDE;【答案】详见解析【解析】证明:连接AC交BD于点O,连接OE,如图:∵四边形ABCD是正方形,∴O是AC的中点.又E是PA的中点,∴PC∥OE.∵PC⊄平面BDE,OE⊂平面BDE,∴PC∥平面BDE.3.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.求证:C1M∥平面A1ADD1;【答案】详见解析【解析】证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC.又由M是AB的中点,因此CD∥MA且CD=MA.连接AD1,在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1M∥D1A,又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.题型二线线垂直、面面垂直的证明1.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.(1)证明:CD⊥AE;(2)证明:PD⊥平面ABE;【答案】详见解析【解析】(1)在四棱锥P-ABCD中,因为P A⊥底面ABCD,CD⊂平面ABCD,故P A⊥CD,∵AC⊥CD,P A∩AC=A,∴CD⊥平面P AC,而AE⊂平面P AC,∴CD⊥AE,(2)由P A=AB=BC,∠ABC=60°,可得AC=P A,∵E是PC的中点,∴AE⊥PC,由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD,而PD⊂平面PCD,∴AE⊥PD,∵P A⊥底面ABCD,PD在底面ABCD内的射影是AD,AB⊥AD,∴AB⊥PD,又∵AB∩AE=A,综上可得PD⊥平面ABE.2.如图,在三棱锥P-ABC中,P A=PB=PC=AC=4,AB=BC=2 2.求证:平面ABC⊥平面APC;【答案】详见解析【解析】(1)证明:如图所示,取AC中点O,连接OP,OB.∵P A=PC=AC=4,∴OP⊥AC,且PO=4sin60°=2 3.∵BA=BC=22,∴BA2+BC2=16=AC2,且BO⊥AC,∴BO=AB2-AO2=2.∵PB=4,∴OP2+OB2=12+4=16=PB2,∴OP⊥OB.∵AC∩OB=O,∴OP⊥平面ABC.∵OP⊂平面P AC,∴平面ABC⊥平面APC.3.如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=3,PD⊥底面ABCD.证明:平面PBC⊥平面PBD;【答案】详见解析【解析】(1)证明:===Q,∴CD2=BC2+BD2,∴BC⊥BD.CB CD BD1,2,3又∵PD⊥底面ABCD,∴PD⊥BC.又∵PD∩BD=D,∴BC⊥平面PBD.而BC⊂平面PBC,∴平面PBC⊥平面PBD.题型三空间向量1.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.(1)求证:DC1⊥平面BCD;(2)求二面角A-BD-C的大小.【答案】详见解析【解析】(1)证明:按如图所示建立空间直角坐标系.由题意,可得点C (0,0,0),A (2,0,0),B (0,2,0),D (2,0,2),A 1(2,0,4),C 1(0,0,4).于是,1DC u u u u r =(-2,0,2),DC u u u r =(-2,0,-2),DB u u u r =(-2,2,-2).可算得1DC DC ⋅u u u u r u u u r =0,1DC DB ⋅u u u u r u u u r =0.因此,DC 1⊥DC ,DC 1⊥DB .又DC ∩DB =D ,所以DC 1⊥平面BDC .(2)设n =(x ,y ,z )是平面ABD 的法向量,又AB u u u r =(-2,2,0),AD u u u r =(0,0,2),所以⎩⎪⎨⎪⎧ -2x +2y =0,2z =0.取y =1,可得⎩⎪⎨⎪⎧ x =1,y =1,z =0,即平面ABD 的一个法向量是n =(1,1,0).由(1)知,1DC u u u u r 是平面DBC 的一个法向量,记n 与1DC u u u u r 的夹角为θ,则cos θ=-12,θ=2π3.结合三棱柱可知,二面角A -BD -C 是锐角, 故所求二面角A -BD -C 的大小是π3. 2.如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE ⊥BD 于点E ,延长AE 交BC 于点F ,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE ⊥平面BCD ;(2)求二面角A -DC -B 的余弦值;(3)在线段AF 上是否存在点M 使得EM ∥平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由. 【答案】详见解析【解析】(1)证明:因为平面ABD ⊥平面BCD ,交线为BD ,又在△ABD 中,AE ⊥BD 于点E ,AE ⊂平面ABD ,所以AE ⊥平面BCD.(2)由(1)中AE ⊥平面BCD 可得AE ⊥EF .由题意可知EF ⊥BD ,又AE ⊥BD ,如图,以E 为坐标原点,分别以EF ,ED ,EA 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系E -xyz ,不妨设AB =BD =DC =AD =2,则BE =ED =1.由图1条件计算得AE =3,BC =23,BF =233,则E (0,0,0),D (0,1,0),B (0,-1,0),A (0,0,3),F ⎝⎛⎭⎫33,0,0,C (3,2,0),DC u u u r =(3,1,0),AD u u u r =(0,1,-3).由AE ⊥平面BCD 可知平面DCB 的法向量为EA u u u r ,EA u u u r =(0,0,3), 设平面ADC 的法向量为n =(x ,y ,z ),则⎩⎨⎧3x +y =0,y -3z =0. 令z =1,则y =3,x =-1,所以n =(-1,3,1).因为平面DCB 的法向量为EA u u u r ,所以cos 〈n ,EA u u u r 〉==55. 所以二面角A -DC -B 的余弦值为55. (3)设AM u u u u r =λAF u u u r ,其中λ∈[0,1].由于AF u u u r =⎝⎛⎭⎫33,0,-3,所以AM u u u u r =λAF u u u r =λ⎝⎛⎭⎫33,0,-3,其中λ∈[0,1]. 所以EM EA AM =+u u u u r u u u r u u u u r =3,0,(1)33λλ⎛⎫- ⎪ ⎪⎝.由EM u u u u r ·n =0,即-33λ+(1-λ)3=0,解得λ=34∈[0,1].所以在线段AF 上存在点M 使EM ∥平面ADC ,且AM AF =34. 3.在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1为矩形,AB =1,AA 1=2,D 为AA 1的中点,BD 与AB 1交于点O ,CO ⊥侧面ABB 1A 1.(1)证明:BC ⊥AB 1;(2)若OC =OA ,求直线C 1D 与平面ABC 所成角的正弦值.【答案】详见解析【解析】(1)证明:由题意tan ∠ABD =AD AB =22,tan ∠AB 1B =AB BB 1=22, 注意到0<∠ABD ,∠AB 1B <π2, 所以∠ABD =∠AB 1B .所以∠ABD +∠BAB 1=∠AB 1B +∠BAB 1=π2.所以AB 1⊥BD . 又CO ⊥侧面ABB 1A 1,所以AB 1⊥CO .又BD 与CO 交于点O ,所以AB 1⊥面CBD .又因为BC ⊂面CBD ,所以BC ⊥AB 1.(2)如图,分别以OD ,OB 1,OC 所在的直线为x 轴、y 轴、z 轴,以O 为原点,建立空间直角坐标系O -xyz ,则A ⎝⎛⎭⎫0,-33,0,B ⎝⎛⎭⎫-63,0,0,C ⎝⎛⎭⎫0,0,33, B 1⎝⎛⎭⎫0,233,0,D ⎝⎛⎭⎫66,0,0.又因为CC 1→=2AD →,所以C 1⎝⎛⎭⎫63,233,33.所以AB u u u r =⎝⎛⎭⎫-63,33,0,AC u u u r =⎝⎛⎭⎫0,33,33,1DC u u u u r =⎝⎛⎭⎫66,233,33. 设平面ABC 的法向量为n =(x ,y ,z ),则根据AB u u u r ·n =0,AC u u u r ·n =0可得n =(1,2,-2)是平面ABC 的一个法向量,设直线C 1D 与平面ABC 所成角为α.则sin α=35555.。

相关文档
最新文档