七年级数学下册不等式与不等式组练习(知识点+综合练习及详细答案)
初中数学 人教版七年级下册 第九章 不等式与不等式组 9.1 不等式 同步练习(含答案)

不等式同步练习一、选择题1、若,且c为有理数,则下列各式正确的是()A、 B、 C、 D、2、已知,则下列不等式成立的是()A. B.C.D.3、若,且,则应满足的条件是()A. B. C. D.4、若b<<0,则下列不等式成立的是( )A.一2b<一2 B.< C.b<2<0 D.b2>b>25、下列命题中,假命题的个数是( )①x=2是不等式x+3≥5的解集②一元一次不等式的解集可以只含一个解③一元一次不等式组的解集可以只含一个解④一元一次不等式组的解集可以不含任何一个解A.0个 B.1个 C.2个 D.3个6、不等式的正整数解有()A、1个B、2个C、3个D、无数多个7、若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.3﹣x>3﹣y D.8、不等式的解集在数轴上表示正确的是()9、关于的方程的解为正整数,则整数的值为( )A.2 B.3 C.1或2 D.2或310、不等式的解集是()A. B. C. D.11、若实数a、b、c在数轴上的位置如图所示,则下列不等式成立的是()A.ac>bc; B.ab>cb; C.a+c>b+c; D.a+b>c+b;12、已知数的大小关系如图所示,则下列各式:①;②;③;④;⑤.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题13、已知a>b,则﹣a+c﹣b+c(填>、<或=).14、不等号填空:若a<b<0 ,则;;.15、一罐饮料净重500克,罐上标注脂肪含量≤0.5%,则这罐饮料中脂肪含量最多克.16、不等式5x﹣2≤7x+1的负整数解为.17、若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.18、判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..三、简答题19、解下列不等式,并把解集在数轴上表示出来:4+3x>6﹣2x.20、当m为何值时,关于x的方程x﹣1=m的解不小于3?21、下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.22、某校组织“环境与健康”知识竞赛,共20道题,选对一道得5分,不选或选错一道扣3分,若得分不低70分才能获奖,那么至少要选对多少道题才可能获奖?23、定义新运算:对于任意实数a,b,都有a b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:25=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)3的值;(2)若3x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.参考答案一、选择题1、D ;2、C ;3、C ;4、D ;5、D;6、A ;7、C;8、A;9、D;10、A;11、B;;12、B ;二、填空题13、∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c.14、>、>、<;15、2.5.16、x=﹣1 .1117、318、√、×、×、√、√、√.三、简答题19、移项、合并同类项,得5x>2,化系数为1,得x>2.5.表示在数轴上为:20、解方程得,x=2m+2,∵方程的解不小于3,∴2m+2≥3,即2m≥1,解得m≥;21、(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.22、设要选对x道题才能获奖,由题意得:5x﹣3≥70解得:x≥16,故x是整数且应取最小值:x=17.答:至少要答对17道题才能获奖.23、(1)11. (2)x>-1 数轴表示如图所示:。
人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)

第九章不等式与不等式组9.1不等式9.1.1不等式及其解集基础题知识点1不等式1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2<3,其中不等式有(B)A.2个B.3个C.4个D.5个2.选择适当的不等号填空:(1)2<3;(2)-9>-4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50g,用不等式表示下列数量关系是x>50.第3题第4题4.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,那么这个式子可以表示成x<y(用“>”或“<”填空).5.用适当的符号表示下列关系:(1)x是正数:x>0;(2)m大于-3:m>-3;11(3)a-b是负数:a-b<0;(4)a的3比5大:3a>5.116.“b的2与c的和是负数”用不等式表示为2b+c<0.知识点2不等式的解和解集7.用不等式表示如图所示的解集,其中正确的是(A)A.x>-2B.x<-2C.x>2D.x≠-28.下列说法中,错误的是(C)A.x=1是不等式x<2的解;B.-2是不等式2x-1<0的一个解;C.不等式-3x>9的解集是x=-3;D.不等式x<10的整数解有无数个。
229.下列各数:-2,-2.5,0,1,6中,不等式3x>1的解有6;不等式-3x>1的解有-2,-2.5.10.把下列不等式的解集在数轴上表示出来.(1)x>-3;解:(2)x>-1;解:(3)x<3;解:3(4)x<-2.解:中档题11.x与3的和的一半是负数,用不等式表示为(C)1111A.2x+3>0B.2x+3<0C.2(x+3)<0D.2(x+3)>012.实数a,b在数轴上的位置如图所示,则下列不等式成立的是(D)A.a>bB.ab>0C.a+b>0D.a+b<013.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.x+4]=5,则x的取值可以是(C)若[10A.40B.45C.51D.5614.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x<1;(2)-2,-1,0,1都是不等式的解:x<2;(3)0不是这个不等式的解:x>0;(4)与x<-1的解集相同的不等式:x+2<1.15.有如图所示的两种广告牌,其中图1是由两个两直角边相等的直角三角形构成的,图2是一个长方形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b 11的不等式表示为2a2+2b2>ab.16.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;1(3)a的9倍与b的2的和是正数.11(3)9a+2b>0.解:(1)7x-1<4.(2)2x>2y.17.直接写出下列各不等式的解集:(1)x+1>0;解:x>-1.(2)3x<6.解:x<2.18.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x+10×(1.5+2)<50.19.在爆破时,如果导火索燃烧的速度是每秒钟0.8cm,人跑开的速度是每秒钟4m,为了使点导火索的人在爆破时能够跑到100m以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;s解:4×0.8>100.(2)当导火索是下列哪个长度时,人能跑到安全地区(D)A.15cmB.18cmC.20cmD.25cm综合题20.阅读下列材料,并完成填空:你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,即:比较n n +1和(n+1)n的大小(n>0,且n为整数).从分析n=1,2,3,…的简单情况入手,从中发现规律,经过归纳猜想出结论:(1)通过计算,填“>”或“<”;①12<21;②23<32;③34>43;④45>54.(2)根据(1)的结果,猜想n n+1和(n+1)n的大小关系;(3)根据(2)中的猜想,知20172018>20182017.解:当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.4.若 a >b ,则 3a >3b ; > ;ac 2>bc 2(c 为非零实数).(填“>”“=”或“<”)5.如果 2m <3n ,那么不等式两边同时乘 (或除以 6),可变为 m< n.2 3 3第九章 不等式与不等式组9.1 不等式9.1.2不等式的性质第 1 课时 不等式的基本性质基础题知识点 1 不等式的性质 11.若 a >b ,则 a -3>b -3.(填“>”“<”或“=”)2.若 a -4<b -4,则 a <b.(填“>”“<”或“=”)3.已知实数 a ,b 在数轴上的对应点的位置如图所示,则 a -2<b -2.知识点 2 不等式的性质 2a b5 51 1 16 3 2知识点 3 不等式的性质 316.若- a≥b,则 a≤-2b ,其根据是(C)A.不等式的两边加(或减)同一个数(或式子),不等号的方向不变B.不等式的两边乘(或除以)同一个正数,不等号的方向不变C.不等式的两边乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对7.若 a >b ,am <bm ,则一定有(B)A.m =0B.m <0C.m >0D.m 为任何实数中档题8.若 x >y ,则下列式子中错误的是(D)x y A.x -3>y -3B. >C.x +3>y +3D.-3x >-3y9.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A.a >bB.a +2>b +2C.-a <-bD.2a >3bc b12.已知关于x的不等式(1-a)x>2的解集为x<210.下列说法不一定成立的是(C)A.若a>b,则a+c>b+c;B.若a+c>b+c,则a>b;C.若a>b,则ac2>bc2;D.若ac2>bc2,则a>b11.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-cB.a+c<b+ca cC.ac>bcD.<1-a,则a的取值范围是a>1.13.如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.14.张华在进行不等式变形时遇到不等式b<-b,他将不等式两边同时除以b得1<-1,这显然是不成立的,你能解释这是为什么吗?你能求出b的取值范围吗?解:∵不知道b的正负,∴将不等式两边同时除以b,不等号的方向不知道改变不改变.张华把b看成大于0,所以才得出错误的结论.不等式两边同时加上b,得2b<0.不等式两边同时除以2,得b<0.3 6 3 6 7 44第 2 课时 不等式的基本性质的运用基础题知识点 1 利用不等式的性质解不等式1.不等式 x -2>1 的解集是(C)A.x>1B.x>2C.x>3D.x>42.(2016·临夏)在数轴上表示不等式 x -1<0 的解集,正确的是(C)3.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若 x +2 016>2 017,则 x>1;(不等式两边同时减去 2__016,不等号方向不变)1 1(2)若 2x>- ,则 x>- ;(不等式两边同时除以 2,不等号方向不变)1 1(3)若-2x>- ,则 x< ;(不等式两边同时除以-2,不等号方向改变)x(4)若- >-1,则 x<7.(不等式两边同时乘-7,不等号方向改变)4.根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.3(1)8x >7x +1;(2)-3x <-4x - .3解:(1)不等式两边都减 7x ,得 x >1.(2)不等式两边都加 4x ,得 x <- .知识点 2 不等式的简单应用5.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月 1 500 元租金外,每千米收 1 元;出租车公司规定每千米收 2 元,不收其他费用.设该单位每月用车 x 千米时,乘坐出租车划算,请写出 x 的取值范围.解:根据题意,得1 500+x>2x ,解得 x<1 500.∵单位每月用车 x(千米)是正数,∴x 的取值范围是 x >0 并且 x <1 500.33336.若式子3x+4的值不大于0,则x的取值范围是(D)4444A.x<-B.x≥C.x<D.x≤-7.如图是关于x的不等式2x-a≤-1的解集,则a的取值是(C)A.a≤-1B.a≤-2C.a=-1D.a=-28.利用不等式的性质解下列不等式.(1)5x≥3x-2;解:不等式两边同时减去3x,得2x≥-2.不等式两边同时除以2,得x≥-1.(2)8-3x<4-x.解:不等式两边同时加上x,得8-2x<4.不等式两边同时减去8,得-2x<-4.不等式两边同时除以-2,得x>2.9.已知一台升降机的最大载重量是1200kg,在一名体重为75kg的工人乘坐的情况下,它最多能装载多少件25kg重的货物?解:设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有75+25x≤1200,解得x≤45.因此,升降机最多载45件25kg重的货物.a b10.已知关于 x 的不等式 ax <-b 的解集是 x >1,求关于 y 的不等式 by >a 的解集.解:∵不等式 ax <-b 的解集是 x >1,b∴a<0,- =1.∴b=-a ,b >0.a∴不等式 by >a 的解集为 y > =-1,即不等式 by >a 的解集为 y >-1.第九章 不等式与不等式组9.1 不等式9.2 一元一次不等式第 1 课时 一元一次不等式的解法基础题知识点 一元一次不等式及其解法1.下列不等式中,属于一元一次不等式的是(B)1 A.4>1B.3x -16<4C.x<2.4x -3<2y -712.(2017· 眉山)不等式-2x >2的解集是(A)11A.x <-4B.x <-1C.x >-4D.x >-13.(2017· 吉林)不等式 x +1≥2 的解集在数轴上表示正确的是(A)4.(2016· 六盘水)不等式 3x +2<2x +3 的解集在数轴上表示正确的是(D)x x -15.不等式2- 3 ≤1 的解集是(A)A.x ≤4B.x ≥4C.x ≤-1D.x ≥-16.(2017· 遵义)不等式 6-4x ≥3x -8 的非负整数解有(B)A.2 个B.3 个C.4 个D.5 个77.已知 y 1=-x +3,y 2=3x -4,当 x >4时,y 1<y 2.8.解不等式,并把解集在数轴上表示出来:(1)5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)2(x-1)+5<3x;解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.系数化为1,得x>3.其解集在数轴上表示为:x-27-x.(3)2≤3解:去分母,得3(x-2)≤2(7-x).去括号,得3x-6≤14-2x.移项、合并同类项,得5x≤20.解得x≤4.其解集在数轴上表示为:1+x 2x +19.(2017· 舟山)小明解不等式 2 - 3 ≤1 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得 3(1+x)-2(2x +1)≤1.①去括号,得 3+3x -4x +1≤1.②移项,得 3x -4x ≤1-3-1.③合并同类项,得-x ≤-3.④两边都除以-1,得 x ≤3.⑤解:错误的是①②⑤,正确的解答过程如下:去分母,得 3(1+x)-2(2x +1)≤6.去括号,得 3+3x -4x -2≤6.移项,得 3x -4x ≤6-3+2.合并同类项,得-x ≤5.两边都除以-1,得 x ≥-5.中档题10.(2017· 丽水)若关于 x 的一元一次方程 x -m +2=0 的解是负数,则 m 的取值范围是(C)A.m ≥2B.m >2C.m <2 D .m ≤2111.不等式3(x -m)>2-m 的解集为 x >2,则 m 的值为(B)31 A.4 B.2C.2D.2312.要使 4x -2的值不大于 3x +5,则 x 的最大值是(B)A.4B.6.5C.7D.不存在x +1 2x +213.(2016· 南充)不等式 2 > 3 -1 的正整数解的个数是(D)A.1B.2C.3D.414.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为(D)A.2B.3C.4D.515.(2017·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.16.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:1(2)(2017·晋江月考)3(x-1)<4(x-2)-3;解:去括号,得3x-3<4x-2-3.移项,得3x-4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x>2.其解集在数轴上表示为:(3)2x-19x+2323=23-6≤1;解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:x+1(4)2≥3(x-1)-4.解:去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-1-8.合并同类项,得-5x≥-15.系数化为1,得x≤3.其解集在数轴上表示为:综合题17.已知关于x的方程4(x+2)-2=5+3a的解不小于方程(3a+1)x a(2x+3)=的解,试求a的取值范围.3a-1解:解方程4(x+2)-2=5+3a,得x=4.(3a+1)x a(2x+3)9a解方程,得x=2.3a-19a11依题意,得4≥2.解得a≤-15.故a的取值范围为a≤-15.第九章不等式与不等式组9.2一元一次不等式第2课时一元一次不等式的应用基础题知识点1一元一次不等式的简单应用1.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A)A.16个B.17个C.33个D.34个2.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(B)A.17B.16C.15D.123.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11B.8C.7D.54.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块5.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得81.5×20+22x≤200,解得x≤711.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1120.答:当购买商品的价格超过1120元时,采用方案一更合算.7.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.中档题8.(2016·雅安)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C)A.60B.70C.80D.909.(2017·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.10.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.11.2017年的5月20日是第28个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x克的蛋白质,则这份快餐含有4x克的碳水化合物,根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x,则当两种方案费用一样时,4x=2.4x+16000,解得x=10000;当方案一费用低时,4x<2.4x+16000,解得x<10000;当方案二费用低时,4x>2.4x+16000,解得x>10000.答:当需要纸箱的个数为10000时,两种方案都可以;当需要纸箱的个数小于10000时,方案一便宜;当需要纸箱的个数大于10000时,方案二便宜.综合题13.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.第九章不等式与不等式组周周练(9.1~9.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,是一元一次不等式的是(C)A.5+4>8B.2x-11C.2x≤5D.x-3x≥02.下列数值中不是不等式5x≥2x+9的解的是(D)A.5B.4C.3D.23.(2017·六盘水)不等式3x+6≥9的解集在数轴上表示正确的是(C)4.(2017·杭州)若x+5>0,则(D)xD.-2x<12 A.x+1<0 B.x-1<0C.5<-12+x2x-15.下列解不等式3>5的过程中,出现错误的一步是(D)①去分母,得5(x+2)>3(2x-1);②去括号,得5x+10>6x-3;③移项,得5x-6x>-10-3;④系数化为1,得x>13.A.①B.②C.③D.④6.设a,b,c表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是(A)A.c<b<aB.b<c<aC.c<a<bD.b<a<c7.(2017· 毕节)关于 x 的一元一次不等式m -2x11.若不等式(a -2)x <1 的两边同时除以 a -2 后变成 x> ,则 a 的取值范围是 a <2.3 ≤-2 的解集为 x ≥4,则 m 的值为(D)A.14B.7C.-2D.28.某射击运动员在一次比赛中(共 10 次射击,每次射击最多是 10 环),前 6 次射击共中 52 环.如果他要打破 89 环的记录,那么第 7 次射击不能少于(D)A.5 环B.6 环C.7 环D.8 环二、填空题(每小题 3 分,共 18 分)1 19.用不等式表示“y 的2与 5 的和是正数”为2y +5>0.2 7 1210.不等式3x +1<3x -3 的解集是 x > 5 .1a -212.不等式 3(x -1)≤5-x 的非负整数解有 3 个.13.某校规定期中考试成绩的 40%和期末考试成绩的 60%的和作为学生成绩总成绩.该校李红同学期中数学考了 85 分,她希望自己学期总成绩不低于 90 分,则她在期末考试中数学至少应得多少分?设她在期末应考 x 分,可列不等式为 40%×85+60%x ≥90.⎧x +2y =3,14.已知关于 x ,y 的方程组⎨的解满足不等式 x +y >3,则 a 的取值范围是 a >1. ⎩2x +y =6a三、解答题(共 50 分)15.(8 分)解下列不等式,并将其解集在数轴上表示出来.(1)8x -1≥6x +3;解:移项,得 8x -6x ≥3+1.合并同类项,得 2x ≥4.系数化为 1,得 x ≥2.其解集在数轴上表示为:6 . 16.(6 分)已知式子 1-3x∴3+ m >0.10x +1(2)2x -1<解:去分母,得 12x -6<10x +1.移项,得 12x -10x <1+6.合并同类项,得 2x <7.7系数化为 1,得x<2.其解集在数轴上表示为:2 与 x -2 的差是负数,求 x 的取值范围.解:∵1-3x2 与 x -2 的差是负数,1-3x ∴ 2 -(x -2)<0.解得 x >1.17.(6 分)已知关于 x 的方程 x +m =3(x -2)的解是正数,求 m 的取值范围.解:解方程 x +m =3(x -2),1得 x =3+2m.∵方程的解是正数,12∴m >-6,即 m 的取值范围是 m >-6.2-x18.(8分)已知:不等式3≤2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是不是该不等式的解.解:(1)2-x≤3(2+x),2-x≤6+3x,-4x≤4,x≥-1.解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥-1,而2>-1,∴a是该不等式的解.19.(10分)(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x场,则负了(10-x)场,根据题意,得2x+10-x=18,解得x=8.则10-x=2.答:甲队胜了8场,负了2场.(2)设乙队在初赛阶段胜a场,根据题意,得2a+(10-a)>15,解得a>5.答:乙队在初赛阶段至少要胜6场.20.(12分)某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?解:设印刷数量为x份,则当1.2x+900=1.5x+540,此时x=1200.∴当印刷数量为1200份时,两个印刷厂费用一样,二者任选其一.当1.2x+900<1.5x+540,此时x>1200.∴当印刷数量大于1200份时,选择甲印刷厂费用少,比较合算.当1.2x+900>1.5x+540,此时500≤x<1200.∴当印刷数量大于或等于500且小于1200份时,选择乙印刷厂费用少,比较合算.当印制2000份时,选择甲印刷厂比较合算,所需费用为1.2×2000+900=3300(元).∴如果要印制2000份录取通知书,应选择甲印刷厂,需要3300元.x+1>x⎪⎩⎪⎩2第九章不等式与不等式组9.3一元一次不等式组基础题知识点1一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A)⎧x>2⎧x+1>0A.⎨B.⎨⎩x<-3⎩y-2<0⎧3x-2>0⎧⎪3x-2>0C.⎨D.⎨1⎩(x-2)(x+3)>0知识点2解一元一次不等式组2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是(D)⎧x≥2⎧x≤2⎧x≥2⎧x≤2A.⎨B.⎨C.⎨D.⎨⎩x>-3⎩x<-3⎩x<-3⎩x>-3⎧3x-6<0,3.下列四个数中,为不等式组⎨的解的是(C)⎩3+x>3A.-1B.0C.1D.2⎧⎪2x>x-1,4.(2017·湖州)一元一次不等式组⎨1的解集是(C)x≤1A.x>-1B.x≤2C.-1<x≤2D.x>-1或x≤2⎧2x+9≥3,5.(2017·德州)不等式组⎨1+2x的解集是(B)⎩3>x-1A.x≥-3B.-3≤x<4C.-3≤x<2D.x>4⎧x+1>2,6.(2017·自贡)不等式组⎨的解集表示在数轴上正确的是(C)⎩3x-4≤2⎧2x-1>x+1,7.(2017·襄阳)不等式组⎨的解集为2<x≤3.⎩x+8≥4x-1⎧x+1≥2,①8.(2017·天津)解不等式组:⎨⎩5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得x≥1;(2)解不等式②,得x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3.9.解不等式组:⎧x-3<1,①(1)⎨⎩4x-4≥x+2;②解:解不等式①,得x<4.解不等式②,得x≥2.∴不等式组的解集为2≤x<4.⎧⎪1 x -6≤1-3x ,⎧x -1>0,①(2)(2016· 郴州)⎨⎩3(x -1)<2x.②解:解不等式①,得 x >1.解不等式②,得 x <3.∴不等式组的解集是 1<x <3.知识点 3 一元一次不等式组的运用10.已知点 P(3-m ,m -1)在第二象限,则 m 的取值范围在数轴上表示正确的是(A)⎧x +1<2a ,11.已知不等式组⎨的解集是 2<x <3,则 a =2,b =1. ⎩x -b >1中档题⎧2x +1>0,12.一元一次不等式组⎨的解集中,整数解的个数是(C) ⎩x -5≤0A.4B.5C.6D.75 13.(2017· 鄂州)对于不等式组⎨3下列说法正确的是(A) ⎪⎩3(x -1)<5x -1,7A.此不等式组的正整数解为 1,2,3;B.此不等式组的解集为-1<x ≤6;C.此不等式组有 5 个整数解;D.此不等式组无解。
人教版 七年级下册数学 第9章 不等式与不等式组 同步训练(含答案)

人教版 七年级数学 第9章 不等式与不等式组 同步训练一、选择题1. 一个不等式组的解集在数轴上表示出来如图,则下列符合条件的不等式组为( )A.B. C. D.2. 不等式20x -+≥的解集为A .2x ≥-B .2x ≤-C .2x ≥D .2x ≤3. (2019•宁波)不等式32x x ->的解为 A .1x <B .1x <-C .1x >D .1x >-4. 若关于x 的一元一次不等式组⎩⎨⎧2x -1>3(x -2)x<m的解是x<5,则m 的取值范围是( )A. m ≥5B. m>5C. m ≤5D. m<55. 对于不等式组⎩⎨⎧12x -1≤7-32x 5x +2>3(x -1),下列说法正确的是( ) A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是-3,-2,-1D. 此不等式组的解集是-52<x≤26. (2019·广安)若m n >,下列不等式不一定成立的是A .33m n +>+B .33m n -<-C .33m n >D .22m n >2,1x x <⎧⎨>-⎩2,1x x <⎧⎨≥-⎩2,1x x <⎧⎨≤-⎩7. 已知不等式组⎩⎨⎧x>a x≥1的解集是x≥1,则a 的取值范围是( ) A. a<1 B. a ≤1 C. a ≥1 D. a>18. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共几只A .55B .72C .83D .899. (2019·聊城)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为 A .2m ≤B .2m <C .2m ≥D .2m >10. (2019•呼和浩特)若不等式253x +-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x-1)+5>5x+2(m+x )成立,则m 的取值范围是A .m>-35B .m<-15C .m<-35D .m>-15二、填空题11. 如图,数轴上表示的一个不等式组的解集,这个不等式组的整数解是__________.12. 不等式3x +134>x 3+2的解是________.13. 不等式322x -<-<的正整数解为__________.14. 若关于x ,y 的二元一次方程组的解满足x +y <2,则实数a 的31,33x y a x y +=+⎧⎨+=⎩取值范围为______.15. 不等式组2752312x xxx-<-⎧⎪⎨++>⎪⎩的整数解是.16. (2019•鄂州)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足x+y≤0,则m的取值范围是__________.17. 关于x的一次不等式组x ax b≥⎧⎨≤⎩的解集是a x b≤≤,则a,b的大小关系是.三、解答题18. 某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?19. 某生产小组展开劳动竞赛后,每人每天多做10个零件,这样8个人一天做的零件超过200个;后来改进技术,每人每天又多做27个,这样他们4人一天所做零件就超过劳动竞赛中8人一天所做零件.问他们改进技术后的效率是劳动竞赛前的几倍?20. 已知正数x y z、、满足1126352351124z x y zx y z xy x z y⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩①②③,求x y z、、的大小关系.人教版 七年级数学 第9章 不等式与不等式组 同步训练-答案一、选择题1. 【答案】C2. 【答案】D【解析】移项得:2x -≥-系数化为1得:2x ≤.故选D .3. 【答案】A 【解析】32x x ->,3-x>2x ,3>3x ,x<1,故选A .4. 【答案】A 【解析】解不等式2x -1>3(x -2)得x<5,根据不等式组的解集为x<5可知,利用同小取小可知m ≥5.【易错警示】注意两个不等式的解集有可能相同,即m 可以取5,不要漏掉等号导致错选B.5. 【答案】B 【解析】⎩⎨⎧12x -1≤7-32x ①5x +2>3(x -1) ②,解①得2x≤8,x ≤4,解②得2x >-5,x >-52,所以不等式组的解集是-52<x≤4,所以不等式组的整数解是-2,-1,0,1,2,3,4,共7个,其中负整数解是-2,-1,故选B.6. 【答案】D【解析】A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以-3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n ==-><,,,,故D 正确,故选D .7. 【答案】A 【解析】∵⎩⎨⎧x>a x≥1的解集是x≥1,∴a<1.8. 【答案】C【解析】设该村共有x户,则母羊共有(517)x+只,由题意知,5177(1)0 5177(1)3x xx x+-->⎧⎨+--<⎩,解得:21122x<<,∵x为整数,∴11x=,则这批种羊共有115111783+⨯+=(只),故选C.9. 【答案】A【解析】解不等式1132x x+<--,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选A.10. 【答案】C【解析】解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴x<12m-,∴12m->45,解得:m<-35,故选C.二、填空题11. 【答案】-1,0【解析】考查不等式求解和用数轴表示其解集.注意取实心点的条件答案:-1,012. 【答案】x>-3 【解析】3x+134>x3+2,去分母得9x+39>4x+24,移项得5x>-15,系数化为1得x>-3,即不等式的解为x>-3.13. 【答案】1,2,314. 【答案】a<415. 【答案】不等式组的解集为:13x <<,整数解为2;16. 【答案】m≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2. 故答案为:m≤-2.17. 【答案】a b ≤三、解答题18. 【答案】14【解析】设至少还需要B 型车x 辆,依题意得20515300x ⨯+≥解得1133x ≥,∴14x =.19. 【答案】3.3125倍【解析】设劳动竞赛前每人每天做x 个零件, 则有8(10)2004(1027)8(10)x x x +>⎧⎨++>+⎩,解得1517x x >⎧⎨<⎩,因为x 为整数,所以16x = 于是(1637)16 3.3125+÷=,改进技术后的效率是劳动竞赛前的3.3125倍.20. 【答案】y z x <<【解析】对①式同时加一个数z ,对②式同时加一个数x ,对③式同时加一个数y 得1736582371524z x y z zx x y z x y x y z y ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩,于是17863z x <,即4851z x x <<,所以z x <, 再由732y z <,得67y z z <<,所以y z <,综合得y z x <<.。
人教版七年级数学下册第九章不等式和不等式组练习(含答案)

第九章不等式与不等式组一、单项选择题1.假如莱州市2019 年 6 月 1 日最高气温是33o C ,最低气温是24o C ,则当日莱州市气温t o C的变化范围是()A .t33B.t33C.24t 33D.24t33 2.以下说法正确的选项是()A . 5 是不等式x 5 0 的解B. 6 是不等式x 5 10 的解集C.x 3 是不等式x 30 的解集D.x 5 是不等式 x 510 的解集3).若 a b ,则以下不等式不建立的是(A .ac2bc2B. a 4 b 4C. 1 a 1 b D.1 2a1 2b2 24 |a| x 的一元一次不等式,则 a 的值是().若 ( a 1)x 3 0 是对于A .1 B.C.1 D. 05.在数轴上表示不等式1 1 的解集,正确的选项是()1- x≥2 2A .B.C.D.6.某种商品的进价为900元,销售的标价为1650元,后出处于该商品积压,商品准备打折销售,但要保证收益率不低于10% ,则最多可打()A.6折B.7折C.8折D.9折x87.若不等式组有解,那么n 的取值范围是()x nA . n 8B . n 8C . n 8D . n 88.若对于 x 、 y3x y 1 a 的解知足xy 505 ,则 a的二元一次方程组3y 1的取值范围x 是( ).A . a 2018B . a 2018C . a 505D . a 5059.运转程序以下图, 从 “输入实数 x ”到 “结果能否 18 ”为一次程序操作, 若输入后 x 程序操作进行了两次就停止,则x 的取值范围是 ()14 B .14 C .14 x 6D . x 6A . xx 8333a ba b 1 3 10.阅读理解: 我们把d 称作二阶队列式, 规定它的运算法例为=ad ﹣ bc ,比如2 4cc d=1×4﹣ 2× 3=﹣ 22 3 x ,假如1 > 0,则 x 的解集是( )xA . x >1B . x <﹣ 1C .x > 3D . x <﹣ 3二、填空题11.若不等式 (a - 2)x > a - 2 能够变形为 x < 1,则 a 的取值范围为 _____.12.已知不等式 3x - a0 的正整数解正是 1,2,3,4,那么 a 的取值范围是 _________________.x 2⋯1 的解集为 _____.13.不等式组2x 3x9 1614.迪士尼乐园开门前已经有400 名旅客在排队检票.检票开始后,均匀每分钟又有120 名旅客前来排队.已知一个检票口每分钟能检票15 人,若要使排队现象在开始检票10分钟内消逝,则起码开放___个检票口.三、解答题15.阅读以下资料:数学识题:已知x y 2 ,且x1,y0 ,试确立x y 的取值范围.问题解法: Q x y 2 ,x y 2.又 Q x 1 ,y 2 1 , y 1 .又Q y 0 ,1 y 0 .①同理得 1 x 2 .①由①①得 1 1 y x 0 2 ,x y 的取值范围是0 x y 2 .达成任务:(1)在数学识题中的条件下,写出2x 3 y 的取值范围是_____.(2)已知x y 3,且x 2 ,y0,试确立x y 的取值范围;(3)已知 y 1 ,x1,若x y a 建立,试确立x y 的取值范围(结果用含 a 的式子表示).16.解不等式(组)(1)3 x 1 1 x 2x1( 2)22x 12( x 1) 1 x2x y m 3 0, 求 m 的取值范围.17.已知对于 x, y 的方程组y2m 的解 xy x18.跟着 “一带一路 ”国际合作顶峰论坛在北京举行, 中国同 30 多个国家签订经贸合作协议,某厂准备生产甲、 乙两种商品共 8 万件销往 “一带一路 ”沿线国家和地域. 已知甲种商品的销售单价为 900 元,乙种商品的销售单价为600 元.( 1)已知乙种商品的销售量不可以低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?(2)在( 1)的条件下,要使甲、乙两种商品的销售总收入不低于5700 万元,恳求甲种商品销售量的范围.19.益马高速通车后, 将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一田户需要将 A ,B 两种农产品按期运往益阳某加工厂,每次运输A ,B 产品的件数不变,本来每运一次的运费是 1200 元,此刻每运一次的运费比本来减少了300 元, A ,B 两种产品本来的运费和此刻的运费(单位:元∕件)以下表所示:品种A B本来的运费45 25此刻的运费30 20( 1)求每次运输的农产品中 A ,B 产品各有多少件;( 2)因为该田户诚实守信,产质量量好,加工厂决定提升该田户的供货量,每次运送的总件数增添 8 件,但总件数中 B 产品的件数不得超出A 产品件数的 2 倍,问产品件数增添后,每次运费最少需要多少元答案1. D 2. C 3. A 4. A 5. B 6. A 7. A8. B9. B10. A11. a<212.12a1513. 3≤x<514. 1115.( 1) 1 2x 3 y 4 ;(2)x y 的取值范围是 1 x y 3;(3)x y 的取值范围是 2 a x y a 2 .16.( 1)x 2;(2) 3 x 117. 1 m 16 万件18.( 1)最多销售甲种商品 6 万件;( 2)范围为3万件到19.( 1)每次运输的农产品中 A 产品有10 件,每次运输的农产品中 B 产品有30 件,( 2)产品件数增添后,每次运费最少需要1120 元。
七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________. 3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m <<;①若a +b <0,且0b a>,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( )A .1个B .2个C .3个D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a --=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤ B .34b <≤ C .23b ≤< D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:和4;和12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2,①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键. 4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则. 7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a>,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314xx +﹣=或314x x +﹣=﹣,再分情况讨论: 当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x﹣﹣=﹣,①x=32,符合题意;当3x+1<0时,即x<﹣13,由-314x x+=得314x x++=,①x=34与x<﹣13不相符,故舍去;由-31-4x x+=得314x x++=﹣,①x=﹣54,符合题意;故原方程的解是x=32或x=﹣54.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.412<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)解:1216<,4.(2)解:34<,<2,121<-11<,12<.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。
人教版七年级数学下册9章 不等式与不等组(在数轴上表示解集)+答案

9章不等式与不等组(在数轴上表示解集)象湖学校数学教研组专用1. 不等式组的解集在数轴上表示为( )A. B.C. D.2. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.3. 下列用数轴表示不等式组解集正确的是A. B.C. D.4. 如果点在平面直角坐标系的第四象限内,那么的取值范围在数轴上可表示为A. B.C. D.5. 不等式组’的解集在数轴上表示正确的是()A. B.C. D.6. 不等式组的解集在数轴上表示为A. B.C. D.7. 不等式的解集在数轴上表示正确的是A. B.C. D.8. 把不等式组的解集表示在数轴上,正确的是A. B.C. D.9. 在方程组中,若未知数,满足,则的取值范围在数轴上的表示应是如图所示的A. B.C. D.10. 不等式组的解集在数轴上表示正确的是( )A. B.C. D.二、填空题11. 若关于的不等式组的解集在数轴上的表示如图所示,则________.12. 解不等式组,请结合题意填空,完成本题的解答:解不等式①,得________;Ⅱ解不等式②,得________;Ⅲ把不等式①和②的解集在数轴上表示出来:Ⅳ原不等式组的解集为:________.13. 如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①;②;③;④中的________(只填写序号)14. 已知不等式组解集如图所示,则________,________.三、解答题15. 已知关于的方程的解为非负数,求的取值范围,并在数轴上表示出来.16. 解不等式组,并把解集在数轴上表示出来.17. 若不等式组的解集为.(1)试求,的值;(2)把不等式的解集在数轴上表示出来.18. (1)解不等式,并把它的解集在数轴上表示出来; 18. (2)若关于的一元一次不等式只有个负整数解,则的取值范围是________.参考答案9章不等式与不等组(在数轴上表示解集)一、选择题1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】B8.【答案】B9.【答案】B10.【答案】C二、填空题11.【答案】12.【答案】,,13.【答案】④14.【答案】,三、解答题15.【答案】解:,去分母得,移项得,解得,因为方程的解为非负数,所以,解得.的取值范围在数轴上表示如图:16.【答案】不等式组的解集为.不等式组的解集在数轴上表示为17.【答案】解不等式组得,,∴,即=.=.由(1)可知=,解得,在数轴上表示为:.18.【答案】∵,∴,解得,这个不等式的解集在数轴上表示如下:.。
最新人教版七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

人教版七年级数学下册第 9 章 《不等式与不等式组》单元测试题一、选择题1.以下说法不必定建立的是(C ) A. 若 a>b ,则 a + c>b + cB.若 a + c>b + c ,则 a>b 222 2 2.如图是对于 x 的不等式 2x -a ≤- 1 的解集,则 a 的取值是( C)A. a ≤- 1B. a ≤- 2C. a =- 1D. a=- 22+ x 2x -13.以下解不等式 3 > 5 的过程中,出现错误的一步是( D)①去分母,得 5(x + 2) > 3(2x - 1) ;②去括号,得 5x + 10> 6x - 3;③移项,得 5x - 6x >- 10- 3;④归并同类项、系数化为 1,得 x >13.A. ①B. ②C.③D.④4.不等式组的解集表示在数轴上正确的选项是(C)5. 对于实数 x, 我们规定 :[x] 表示不小于 x 的最小整数 , 比如 :[1.4]=2,[4]=4,[-3.2]=-3,若=6, 则 x 的取值能够是 ( C)A.41B.47C.50D.586. 张老师率领全班学生到植物园观光 , 门票每张 10 元 , 购票时才发现所带的钱不够 , 售票员告诉他 : 假如观光人数 50 人以上 ( 含 50 人 ) 能够按集体票八折优惠 , 于是张老师购置了50 张票 , 结果发现所带的钱还有节余. 那么张老师和他的学生起码有 ( B)A.40 人B.41 人C.42 人D.43 人7. 已知 4<m<5,则对于 x 的不等式组的整数解共有 ( B)A.1 个B.2 个C.3 个D.4 个8. 把一些图书分给几名同学 , 假如每人分3 本 , 那么余 8 本; 假如前方的每名同学分5本,那么最后一人就分不到 3 本. 这些图书有 ( D )A.23 本B.24 本C.25 本D.26 本9.“一方有难,八方增援” ,雅安芦山 4?20 地震后,某单位为一中学捐献了一批新桌椅,学校组织初一年级 200 名学生搬桌椅 . 规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅( 一桌一椅为一套 ) 的套数为( C )A. 60B. 70C. 80D. 9010.某市出租车的收费标准是:起步价 8 元 ( 即行驶距离不超出 3 千米都需付 8 元车资),超出 3 千米此后,每增添 1 千米,加收 2.6 元 ( 不足 1 千米按 1 千米计 ). 某人打车从甲地到乙地经过的行程是 x 千米,出租车资为 21 元,那么 x 的最大值是( B )A.11B.8C.7D.5二、填空题11. “x的 4 倍与 2 的和是负数”用不等式表示为4x+2<0.12.若 23x m-1-2>19 是对于 x 的一元一次不等式 , 则 m=2 .13.不等式 4+3x≥x-1 的所有负整数解的和为 -3 .14.若不等式无解 , 则实数 a 的取值范围是 a≤ -1 .15.已知对于 x,y 的方程组的解知足不等式 x+ y> 3,则 a 的取值范围是 a >1 .16.已知对于 x 的不等式组有且只有三个整数解,则 a 的取值范围是- 2<a≤- 1 .三、解答题17.解以下不等式和不等式组:2x- 1-9x+ 2(1)≤1;36解:去分母,得2(2x - 1) -(9x +2) ≤6.去括号,得4x- 2- 9x-2≤6.移项,得4x-9x≤6+ 2+ 2.归并同类项,得- 5x≤10.系数化为1,得 x≥- 2.其解集在数轴上表示为:(2)解:解不等式①,得x>- 2.解不等式②,得x≤4.则不等式组的解集为-2<x≤4.将解集表示在数轴上以下:18. 已知不等式-1<6的负整数解是方程2x-3=ax的解,试求出不等式组的解集 .解:∵-1<6,4-5x-2<12,-5x<10,x>-2,∴不等式的负整数解是-1,把 x=-1 代入 2x-3=ax, 得 -2-3=-a,解得 a=5,把 a=5 代入不等式组 , 得解不等式组 , 得 <x<15.19. 若不等式组的解集为-2<x<3,求a+b的值.解:由∴解得∴ a+b=-1.20. 已知二元一次方程组此中x<0,y>0,求a的取值范围,并把解集在数轴上表示出来 .解:解方程组, 得由题意,得解得-4<a<. ∴解集在数轴上表示为:21. 小明解不等式1+ x2x +1-≤1的过程如图 . 请指出他解答过程中错误步骤的序号,并写23出正确的解答过程 .解:去分母,得3(1 + x) - 2(2x +1) ≤1.①去括号,得3+ 3x-4x +1≤1.②移项,得 3x-4x≤1- 3- 1.③归并同类项,得- x≤- 3.④两边都除以- 1,得 x≤3.⑤解:错误的选项是①②⑤,正确的解答过程以下:去分母,得 3(1 + x) - 2(2x +1) ≤6.去括号,得3+ 3x - 4x-2≤6.移,得3x-4x≤6- 3+ 2.归并同,得- x≤5.两都除以-1,得 x≥- 5.22. 某次球初段,每有10 比,每比都要分出,每一得2分,一得 1 分,分超 15 分才能得参格 .(1)已知甲在初段的分18 分,求甲初段、各多少;(2)假如乙要得参加决格,那么乙在初段起码要多少?解: (1) 甲了 x 2x+10- x= 18,解得,了x=8.(10 - x) ,依据意,得人教版七年数学下册第九章《不等式与不等式》培(二)一.(共10 小,每小 3 分,共30 分)1.不等式3(x2)⋯x 4 的解集是()A.x⋯5B.x⋯3C.x, 5D.x⋯52.若点P(1m,m) 在第二象限,(m 1)x 1 m 的解集() A.x1B.x1C.x1D.x13.假如a b ,以下不等式必定建立的是()A.1a1b B.a b C.ac2bc2D.a 2 b2 4.已知两个不等式的解集在数上如表示,那么个解集()A.x⋯1B.x 1C. 3 x, 1D.x35.已知对于x的不等式(2 a )x1的解集是 x1; a 的取范是()a2A.a 0B.a 0C.a 2D.a 26.把不等式x1⋯3中每个不等式的解集在同一条数上表示出来,正2x64确的 ()A .B .C .D .7.若方程3m( x1)1m(3x)5x 的解是数,m的取范是 ()A . m1.25B . m1.25C . m 1.25D . m 1.258.某种出租车的收费标准:起步价7 元(即行驶距离不超出 3 千米都需付 7 元车资),超出 3 千米后,每增添 1 千米,加收 2.4 元(不足 1 千米按 1 千米计).某人乘这类出租车从甲地到乙地共付车资 19 元,那么甲地到乙地行程的最大值是 ()A .5 千米B .7 千米C .8 千米D .15 千米9.对于 x 的不等式组2x 4 的所有整数解是 ()3x 5 1A .0,1B . 1,0,1C .0,1,2D . 2 ,0,1,210.如图,天平右盘中的每个砝码的质量为 10g ,则物体 M 的质量 m(g ) 的取值范围在数轴上可表示为 ()A .B .C .D .二.填空题 (共 8 小题,每题 3 分,共 24 分)11. x 与 5 的差不小于 3 ,用不等式表示为.12.不等式x 1 的正整数解是.313.若代数式3 x1的值不小于代数式1 5x的值,则 x 的取值范围是.5614.小马用 100 元钱去购置笔录本和钢笔共 30 件,已知每本笔录本2 元,每支钢笔 5 元,那么小马最多能买支钢笔.15.已知实数 x , y , a 知足 x 3 y a 4 , x y 3a 0 .若 1剟a 1,则 2x y 的取值范围是.16.同时知足 3x10和16x 10 4x的整数解是 .3x m017.若对于x的不等式组,无解,则 m 的取值范围是.1x018.武汉东湖高新开发区某公司新增了一个项目,为了节俭资源,保护环境,该公司决定购置 A 、 B 两种型号的污水办理设施共8台,详细状况以下表:A 型B 型价钱(万元 / 台)1210月污水办理能力(吨 / 月)200160经估算,公司最多支出89 万元购置设施,且要求月办理污水能力不低于吨.设购置 A 种型号的污水办理设施x 台,可列不等式组.1380三.解答题(共 7 小题,满分 46 分,此中 19、20、21 每题 6 分,22 题 9 分,23题 6分,24题 8分,25题5分)19.解不等式组,并将解集在数轴上表示出来.2x 7 3 x 1 ,①51x 4 ⋯x ②220.已知不等式1( x m) 2m .3( 1)若其解集为x 3 ,求m的值;( 2)若知足x 3 的每一个数都能使已知不等式建立,求m 的取值范围.21.方程组xy3的解为负数,求 a 的范围.x 2 y a322.为了抓住梵净山文化人教版七年级下数学第九章不等式与不等式组单元综合检测卷一、填空(共10 小,每 3 分,共 30 分)1.不等式的解集 _______________.【答案】 x> 32.不等式5x 3< 3x+5 的非整数解是_____.【答案】 0, 1, 2, 33.已知数x, y 足,而且,,有,k的取范是__.【答案】4.若不等式无解,则实数 a 的取值范围是 ________.【答案】5.已知对于x 的不等式组的解集为3≤x< 5,则的值为_____.【答案】﹣ 26.已知 3x+4≤ 2(3+ x),则 |x+ 1|的最小值为 ________.【答案】 07.知足不等式组的整数解是_____.【答案】 08.若代数式3x﹣ 1 的值大于3﹣ x,则 x 的取值范围是________.【答案】 x> 19.若对于x 的不等式组恰有3个整数解,则m 的取值范围是 _____.【答案】10.某校高一重生中有若干住宿生,分住若干间宿舍,若每间住 4 人,则还有 21 人无房住;若每间住7 人,则有一间不空也不满;已知住宿生少于55 人,则该校高一重生中住宿生人数为 _____.【答案】 53二、选择题(共10 小题,每题 3 分,共 30 分)11.不等式组的解集是()A. ﹣ 1≤ x≤ 4B. x <﹣ 1 或 x≥ 4C. ﹣ 1< x< 4D. ﹣ 1< x≤412.把不等式x+ 3> 4 的解表示在数轴上,正确的选项是()A. B. C. D.【答案】 C13.已知对于x 的不等式>1的解都是不等式>0的解,则a的范围是()A. a=5B. a≥ 5C. a≤ 5D. a< 5【答案】 C14.不等式组的解集在数轴上表示正确的选项是()A. B. C. D.【答案】 D15.不等式组的解集为x< 2,则k 的取值范围为()A. k> 1B. k< 1C. k≥ 1D. k≤1【答案】 C16.对于任何有理数a, b,c,d,规定=ad-bc.若<8,则x的取值范围是 ()A. x< 3B. x> 0C. x>- 3D. - 3< x< 0【答案】 C17.若某汽车租借公司要购置轿车和面包车共10 辆,此中轿车起码要购置 3 辆,轿车每辆7 万元,面包车每辆 4 万元,公司可投入的购车款不超出55 万元,则切合该公司要求的购买方式有()A.3 种B.4种C.5种D.6 种【答案】 A18.已知且 -1<x-y<0, 则 k 的取值范围是 ()A. -1<k<-B. 0<k<C. 0<k<1D.<k<1【答案】 D19.某射击运动员在一次竞赛中前 6 次射击共中52 环,假如他要打破 89环 (10 次射击 )的记录,第七次射击不可以少于()环(每次射击最多是10 环)。
人教版初中七年级数学下册第九单元《不等式与不等式组》(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3 2.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.不等式()31x -≤5x -的正整数解有( ) A .1个B .2个C .3个D .4个4.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解5.如果a 、b 表示两个负数,且a b >,则( ) A .1ab> B .1b a> C .11a b> D .1ab <6.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-7.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-8.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .269.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 10.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m11.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4x7天后,小圆背诵的诗词最多为( ) A .10首B .11首C .12首D .13首12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <13.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤14.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .15.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( ) A .20人B .19人C .11人或13人D .19人或20人二、填空题16.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).17.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).18.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 19.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.20.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.21.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.22.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.23.不等式组63024x x x -⎧⎨<+⎩的解集是__.24.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.25.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.26.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .三、解答题27.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 28.为了积极争创“天府旅游名县”,鼓励全民参与健身运动,2019年12月29日,广汉市在城北全民健身中心举行了“2019年广汉市三星堆迷你马拉松(10公里)”比赛.组委会为了奖励活动中取得了好成绩的参赛选手,计划购买一批纪念品发放.已知甲、乙两商场以同样价格出售同样的纪念品,并且又各自推出不同的优惠方案:在甲商场累计购买该纪念品超过1000元后,超出1000元的部分按90%收费;在乙商场累计购买该纪念品超过500元后,超出500元的部分按95%收费,组委会到哪家商场购买花费少? 29.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++.30.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?。
初中数学《七下》第九章 不等式与不等式组-一元一次不等式 考试练习题

初中数学《七下》第九章不等式与不等式组-一元一次不等式考试练习题姓名:_____________ 年级:____________ 学号:______________l 知识点:一元一次不等式【答案】(1 )y1=100+10x,y2=18x;(2 )办VIP不划算,理由见解析;(3 ) 13【分析】(1 )先求出打折后单次的价格,再根据方案一、方案二,表示题中的数量关系,即可列出函数关系式;(2 )将x=10 代入(1 )中的函数关系式,即可求出方案一及方案二的费用,继而判断是否需要办VIP;(3 )根据题意可得 100+10x<18x,进而解不等式即可求得答案.【详解】解:(1 )根据题意可得:20×50% = 10 (元 / 次),20×90% = 18 (元 / 次),∴y1=100+10x,y2=18x,(2 )办VIP不划算,理由如下:当x=10 时,方案一的费用为y1=100+10×10 = 200 ,方案二的费用为y2=18×10 = 180 ,∵200 > 180 ,∴y1>y2,∴ 办VIP不划算;(3 )由题意可得:y1<y2,∴100+10x<18x,解得:x>12.5 ,∴x的最小整数解为13 ,∴ 去俱乐部健身至少 13 次办VIP卡才合算,故答案为:13 .【点睛】本题考查了一次函数与一元一次不等式的实际应用,体现了数学来源于生活又服务于生活,考查了学生的运算能力,应用能力等,本题关键在于能够用函数关系式表示量与量之间的关系,并进行比较,做出独立判断.2、解不等式组请结合题意填空,完成本题的解答.(1 )解不等式① ,得 _______________ ;(2 )解不等式② ,得 ________________ ;(3 )把不等式① 和② 的解集在数轴上表示出来:(4 )原不等式组的解集为 ____________.知识点:一元一次不等式【答案】(1 );(2 );(3 )见解析;(4 ).【分析】直接解一元一次不等式组即可得解.【详解】解:解不等式① ,得,;解不等式② ,得;把不等式① 和② 的解集在数轴上表示如解图:原不等式组的解集为:.故答案为:(1 );(2 );(3 )见上图;(4 ).【点睛】本题考查的知识点是解一元一次不等式组,属于容易题目,失分原因:(1 )移项时未变号导致出错;(2 )解不等式时出错;(3 )在数轴上表示解集时,未能掌握“<” 和“>” 在数轴上表示为空心圆圈,“≤” 和“≥” 在数轴上表示为实心圆点;(4 )不会确定不等式组的解集.3、不等式组的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:解不等式① ,得:x ≥-1 ,解不等式② ,得:x<2 ,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x<2 ,故选:D .【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.4、若三角形的两边长分别为3 和 5 ,则第三边m的值可能是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,列出不等式组,进而结合选项求得第三边的值.【详解】三角形的两边长分别为3 和 5 ,第三边m故选B【点睛】本题考查了根据三角形三边关系确定第三边的范围,掌握三角形的三边关系是解题的关键.5、定义新运算“” ,规定:.若关于x的不等式的解集为,则m的值是()A .B .C . 1D . 2知识点:一元一次不等式【答案】B【分析】题中定义一种新运算,仿照示例可转化为熟悉的一般不等式,求出解集,由于题中给出解集为,所以与化简所求解集相同,可得出等式,即可求得m.【详解】解:由,∴,得:,∵解集为,∴∴,故选:B .【点睛】题目主要考查对新运算的理解、不等式的解集、一元一次方程的解等,难点是将运算转化为所熟悉的不等式.6、城乡学校集团化办学已成为西宁教育的一张名片.“ 五四” 期间,西宁市某集团校计划组织乡村学校初二年级 200 名师生到集团总校共同举办“ 十四岁集体生日” .现需租用A,B两种型号的客车共10 辆,两种型号客车的载客量(不包括司机)和租金信息如下表:若设租用A型客车x辆,租车总费用为y元.(1 )请写出y与x的函数关系式(不要求写自变量取值范围);(2 )据资金预算,本次租车总费用不超过 11800 元,则A型客车至少需租几辆?(3 )在(2 )的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案.知识点:一元一次不等式【答案】(1 );(2 ) 1 辆;(3 )租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B 型客车租7 辆;最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【分析】(1 )根据租车总费用=每辆A型号客车的租金单价× 租车辆数+每辆B型号客车的租金单价× 租车辆数,即可得出y与x之间的函数解析式,再由全校共200 名师生需要坐车及x ≤10 可求出x的取值范围;(2 )由租车总费用不超过 11800 元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案;(3 )由题意得出,求出x的取值范围,分析得出即可.【详解】解:(1 ),∴;(2 )根据题意,得:,解得,∵x应为正整数,∴∴A型客车至少需租1 辆;(3 )根据题意,得,解得,结合(2 )的条件,,∵x应为正整数,∴x取1 , 2 , 3 ,∴ 租车方案有 3 种:方案一:A型客车租1 辆,B型客车租9 辆;方案二:A型客车租2 辆,B型客车租8 辆;方案三:A型客车租3 辆,B型客车租7 辆.∵,∴y随x的增大而减小,∴ 当时,函数值y最小,∴ 最省钱的租车方案是A型客车租3 辆,B型客车租7 辆【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.7、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多可以购买多少个 A 型放大镜?知识点:一元一次不等式【答案】(1 )每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )最多可以购买 35 个 A 型放大镜.【详解】分析:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;(2 )由题意列出不等式求出即可解决问题.详解:(1 )设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,可得:,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.8、春平中学要为学校科技活动小组提供实验器材,计划购买A 型、 B 型两种型号的放大镜.若购买 8 个A 型放大镜和 5 个B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1 )求每个 A 型放大镜和每个 B 型放大镜各多少元;(2 )春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总费用不超过 1180 元,那么最多l ,解得:,答:每个A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2 )设购买 A 型放大镜 m 个,根据题意可得:20a+12× (75-a )≤1180 ,解得:x≤35 ,答:最多可以购买35 个 A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.9、不等式2x ﹣ 1 > 3 的解集为 _____ .知识点:一元一次不等式【答案】x > 2【详解】解:移项得:2x > 3+1 ,合并同类项得:2x > 4 ,不等式的两边都除以2 得x > 2 ,∴ 不等式 2x ﹣ 1 > 3 的解集为 x > 2 .10、不等式﹣4x﹣1≥ ﹣ 2x+1 的解集,在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】D【分析】不等式移项,合并,把x系数化为1 ,求出解集,表示在数轴上即可.【详解】解:不等式﹣4x﹣1≥ ﹣ 2x+1 ,移项得:﹣4x+2x ≥1 + 1 ,合并得:﹣2x ≥2 ,解得:x ≤ ﹣ 1 ,数轴表示,如图所示:故选:D.【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.11、不等式组的解集,在数轴上表示正确的是()A. B .C .D .知识点:一元一次不等式【答案】C【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以解答本题.【详解】解:,由① 得:,由② 得:,故原不等式组的解集为:,故选:C .【点睛】本题主要考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解不等式组的方法.12、不等式的解集是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】按照解不等式步骤:移项,合并同类项,系数化为1 求解.【详解】解:,,,.故选:B.【点睛】本题考查解不等式,熟练掌握不等式的基本性质是解题关键.13、若点在一次函数的图象上,且,则的取值范围为__ .知识点:一元一次不等式【答案】【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m −n>2 ,即可得出b<−2 ,此题得解.【详解】解:点在一次函数的图象上,,即:.,,即.故答案是:.【点睛】本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征并结合不等式是解题的关键.14、我市对居民生活用水实行“ 阶梯水价” .小李和小王查询后得知:每户居民年用水量 180 吨以内部分,按第一阶梯到户价收费;超过 180 吨且不超过 300 吨部分,按第二阶梯到户价收费;超过 300 吨部分,按第三阶梯到户价收费.小李家去年 1~9 月用水量共为 175 吨, 10 月、 11 月用水量分别为 25 吨、 22 吨,对应的水费分别为 118.5 元、 109.12 元.(1 )求第一阶梯到户价及第二阶梯到户价(单位:元 / 吨);(2 )若小王家去年的水费不超过 856 元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).知识点:一元一次不等式【答案】(1 )第一阶梯 3.86 元 / 吨,第二阶梯 4.96 元 / 吨;(2 )不超过 212 吨【分析】(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,然后根据10 月和 11 月的收费列出方程组求解即可;(2 )设小王甲去年的用水量为m,由于,则m<300 ,然后不等式求解即可.【详解】解:(1 )设第一阶梯到户价为x元,第二阶梯到户价为y元,由题意得:解得,∴ 第一阶梯到户价为 3.86 元,第二阶梯到户价为 4.96 元,答:第一阶梯到户价为3.86 元,第二阶梯到户价为 4.96 元;(2 )设小王甲去年的用水量为m,∵,∴ 当m小于180 是符合题意∵,∴m<300当180≤m <300,解得,∴ 小王家去年年用水量不超过 212 吨,答:小王家去年年用水量不超过212 吨.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次不等式的实际应用,解题的关键在于能够根据题意找到数量关系式进行求解.15、为庆祝中国共产党成立周年,某校组织了党史知识竞赛,共道题,记分规则为:若答对,每题记分;若答错或不答,每题记分.小明的参赛目标是超过分,则他至少要答对_______ 道题.l ∴x可取的最小值为18 .故答案为:18 .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16、不等式的解集是()A .x ≤4B .x ≥4C .x ≤1D .x=1知识点:一元一次不等式【答案】A【分析】通过移项,合并同类项,未知数系数化为1 ,即可求解.【详解】解:,移项得:,解得:,故选A .【点睛】本题主要考查解一元一次不等式,掌握“ 移项,合并同类项,未知数系数化为1” 是解的关键.17、关于的不等式的解集是___________ .知识点:一元一次不等式【答案】【分析】先去分母,再移项,最后把未知数的系数化“” ,即可得到不等式的解集.【详解】解:去分母得:>移项得:故答案为:【点睛】本题考查的是一元一次不等式的解法,掌握解不等式的方法是解题的关键.18、小美打算买一束百合和康乃馨组合的鲜花,在“ 母亲节” 祝福妈妈.已知买 2 支百合和 1 支康乃馨共需花费 14 元, 3 支康乃馨的价格比 2 支百合的价格多 2 元.(1 )求买一支康乃馨和一支百合各需多少元?(2 )小美准备买康乃馨和百合共 11 支,且百合不少于 2 支.设买这束鲜花所需费用为元,康乃馨有支,求与之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.知识点:一元一次不等式【答案】(1 )买一支康乃馨需 4 元,一支百合需 5 元;(2 ),,当购买康乃馨9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【分析】(1 )设买一支康乃馨需x元,一支百合需y元,然后根据题意可得,进而求解即可;(2 )由(1 )及题意可直接列出与之间的函数关系式,进而可得,然后根据一次函数的性质可进行求解.【详解】解:(1 )设买一支康乃馨需x元,一支百合需y元,由题意得:,解得:,答:买一支康乃馨需4 元,一支百合需 5 元.(2 )由(1 )及题意得:百合有(11-x)支,则有,,∵ 百合不少于 2 支,∴,解得:,∵-1 < 0 ,∴w随x的增大而减小,∴ 当x =9 时,w取最小值,最小值为,∴ 当购买康乃馨 9 支,百合 2 支时,所需费用最少,最少费用为 46 元.【点睛】本题主要考查一次函数的应用及一元一次不等式与二元一次方程组的应用,熟练掌握一次函数的应用及一元一次不等式与二元一次方程组的应用是解题的关键.19、2021 年是中国共产党建党 100 周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送 549 名学生和 11 名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1 )共需租 ________ 辆大客车;(2 )最多可以租用多少辆甲种型号大客车?(3 )有几种租车方案?哪种租车方案最节省钱?知识点:一元一次不等式【答案】(1 ) 11 ;(2 ) 3 辆;(3 ) 3 种,租用 3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【分析】(1 )根据学生和老师的总人数、乙种客车的载客量,以及每辆汽车上至少要有一名教师进行计算即可得;(2 )设租用辆甲种型号大客车,从而可得租用辆乙种型号大客车,根据甲、乙两种型号的大客车的载客量、学生和老师的总人数建立不等式,解不等式求出的取值范围,再结合且为正整数即可得;(3 )根据(2 )中的取值范围可得出租车方案,再分别求出各租车方案的费用即可得.【详解】解:(1 )(辆)(人),(辆),共需租11 辆大客车,故答案为:11 ;(2 )设租用辆甲种型号大客车,则租用辆乙种型号大客车,由题意得:,解得,因为且为正整数,所以最多可以租用3 辆甲种型号大客车;(3 )由(2 )可知,租用甲种型号大客车的辆数可以为辆,则有三种租车方案:① 租用 1 辆甲种型号大客车, 10 辆乙种型号大客车;② 租用 2 辆甲种型号大客车, 9 辆乙种型号大客车;③ 租用 3 辆甲种型号大客车, 8 辆乙种型号大客车;方案① 的费用为(元),方案② 的费用为(元),方案③ 的费用为(元),所以租用3 辆甲种型号大客车, 8 辆乙种型号大客车最节省钱.【点睛】本题考查了一元一次不等式的实际应用,正确建立不等式是解题关键.20、不等式的解集在数轴上表示正确的是()A .B .C .D .知识点:一元一次不等式【答案】B【分析】求出不等式的解集,再根据“ 大于向右,小于向左,不包括端点用空心,包括端点用实心” 的原则将解集在数轴上表示出来.【详解】解:解不等式,去分母得:,去括号得:,移项合并得:,系数化为得:,表示在数轴上如图:故选:B .【点睛】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ 向右画;<,≤ 向左画),在表示解集时“≥” ,“≤”要用实心圆点表示;“ <” ,“ >” 要用空心圆点表示.。
七年级数学下册《一元一次不等式与不等式组》练习题及答案解析

七年级数学下册《一元一次不等式与不等式组》练习题及答案解析1. 不等式组{x>−1x≤1的解集是( )A. x<1B. x≥1C. −1<x≤1D. 1≤x<−12. 不等式组{x+2<0x+3<0的解集是( )A. x<−2B. x<−3C. −3<x<−2D. x>−23. 下列各式中一元一次不等式是( )A. x≥5xB. 2x>1−x2C. x+2y<1D. 2x+1≤3x4. 若代数式2a+7的值不大于3则a的取值范围是( )A. a≤4B. a≤−2C. a≥4D. a≥−25. 已知a>b>0则下列不等式不一定成立的是( )A. ab>b2B. a+c>b+cC. 1a <1bD. ac>bc6. 不等式4x−511<1的正整数解为( )A. 1个B. 3个C. 4个D. 5个7. 不等式组{x+1≤02x+3<5的解集是( )A. x≤−1或x>1B. −1≤x<1C. x≤−1D. x>18. 亮亮准备用自己节省的零花钱买一台英语复读机他现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.设x个月后他至少有300元则可以用于计算所需要的月数x的不等式是( )A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3009. 关于x的不等式组{x+43>x2+1x+a<0的解集为x<2则a的取值范围是( )A. a≤−2B. a≥−2C. a≤2D. a≥210. 如果a<b<0下列不等式中错误的是( )A. ab>0B. a+b<0C. ab<1 D. a−b<011. 不等式12x>−3的解集是______.12. 不等式x+2>12x的负整数解______.13. 不等式组:{x−1<0x>0的解集是______.14. 不等式组{2x+1>x−1x+8>4x−1的正整数解是______.15. 某生物兴趣小组要在温箱里培养A B两种菌苗A种菌苗的生长温度x(℃)的范围是35≤x≤38 B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)d的范围是______.16. 已知不等式3x −a ≤0的正整数解只有1 2 3 那么a 的取值范围是______.17. 若不等式组{x −a >2b −2x >0的解集是−1<x <1 则(a +b)2014等于______. 18. 已知关于x 的不等式组{5−2x ≥1x −a ≥0无解 则a 的取值范围是______. 19. 一位老师说 他班学生的一半在学数学 四分之一的学生在学音乐 七分之一的学生在学外语 还剩不足6名同学在操场上踢足球 则这个班的学生最多有______人.20. 几个小朋友分糖块 如果每人分4块糖 则多余8块糖 如果每人分8块糖 则有一人分到了糖块但不足8块 请你猜想 共有______位小朋友______块糖.21. 解下列不等式 并把它们的解集在数轴上表示出来.(1)−3(1−x)+6>1+4x(2)x −12+1≥x. 22. 解下列不等式组:(1){3x −1<52x +6>0(2){3(x +1)>5x +4x −12≤2x −13. 23. 已知关于x 的方程5x −2m =3x −6m +1的解为x 满足−3<x ≤2 求m 的整数值.24. 某软件公司开发一种图书软件 前期投入的开发、广告宣传费用共50000元 且每售出一套软件 软件公司还需支付安装调试费200元.如果每套定价700元 软件公司至少要售出多少套才能确保不亏本?25. 一本科普读物共98页 晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了.已知小敏平均每天比晓芬多读3页 那么晓芬平均每天读多少页?(答案取整数)26. 扬州火车站有某公司待运的甲种货物1530吨 乙种货物1150吨 现计划用50节A 、B 两种型号的车厢将这批货物运至北京、已知每节A 型货厢的运费是0.5万元 每节B 型货厢的运费是0.8万元 甲种货物35吨和乙种货物15吨可装满一节A 型货厢 甲种货物25吨和乙种货物35吨可装满一节B 型货厢 按此要求安排A 、B 两种货厢的节数 共有几种方案?请你设计出来 并说明哪种方案的运费最少 最少运费是多少?参考答案与解析1.【答案】C【解析】解:把解集表示在数轴上如下:所以不等式组的解集是−1<x ≤1.故选:C.把两个解集表示在数轴上 再找公共部分即可.本题考查一元一次不等式组的解集 熟练掌握在数轴上表示不等式的解集是解题关键.2.【答案】B【解析】解:{x +2<0①x +3<0②由①得:x <−2由②得:x <−3则不等式组的解集为x <−3.故选:B.分别求出不等式组中两不等式的解集 找出两解集的公共部分即可.此题考查了解一元一次不等式组 熟练掌握不等式组的解法是解本题的关键.3.【答案】D【解析】解:A 、不是整式 不符合题意B 、未知数的最高次数是2 不符合题意C 、含有2个未知数 不符合题意D 、是只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式 符合题意故选D.找到只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式即可.考查一元一次不等式的定义:只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式叫做一元一次不等式.4.【答案】B【解析】解:依题意得2a +7≤32a ≤−4a≤−2.故选:B.根据题意列出不等式利用不等式的性质来求a的取值范围.本题考查了解一元一次不等式.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.【答案】D【解析】解:A、ab>b2成立B、a+c>b+c成立C、1a <1b成立D、ac<bc不一定成立.故选:D.根据不等式的性质分析判断.不等式两边同时乘以或除以同一个数或式子时一定要注意不等号的方向是否改变.6.【答案】B【解析】解:解不等式得x<4则不等式4x−511<1的正整数解为123共3个.故选:B.首先利用不等式的基本性质解不等式然后找出符合题意的正整数解.本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.【答案】C【解析】解:解不等式x+1≤0得:x≤−1解不等式2x+3<5得:x<1则不等式组的解集为x≤−1故选C.分别求出每一个不等式的解集根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.8.【答案】B【解析】解:x个月可以节省30x元根据题意得30x+45≥300.故选:B.此题中的不等关系:现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.至少即大于或等于.本题主要考查简单的不等式的应用解题时要注意题目中的“至少”这类的词.9.【答案】A【解析】解:根据题意得:x<2x+a<0∴x<−a∴a=−2或a<−2∴a≤−2故选A.根据题意知道不等式组的解集为x<2再由x+a<0直接求出a的取值范围.本题考查了不等式的解集解题的关键是根据题意及不等式的解集直接求出a的取值范围.10.【答案】C【解析】解:A、如果a<b<0则a、b同是负数因而ab>0故A正确B、因为a、b同是负数所以a+b<0故B正确C、a<b<0则|a|>|b|则ab >1也可以设a=−2b=−1代入检验得到ab<1是错误的.故C错误D、因为a<b所以a−b<0故D正确故选:C.根据不等式的性质分析判断.利用特殊值法验证一些式子错误是有效的方法.11.【答案】x>−6【解析】解:去分母得故答案为:x>−6.直接把不等式的两边同时乘以2即可得出结论.本题考查的是解一元一次不等式熟知不等式的基本性质是解答此题的关键.12.【答案】−3−2−1【解析】解:不等式x +2>12xx −12x >−2 12x >−2 解得x >−4故不等式x +2>12x 的负整数解有−3、−2、−1.故答案为:−3、−2、−1.首先利用不等式的基本性质解不等式 再从不等式的解集中找出非负整数解即可.本题考查了一元一次不等式的整数解 正确解不等式 求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】0<x <1【解析】解集:由(1)得 x <1由(2)得 x >0所以不等式组{x −1<0x >0的解集是0<x <1. 分别求出两个不等式的解集 求其公共解集.求不等式的公共解集 要遵循以下原则:同大取较大 同小取较小 小大大小中间找 大大小小解不了.14.【答案】1 2【解析】解:{2x +1>x −1①x +8>4x −1②解不等式①得:x >−2解不等式②得:x <3∴原不等式组的解集为:−2<x <3∴该不等式组的正整数解为:1 2故答案为:1按照解一元一次不等式组的步骤 进行计算可得−2<x <3 然后再找出此范围内的正整数即可. 本题考查了一元一次不等式组的整数解 准确熟练地进行计算是解题的关键.15.【答案】35≤t ≤36【解析】解:由题意可得不等式组{35≤x ≤3834≤y ≤36根据求不等式解集的方法可知温箱里的温度t ℃应该设定在35≤t ≤36故答案为:35≤t ≤36.温箱里的温度T ℃应该设定在能使A B 两种菌苗同时满足的温度 即35≤x ≤38与34≤y ≤36的公共部分.此题考查的是不等式的解集.求不等式组的解集 应注意:同大取较大 同小取较小 小大大小中间找 大大小小解不了.16.【答案】9≤x <12【解析】解:不等式的解集是:x ≤a 3∵不等式的正整数解恰是1 2 3∴3≤a 3<4 ∴a 的取值范围是9≤a <12.故答案为:9≤a <12.首先确定不等式组的解集 利用含a 的式子表示 再根据整数解的个数就可以确定有哪些整数解 然后根据解的情况可以得到关于a 的不等式 从而求出a 的范围.本题考查了一元一次不等式的整数解 正确解出不等式的解集 正确确定a 3的范围 是解决本题的关键.解不等式时要用到不等式的基本性质.17.【答案】1【解析】解:{x −a >2①b −2x >0②解不等式①得 x >2+a解不等式②得 x <b 2所以 不等式组的解集是2+a <x <b 2∵不等式组的解集是−1<x <1∴{2+a =−1b 2=1 解得{a =−3b =2所以故答案为:1.先去用a 、b 表示出不等式组的解集 然后根据不等式组的解集列出关于a 、b 的方程组并求出a 、b 最后代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法 难点在于用a 、b 表示出不等式组的解集再列出方程组.18.【答案】a>2【解析】解:解不等式5−2x≥1得:x≤2解不等式x−a≥0得:x≥a∵不等式组的无解∴a>2故答案为:a>2.分别求出每一个不等式的解集根据口诀:大大小小找不到并结合不等式组的解集可得答案.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.19.【答案】28【解析】解:设这个班的学生共有x人依题意得:x−12x−14x−17x<6解之得:x<56又∵x为2、4、7的公倍数∴这个班的学生最多共有28人.本题考查一元一次不等式的应用将现实生活中的事件与数学思想联系起来读懂题列出不等关系式即可求解.解决问题的关键是读懂题意找到关键描述语找到所求的量的等量关系.20.【答案】3 20【解析】解:设x个小朋友y块糖由题意可知y−4x=81≤y−8(x−1)<8∴y=8+4x代入不等式可知2<x≤154∵x为整数所以x为3则y为20所以共有3位小朋友20块糖.故答案为3可以设x个小朋友y块糖列出不等式从而根据条件求解x和y的值.本题考查了一元一次不等式的应用解决问题的关键是读懂题意根据实际情况依题意列出不等式进行求解.21.【答案】解:(1)−3(1−x)+6>1+4x−3+3x+6>1+4x3x−4x>1+3−6−x >−2x <2将解集表示在数轴上如图所示:(2)x −12+1≥x x −1+2≥2xx −2x ≥1−2−x ≥−1x ≤1..【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得 然后在数轴上表示出解集即可.本题主要考查解一元一次不等式的基本能力 严格遵循解不等式的基本步骤是关键 尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.【答案】解:(1){3x −1<5①2x +6>0②解不等式①得:x <2解不等式②得:x >−3则不等式组的解集为−3<x <2(2){3(x +1)>5x +4①x −12⩽2x −13② 解不等式①得:x <−12解不等式②得:x ≥−1则不等式组的解集为−1≤x <−12.【解析】分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.23.【答案】解:解方程5x −2m =3x −6m +1 得x =12−2m.∵−3<x ≤2∴{12−2m ≤212−2m>−3解得−34≤m <134∴m 的整数值是0 1. 【解析】先用m 的式子表示x 再根据−3<x ≤2 列出不等式组 求出不等式组的解集 再从中找出m 的整数值.此题考查的是一元一次不等式组的解法和一元一次方程的解 根据x 的取值范围 得出a 的整数解.24.【答案】解:设软件公司要售出x 套软件才能确保不亏本则有:700x ≥50000+200x解得:x ≥100.答:软件公司至少要售出100套软件才能确保不亏本.【解析】要使公司不赔本 那么销售软件的收入≥投资的总费用 然后得出自变量的取值范围.本题考查一元一次不等式的应用 将现实生活中的事件与数学思想联系起来 读懂题列出不等式关系式即可求解.25.【答案】解:设晓芬平均每天读x 页 则小敏平均每天读(x +3)页依题意得:{7x <987(x +3)>98解得:11<x <14又∵x 为整数∴x =12或13.答:晓芬平均每天读12页或13页.【解析】设晓芬平均每天读x 页 则小敏平均每天读(x +3)页 根据“晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了” 即可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再取其中的整数值即可得出结论.本题考查了一元一次不等式组的应用 根据各数量之间的关系 正确列出一元一次不等式组是解题的关键.26.【答案】解:设A 型货厢的节数为x 则B 型货厢的节数为(50−x)节.{35x +25(50−x)≥153015x +35(50−x)≥1150解得:28≤x ≤30.∵x 为正整数∴x 可为28 29∴方案为①A型货厢28节B型货厢22节②A型货厢29节B型货厢21节③A型货厢30节B型货厢20节总运费为:0.5x+0.8×(50−x)=−0.3x+40∵−0.3<0∴x越大总运费越小∴x=30最低运费为:−0.3×30+40=31万元.答:A型货厢30节B型货厢20节运费最少最少运费是31万元.【解析】关系式为:A型货厢装甲种货物吨数+B型货厢装甲种货物吨数≥1530A型货厢装乙种货物吨数+B型货厢装乙种货物吨数≥1150把相关数值代入可得一种货厢节数的范围进而求得总运费的等量关系根据函数的增减性可得最少运费方案及最少运费.考查一元一次不等式组的应用及方案的选择问题得到所运货物吨数的两个关系式及总运费的等量关系是解决本题的关键。
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)

初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
人教版七年级数学(不等式与不等式组)练习题及答案

一、解一元一次不等式1、8-3x <4-x ;解:不等式两边同加x ,得8-2x <4.不等式两边同减去8,得-2x <-4.不等式两边同除以-2,得x>2.2、2(x -1)<3(x +1)-2.解:去括号,得2x -2<3x +3-2.不等式两边加上2,得2x<3x +3.不等式两边减去3x ,得-x<3.不等式两边乘以-1,得x>-3.3、x -13≥12x -1. 解:不等式两边都乘以6,得2(x -1)≥3x -6.去括号,得2x -2≥3x -6.不等式两边都加2,得2x ≥3x -4.不等式两边都减去3x ,得-x ≥-4.不等式两边除以-1,得x ≤4.4. x 3>1-x -36. 解:去分母,得2x >6-(x -3).去括号,得2x >6-x +3.移项,合并同类项,得3x >9.系数化为1,得x>3.5.解关于x的不等式:ax-x-2>0. 解:由ax-x-2>0,得(a-1)x>2. 当a-1=0,则ax-x-2>0无解.当a-1>0,则x>2a-1.当a-1<0,则x<2a-1.二.解不等式,并把解集在数轴上表示出来:1、5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:2、4x-3>x+6;解:移项,得4x-x>6+3.合并同类项,得3x>9.系数化为1,得x>3.其解集在数轴上表示为:3、2(x -1)+5<3x ;解:去括号,得2x -2+5<3x.移项,得2x -3x <2-5.合并同类项,得-x <-3.化系数为1,得x >3.其解集在数轴上表示为:4、2-x 4≥1-x 3; 解:去分母,得3(2-x)≥4(1-x).去括号,得6-3x ≥4—4x.移项,合并同类项,得x ≥-2.其解集在数轴上表示为:5、2+x 2≥2x -13. 解:去分母,得3(2+x)≥2(2x -1).去括号,得6+3x ≥4x -2.移项,得3x -4x ≥-2-6.合并同类项,得-x ≥-8.系数化为1,得x ≤8.其解集在数轴上表示为:6、2(x +1)-1≥3x +2;解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.其解集在数轴上表示为:7、x 3>1-x -36; 解:去分母,得2x >6-(x -3).去括号,得2x >6-x +3.移项,得2x +x >6+3.合并同类项,得3x >9.系数化为1,得x >3.其解集在数轴上表示为:8、2x -13-9x +26≤1; 解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.把不等式的解集在数轴上表示为:9、x +12≥3(x -1)-4; 解:去分母,得x +1≥6(x -1)-8.去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-1-8.合并同类项,得-5x ≥-15.系数化为1,得x ≤3.不等式的解集在数轴上表示为:10、x -7x -82≤2(3x +5)3-1. 解:去分母,得6x -3(7x -8)≤4(3x +5)-6.去括号,得6x -21x +24≤12x +20-6.移项,得6x -21x -12x ≤20-6-24.合并同类项,得-27x ≤-10.系数化为1,得x ≥1027. 其解集在数轴上表示为:11、2(x +1)<3x .解:去括号,得2x +2<3x.移项,合并同类项,得-x <-2.系数化为1,得x >2.其解集在数轴上表示为:12. 2(x +1)-1≥3x +2.解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.∴这个不等式的解集为x ≤-1,在数轴上表示如下:三、解一元一次不等式组1、⎩⎪⎨⎪⎧x -3<1,①4x -4≥x +2;② 解:解不等式①,得x <4.解不等式②,得x ≥2.∴不等式组的解集为2≤x <4.2、⎩⎪⎨⎪⎧x -1>0,①3(x -1)<2x ;② 解:解不等式①,得x >1.解不等式②,得x <3.∴不等式组的解集是1<x <3.3、⎩⎪⎨⎪⎧2(x +3)>10,①2x +1>x ;②解:解不等式①,得x >2.解不等式②,得x >-1.∴不等式组的解集为x >2.4、⎩⎪⎨⎪⎧2(x -1)≥x +1,①x -2>13(2x -1).② 解:解不等式①,得x ≥3.解不等式②,得x>5.∴不等式组的解集为x>5.5. ⎩⎪⎨⎪⎧2x -1>3,①2+2x ≥1+x.② 解:解不等式①,得x>2.解不等式②,得x ≥-1.∴不等式组的解集为x>2.6. ⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②∴不等式组的解集为x <-8.四、解下列不等式组,并把解集在数轴上表示出来.1、⎩⎪⎨⎪⎧3(x +2)>x +8,①x 4≥x -13;② 解:解不等式①,得x >1.解不等式②,得x ≤4. ∴这个不等式的解集是1<x ≤4.其解集在数轴上表示为:2、⎩⎪⎨⎪⎧2x +3>3x ,①x +33-x -16≥12.② 解:解不等式①,得x<3.解不等式②,得x ≥-4.∴这个不等式组的解集是-4≤x<3.其解集在数轴上表示为:3. ⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②∴不等式组的解集是x ≤-1.不等式组的解集在数轴上表示为:4、 ⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,② 解:解不等式①,得x >52. 解不等式②,得x ≤3.∴不等式组的解集是52<x ≤3. 其解集在数轴上表示为:五、综合题1、现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1)利用性质①比较2a 与a 的大小(a ≠0);(2)利用性质②比较2a 与a 的大小(a ≠0).解:(1)若a >0,则a +a >0+a ,即2a >a.若a <0,则a +a <0+a ,即2a <a.(2)若a >0,由2>1得2·a >1·a ,即2a >a.若a <0,由2>1得2·a <1·a ,即2a <a.2、已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.解:解方程4(x +2)-2=5+3a ,得x =3a -14. 解方程(3a +1)x 3=a (2x +3)2,得x =9a 2. 依题意,得3a -14≥9a 2. 解得a ≤-115. 故a 的取值范围为a ≤-115. 3、解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),①2x -1+3x 2<1,②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.解:解不等式①,得x ≥-1.解不等式②,得x <3.∴原不等式组的解集是-1≤x <3.其解集在数轴上表示如下:∴不等式组的非负整数解有:0,1,2.4、若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围. 解:解不等式①,得x >-25. 解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3.∴1<a ≤32. 5. x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立? 解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x>-52. 解不等式②,得x ≤1.∴-52<x ≤1. 故满足条件的整数有-2,-1,0,1.6.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y>-32,求出满足条件的m 的所有正整数值.解:⎩⎪⎨⎪⎧2x +y =-3m +2,①x +2y =4.②①+②,得3(x +y)=-3m +6,∴x +y =-m +2.∵x +y>-32, ∴-m +2>-32. ∴m<72. ∵m 为正整数,∴m =1,2或3.7.已知:2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围. 解:由2a -3x +1=0,3b -2x -16=0,可得a =3x -12,b =2x +163. ∵a ≤4<b ,∴⎩⎪⎨⎪⎧3x -12≤4,①2x +163>4.② 解不等式①,得x ≤3.解不等式②,得x >-2.∴x 的取值范围是-2<x ≤3.8、已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围. 解:解不等式①,得x >-52. 解不等式②,得x ≤4+a.∴原不等式组的解集为-52<x ≤4+a. ∵原不等式组有四个整数解:-2,-1,0,1, ∴1≤4+a <2.∴-3≤a <-2.。
(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典复习题(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3B解析:B 【分析】首先解不等式,然后根据不等式组无解确定a 的范围. 【详解】 解:5210x x a -≥-⎧⎨->⎩①②解不等式①,得3x ≤; 解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .2D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-,∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ D解析:D 【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集. 【详解】由数轴知,此不等式组的解集为-1<x≤3, 故选D . 【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0A解析:A将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.5.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A .B .C .D . C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a-- A【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.7.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( )A .m >5B .m≥5C .m <5D .m≤8C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18288A .胜一场积5分,负一场扣1分B .某参赛选手得了80分C .某参赛选手得了76分D .某参赛选手得分可能为负数B解析:B 【分析】由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y 场,则负(20-y )场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可. 【详解】A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7B解析:B 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D. B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.二、填空题11.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217?311?2x x x -<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x <4, 解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4. 故答案为:1≤x <4. 【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.12.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________.【分析】首先写出连续3小于6的整数然后即可判断m 的取值范围【详解】由题意得:符合题意的整数解为543∴m 不能取值3可以取值2∴故答案为【点睛】本题考查了解不等式难度较低主要考查学生对不等式组知识点的解析:23m ≤<【分析】首先写出连续3小于6的整数,然后即可判断m 的取值范围. 【详解】由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴23m ≤< 故答案为23m ≤<. 【点睛】本题考查了解不等式,难度较低,主要考查学生对不等式组知识点的掌握.整理出x 的取值范围分析整数解情况为解题关键.13.若||2x =,||3y =,且0x y +<,则x y -值为______.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy 的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y 的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2解析:1或5 【分析】由已知可以得到x=2或-2,y=3或-3,然后对x 、y 的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y 的值. 【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5; (2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1; 故答案为1或5. 【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键 . 14.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】先解不等式组得出其解集为1262m x,结合76x -<<-可得关于m 的方程,解之可得答案. 【详解】 解:2()102153xm x ①②由①得:2210x m +->,221x m >-+, 12x m >-+ 由②得:212x <-,6x <-,∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=-152m ∴=【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 15.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0 【分析】求出不等式组的解集,确定出最小整数解即可. 【详解】不等式组整理得:21x x ≤⎧⎨>-⎩,∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0. 【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 16.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35m <-【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可. 【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12mx -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-.【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.17.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可. 【详解】解:解2310a x -->,得213<-a x , ∵不等式2310a x -->的最大整数解为2-,∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-.【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.18.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.19.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可. 【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .解析:(1)7-a ;(2)7700,1076;(3)6431,4523,2615【分析】(1)根据七巧数的定义,即可得到答案;(2)根据七巧数的定义,即可得到答案;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,根据题意得到a ,b ,c ,d 之间的数量关系,进而求出b 的范围,即可求解.【详解】(1)∵一个“七巧数”的千位数字为a ,∴其个位数字可表示为:7-a ,故答案是:7-a ;(2)由题意可得:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案是:7700,1076;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则3()77a c b d a d c b +=-⎧⎪=-⎨⎪=-⎩①②③,把②③代入①,可得:7-d+7-b=3b-3d ,既:4b-2d=14,∴d=2b-7,∴百位数字为b ,个位数字为2b-7,十位数字为7-b ,∵2b-7≥0且7-b≥0,∴3.5≤b≤7,当b=4时,则d=1,a=6,c=3,m=6431,当b=5时,则d=3,a=4,c=2,m=4523,当b=6时,则d=5,a=2,c=1,m=2615,当b=7时,则d=7,a=0,c=0,不符合题意,∴ 满足条件的所有“七巧数”m 为:6431,4523,2615.【点睛】本题主要考查新定义问题,理解题意,列出方程和不等式,掌握分类讨论的思想方法,是解题的关键.22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 解析:(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 解析:解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.24.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=-(4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩ (6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ 解析:(1)23x =-;(2)3x ≤-;(3)34x =;(4)31x y =⎧⎨=⎩;(5)15x -≤<;(6)71012m n ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(2)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项、合并同类项,系数化为1,即可得到答案; (4)由代入消元法解方程组,即可得到答案;(5)先求出每个不等式的解集,即可得到不等式组的解集;(6)先把方程组去分母,然后进行整理,再利用加减消元法解方程组,即可得到答案.【详解】解:(1)[]{}3213(21)35x x ---+=,∴[]{}3216335x x ---+=,∴{}32165x x --=,∴{}3145x --=,∴3125x --=, ∴23x =-; (2)2(53)3(12)x x x +≤--, ∴10636x x x +≤-+,∴10736x x -≤--,∴39x ≤-,∴3x ≤-;(3)214163x x --=-,∴212(4)6x x -=--,∴21826x x -=--,∴43x =, ∴34x =; (4)2538x y x y +=⎧⎨-=⎩①②, 由①得:52x y =-③,把③代入②得:3(52)8y y --=,解得:1y =,把1y =代入①,得3x =,∴方程组的解为31x y =⎧⎨=⎩; (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩①② 解不等式①,得5x <;解不等式②,得1x ≥-;∴不等式组的解集为:15x -≤<;(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩, 方程组整理得:5352153m n m n +=⎧⎨-=⎩①②, 由①-②,得:3618n =, ∴12n =, 把12n =代入②,得710m =, ∴方程组的解为:71012m n ⎧=⎪⎪⎨⎪=⎪⎩; 【点睛】本题考查了解一元一次方程,解二元一次方程组,解不等式,解不等式组,解题的关键是熟练掌握运算法则,正确的进行解题.25.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.解析:(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x﹣2)﹣6≤2(4﹣x),去括号,得:3x﹣6﹣6≤8﹣2x,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.26.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.解析:(1)1<x≤3,图见解析【分析】求出不等式组中两个不等式的解集后,再求出两个解集的公共部分并在数轴上表示出来即可.【详解】解:解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为:1<x≤3,并可在数轴上表示如下:【点睛】本题考查不等式组的求解,熟练掌握求不等式解集公共部分的方法是解题关键. 27.解不等式,并把解表示在数轴上. 417366x x +≥- 解析:3x ≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x ≥+-移项,得4271x x -≤-合并同类项,得26x ≤系数化为1,得3x ≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.28.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 解析:(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.。
七年级数学下册第九章【不等式与不等式组】知识点总结(含答案)

一、选择题1.下列不等式的变形正确的是( )A .由612m -<,得61m <B .由33x ->,得1x >-C .由03x >,得3x > D .由412a -<,得3a >- 2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .23.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤- B .3a <-C .3a >D .3a ≥ 4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( ) x …-2 -1 0 1 2 3 … y… 3 2 1 0 -1 -2 …A .x <1B .x >1C .x <0D .x >05.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种 6.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( )A .B .C .D .7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤28.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ).A .8-B .8C .10D .269.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米 10.在数轴上,点A 2现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7 B .8 C .9 D .1011.若关于 x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=- C .a 4?≥- D . a 4>-二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).13.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.14.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__.15.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________. 16.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__. 17.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.18.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 19.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________. 21.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题22.某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?23.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.(1)这两种计算器各购进多少只?(2)元旦活动期间,超市决定将A型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B型计算器最多打几折出售?24.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?25.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶?(2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶?一、选择题1.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x﹣7)☆(3﹣2x)=2的解为x=()A.1 B.125C.6或125D.62.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下3.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种4.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.5.不等式组10,{360xx-≤-<的解集在数轴上表示正确的是()A .B .C .D .6.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤- 7.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .118.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 9.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 10.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ 11.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .15.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______. 16.由ac bc >得到a b <的条件是:c ______0(填“>”“<”或“=”).17.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.18.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 19.把方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 21.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________ 三、解答题22.解不等式组2536x x +<⎧⎨-<⎩,并把解集在数轴上表示出来.23.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件. (1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?24.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围;(2)试化简1a a 2-++.25.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 3.下列不等式的变形正确的是( )A .由612m -<,得61m <B .由33x ->,得1x >-C .由03x >,得3x > D .由412a -<,得3a >- 4.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .5.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5B .0C .-1D .-2 6.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D .7.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m8.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ 9.若01x <<,则下列选项正确的是( )A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< 10.已知关于x 的方程:24263a x x x --=-的解是非正整数,则符合条件的所有整数a 的值有( )种.A .3B .2C .1D .011.若关于 x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=- C .a 4?≥- D . a 4>-二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.13.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__.14.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 16.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________. 17.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x ---=的解是_____________. 18.绝对值小于π的非负整数有____________.19.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.20.若a b >0,c b<0,则ac________0. 21.关于x 、y 的二元一次方程组3234x y a x y a+=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________. 三、解答题22.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.23.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩. 24.阅读:我们知道,00a a a a a ≥⎧=⎨-<⎩于是要解不等式|3|4x -≤,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤解这个不等式,得:1x ≥-由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤根据以上思想,请探究完成下列2个小题:(1)|1|2x +≤;(2)|2|1x -≥.25.某市出租车的计费标准如下:行程3km 以内(含3km ),收费7元.行程超过3km ,如果往返乘同一出租车并且中间等候时间不超过3min ,超过3km 的部分按每千米1.6元计费,另加收1.6元等候费;如果返程时不再乘坐此车,超过3km 的部分按每千米2.4元计费.小文等4人从A 处到B 处办事,在B 处停留时间在3min 之内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.(1)若A ,B 两地相距1.2km ,方案一付费_____元,方案二付费______元;(2)若A ,B 两地相距2.5km ,方案一付费_____元,方案二付费______元;(3)设A ,B 两地相距x km (x <12),请问选择那种方案更省钱?。
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)

七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)一、选择题(本大题共6个小题,每小题3分,共18分.)1.已知实数a ,b ,若a >b ,则下列结论正确的是( ).A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a >3b2.不等式3(x -1)≤5-x 的非负整数解有( ).A .1个B .2个C .3个D .4个 3.关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( ). A .14 B .7 C .-2 D .2 4.不等式组⎩⎪⎨⎪⎧2x +13-3x +22>1,3-x ≥2的解集在数轴上表示正确的是( ).5.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围为( ).A .m =3B .m >3C .m <3D .m ≥36.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( ). A .4条 B .5条 C .6条 D .7条二、填空题(本大题共6小题,每小题3分,共18分)7.不等式组⎩⎪⎨⎪⎧x ≤3x +2,3x -2(x -1)<4的解集为________.8.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.9.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x <13的解集为________.10.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是________.11.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为________.12.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题 (本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.14.解不等式4x -13-x >1,并把它的解集在数轴上表示出来.15.解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并将它的解集在数轴上表示出来.16.x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?17.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.四、(本大题共3小题,每小题8分,共24分).18.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3a +9,x -y =5a +1的解都为正数,求a 的取值范围.19.旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?20.已知关于x 的不等式组⎩⎪⎨⎪⎧-x -1≥-2x +1,12(x -2a )+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.五、(本大题共2小题,每小题9分,共18分).21.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.22.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).六、(本大题共12分)23. 为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A 、B 两类学校进行扩建,根据预算,扩建2所A 类学校和3所B 类学校共需资金7800万元,扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划扩建A 、B 两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案一、选择题(本大题共6个小题,每小题3分,共18分.)1. D ; 2. C ; 3. D ; 4. B ; 5. D.; 6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.-1≤x <2; 8. 0; 9. x >-1; 10. a >-1;11. x >32;12.131或26或5或45三、解答题 (本大题共5小题,每小题6分,共30分.)13.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(2)解不等式①得x <8, 解不等式②得x >1.所以不等式组的解集为1<x <8.14.解:去分母,得4x -1-3x >3.移项、合并同类项,得x >4.在数轴上表示不等式的解集如图所示:15.解:⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12.②由①得-2x ≥-2,即x ≤1. 由②得4x -2<5x +5,即x >-7. 所以原不等式组的解集为-7<x ≤1. 在数轴上表示不等式组的解集为:16.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x , 解得-52≤x ≤1∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.17.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6,得m =-1,∴m 2-2m -11=-8.四、(本大题共3小题,每小题8分,共24分).18.解:解方程组,得⎩⎪⎨⎪⎧x =4a +5,y =-a +4.∵解都为正数,∴⎩⎪⎨⎪⎧4a +5>0,-a +4>0. 解得-54<a <4.19.解:设旅游者可走x 千米.根据题意,得x 18+3+x 18-3≤4,解得x ≤35. 答:旅游者最远可走35千米. 20.解:⎩⎪⎨⎪⎧-x -1≥-2x +1,①12(x -2a )+12x <0.② 解不等式①,得x ≥2. 解不等式②,得x <a .故当a >2时,不等式组的解集为2≤x <a ;当a <2时,不等式组无解.五、(本大题共2小题,每小题9分,共18分).21.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .∵原不等式组有三个整数解, ∴0≤4+a <1, ∴-4≤a <-3.22.解:(1)设这个月有x 天晴天,由题意得:30x +5(30-x )=550, 解得x =16.(4分) 答:这个月有16天晴天.(2)设需要y 年可以收回成本,由题意得: (550-150)·(0.52+0.45)·12y ≥40000, 解得y ≥8172291.∵y 是整数,∴至少需要9年才能收回成本.六、(本大题共12分)23.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得:⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400, 解得⎩⎪⎨⎪⎧x =1200,y =1800.答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元. (2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得:⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5 ∵a 取整数, ∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.。
七年级数学不等式练习题及参考答案【人教版】

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式
1、 用不等号“<”、“>”、“≤”、“≥”、“≠”表示不等关系的式子叫做不等式。
2、 能使不等式成立的未知数的值,叫做不等式的解。
3、 一个含有未知数的不等式的所有的解,组成这个不等式的解集,求不等式的解集的过程,叫做解不等式。
4、 不等式的性质:
(1)如果a>b ,那么a+c>b+c;
(2)如果a>b ,并且c>0,那么ac>bc(或
c a >c
b ); (3)如果a>b ,并且c<0,那么ac<bc(或
c a <c b ); 5、 类似于一元一次方程,含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式。
6、 列不等式的关键是领会语句中的数量关系,常用的不等关系有:
a 是正数 a>0:
a 是非负数 a ≤
b (a 不大于b ,即a=b 或a<b 等)
7、 一元一次不等式解题步骤:
1去分母→2去括号→3移项→4合并同类项→5系数化为1。
注意:进行“去分母”和“系数化为1”时,要根据不等号两边同乘以(或除以)的数的正负,决定是否改变不等号的方向,若不能确定该数的正负,则要分正、负两种情况讨论。
8、一元一次不等式是表达现实世界中量与量之间不等关系的重要数学模型,应用不等式解决问题的一般步骤为:
①审题,弄清题目中的数量关系,用字母表示未知数; ②找出题中隐含的一个不等关系,注意表达不等关系的术语,如:至多、至少、不大于、不小于等; ③列出不等式;
④解不等式; ⑤根据实际问题写出符合题意的解。
一.选择题
1. 下列不等式中,是一元一次不等式的是( )
A .112x +>
B .29x >
C .x-3<10y
D .2x+8≤5
2.一种牛奶包装盒标明“净重300g ,蛋白质含量≥2.9%”.那么其蛋白质含量为( )
A .2.9%及以上
B .8.7g
C .8.7g 及以上
D .不足8.7g
3.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( )
A .ab >0
B .a+b <0
C .a
b <1 D .a-b <0
4 ..若a >b ,则下列不等式成立的是( )
A .a-3<b-3
B .-2a >-2b
C . 4 a <4 b
D .a >b-1
5. x=-1不是下列哪一个不等式的解( )
A .2x+1≤-3
B .2x-1≥-3
C .-2x+1≥3
D .-2x-1≤3 6 . 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )
A .1030x x +>⎧⎨->⎩
B .1030x x +>⎧⎨->⎩
C .1030x x +<⎧⎨->⎩
D .10
30x x +<⎧⎨->⎩
7.若关于的二元一次方程组3133x y a
x y +=+⎧⎨+=⎩
的解满足x+y <2,则a 的取值范围为( ) A .a <4 B .a >4 C .a <-4 D .a >-4
8. 设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式bx-a >0的解集是( )
A .15x >
B .15x <-
C .15x >-
D .15x <
二.填空题
9.“a 是负数”用不等式可表示为
10. 不等式2x+1>-5的解集是
11. 已知a >b ,则12a c -+ 12b c -+.(填>、<或=).
12. 在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对 道题。
14.不等式组
235
324
x
x
+≥
⎧
⎨
-≤
⎩的整数解是
15. 将长为20cm的一条线段围成一个六边形,则围成的六边形中最长边的取值范围是
16.学生若干人,住若干房间,若每间住4人,则剩19人没处住,若每间住6人,则有一间不满也不空,则共有个房间,有人.
三、解不等式和不等式组
17. 3-2(x-1)<1 18.
1 23
3
x
x
+
-<
19.
2
1
3
2(1)5
x
x
+
⎧
<
⎪
⎨
⎪-≤
⎩
20.
⎪
⎪
⎩
⎪⎪
⎨
⎧
<
+
-
-
≤
-
1
2
3
1
2
)1
2(
2
3
4
x
x
x
x
四、解应用题
21. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为多少人?
22.某小区前坪有一块矩形空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x米,求x的整数解.
23..陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”
(1)王老师什么说他搞错了?试用方程知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
24.我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.
(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?
附加题
把质量相同的26个玻璃球分装在A,B,C,D,E五个口袋中(口袋的质量不计),每袋至少装2个球,且各袋中球数互不相同,称重时,若玻璃球达到11个及以上,则超重警铃就会响.下面称了4次:
其中,第(1)、(3)、(4)次警铃都响了,只有第(2)次未响.试在下面横线上写出5个口袋中球数的所有组合(A,B,C,D,E):
答案1-8:CCDBAC
11.< a ≤3
15. 10
103x ≤<
16解:设有学生y 人,房间x 间.
由每间住4人,则剩19人没处住得:y=4x+19,
由每间住6人,则有一间不满也不空得:
0<y-6(x-1)<6,
将y=4x+19代入上式得:
0<4x+19-6(x-1)<6,
19<2x <25,
19/2<x <25/2.
故x=10、11、12.
则y=59、63、67.
19. 23-≤x <1. 20. 54
-≤x <3
2(8+x)<34 解得6<x<9.∵x为整数解,∴x为7,8.故x的整数解为7,8.23.解:解:(1)设单价为8.0元的课外书为x本,
得:8x+12(105-x)=1500-418,(2分)
解得:x=44.5(不符合题意).(3分)
因为在此题中x不能是小数,所以王老师说他肯定搞错
(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:
0<1500-[8y+12(105-y)+418]<10,(6分)
解之得:0<4y-178<10,即:44.5<y<47,(7分)
∴y应为45本或46本.
当y=45本时,b=1500-[8×45+12(105-45)+418]=2,
当y=46本时,b=1500-[8×46+12(105-46)+418]=6,
即:笔记本的单价可能2元或6元.(8分
24. 解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,得1000×4x+1500×(108-5x)+2000x≤147000
解这个不等式得
x≥10
因此至少购买丙种电视机10台;
(2)甲种电视机4x台,购买乙种电视机(108-5x)台,根据题意,
得4x≤108-5x
解得x≤12
又∵x是整数,由(1)得
10≤x≤12
∴x=10,11,12,因此有三种方案.
方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;
方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;
方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台.
附加题:
A+C<11
B+C≥11
C+D≥11
A+B+C+D+E=26
解得:C≥7,2≤A≤3,2≤B≤4,2≤D≤4
①当A=3时,C=7,B=4,D=4,又B≠D,故不符合题意;
②当A=2时,C=8,B=3,D=4,E=9,符合题意;
B=4,D=3,E=9,符合题意.
故袋中球数的所有组合(A,B,C,D,E):(2,3,8,4,9),(2,4,8,3,9).故答案为(2,3,8,4,9),(2,4,8,3,9).。