机床螺距误差补偿知多点

合集下载

立式加工中心机床的螺距误差补偿(精)

立式加工中心机床的螺距误差补偿(精)

立式加工中心机床的螺距误差补偿随着我国制造业的飞速发展,数控机床制造技术也在不断地发展,同时对数控机床的各项性能提出了越来越高的要求。

机床的定位精度便成为了衡量机床性能的一项重要指标。

机械结构当中不可避免的摩擦、间隙,以及装配误差成为了制约机床定位精度的主要因素。

由此,数控系统的制造商开发出了螺距误差补偿功能,借此以消除或者削弱以上因素对机床定位精度的影响,从而达到更好的加工效果。

发那科与西门子两大公司在这个领域表现得尤为出色,以下将对这两种数控系统的螺距误差补偿方法进行详细介绍。

1.发那科数控系统机床的误差补偿(以FANUC 0i-MD为例)1.1基本概念1.1.1补偿点的指定各轴的补偿点的指定,可通过夹着参考点的补偿点编号指定(+)侧、(-)侧来进行。

机械的行程超过(+)侧、(-)侧所指定的范围时,有关超出的范围,不进行螺距误差补偿(补偿量全都成为0)。

1.1.2补偿点号补偿点数,在螺距误差设定画面上提供有共计1024 点,从0 到1023。

通过参数将该编号任意分配给各轴。

另外,螺距误差设定画面中,在最靠近负侧的补偿号前,显示该轴的名称。

1.1.3补偿点的间隔螺距误差补偿的补偿点为等间隔,在参数中为每个轴设定该间隔。

螺距误差补偿点的间隔有最小值限制,通过下式确定。

螺距误差补偿点间隔的最小值=最大进给速度(快速移动速度)÷75001.2相关参数(1)1851 每个轴的反向间隙补偿量。

(2)1852 每个轴的快速移动时的反向间隙补偿量。

(3)3620 每个轴的参考点的螺距误差补偿点号。

(4)3621 每个轴的最靠近负侧的螺距误差补偿点号。

(5)3622 每个轴的最靠近正侧的螺距误差补偿点号。

(6)3623 每个轴的螺距误差补偿倍率。

(7)3624 每个轴的螺距误差补偿点间隔。

注:以上参数中3620,3621,3622,3624修改后需要切断电源并重新上电才生效,其余参数修改后复位即可生效。

FANUC螺补

FANUC螺补

FANUC 数控系统螺距误差补偿相关参数
FANUC-10/11/12M螺距误差补偿
一、螺距误差补偿数据显示:
a.按SERVICE软键,按CHAPTER软键,再按PITCH软键,就选择到参数画面;
b.键入要显示的参数的数据号,按INP-No.软键,键入数据号可由光标或翻页键切换画面。

二、由MDI设定参数:
a.处于MDI方式或紧急停止状态;
b.按SERVICE软键,选择设定画面;PARAM
c.键入8000;
d.按INP-No.软键,显示数据号8000的参数;
e.键入1,按INPUT软键,参数PWE=1被设定,此时NC报警;
f.按机能键软键回到机能选择状态;
g.按SERVICE软键,按PARAM软键(螺距误差补偿数据时按PITCH软键)选择参数画面;
h.键入要设定的参数数据号,按INP-No.软键,就选择到了要设定的参数画面;
i.键入要设定的数据,按INP软键;
j.重复g、h、I的操作;
k.若参数设定完毕,将数据号8000的参数PWE改为0,禁止参数设定;
l.将NC复位,解除[可进行参数设定]的报警状态,当[必须切断1次NC电源,参数就被复位]报警产生时,请切断电源。

FANUC系统数控车床精度的检测与补偿

FANUC系统数控车床精度的检测与补偿

FANUC系统数控车床精度的检测与补偿为了改善提高某台数控机床的位置精度,应用激光干涉仪对其定位精度和方向间隙进行了检测和补偿。

通过补偿数控机床的螺距误差最大值由原来的0.02mm降低到0.002mm。

机床的精度得到较大幅度的提高。

标签:激光干涉仪;定位精度;精度补偿1 精度检测与补偿的意义数控机床的定位精度是机床各个坐标轴在数控系统控制下达到的位置精度。

根据实测的定位精度数值,可以判断机床在加工中所能达到的最好加工精度。

同时数控机床各轴运动的准确程度,决定数控机床的定位精度,对数控加工质量至关重要。

国际标准化组织于1998年批准了“数控机床位置精度的评定”的有关标准(ISO230-2:1998);我国制定的“数字控制机应酬位置精度的评定方法”(GB10931-89)都对其有明确的要求[2]。

现今的数控机床在检测精度时基本上都采用激光干涉仪对数控定位精度进行测量,以此来满足现今国内机床的精度要求。

在测量机床的螺距误差和进行反向间隙误差补偿时,必须要专业的人员进行操作。

2 精度检测的概念在实际中,通常对数控机床位置精度的检测和补偿主要包括直线轴定位精度、重复定位精度和反向间隙三个方面。

重复定位指的是同一个位置两次定位产生的误差。

定位精度指的是数控设备停止时实际到达的位置和要求到达的位置误差。

反向间隙是因为丝杠和丝母之间肯定存在一定的间隙,所以在正转后变换成反转的时候,在一定的角度内,尽管丝杠转动,但是丝母还要等间隙消除以后才能带动工作台运动,这个间隙就是反向间隙,但是要反映在丝杠的旋转角度上。

3 应用激光干涉仪对机床精度进行检测和补偿3.1 激光干涉仪简介激光具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。

目前常用来测量长度的干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。

激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。

9.1 螺距误差补偿[共2页]

9.1 螺距误差补偿[共2页]

第9章系统补偿功能与SIMODRIVE611D驱动优化
机床在对工件进行加工的过程中,由于测量系统、力的传递过程中产生的误差、机床自身磨损或装配工艺问题的影响,加工工件的轮廓会偏离理想的几何曲线,导致加工工件产品质量的下降。

特别是在加工大型的工件时,由于温度和机械力的影响,加工精度损失更为严重。

因而在机床出厂前,需要进行一定的误差补偿。

螺距误差补偿和反向间隙补偿是两种最常见的补偿方式,还有温度补偿、垂直度补偿、跟随误差补偿以及摩擦补偿也比较常见。

另外,在机械传动结构良好的情况下,要使机械系统与电气系统达到更加良好的匹配,需要通过驱动优化来实现。

9.1 螺距误差补偿
螺距误差的补偿是按坐标轴来进行的,轴的补偿曲线如图9-1所示。

图9-1 轴的补偿曲线
激活误差补偿需设定以下相关机床参数。

① MD 38000 轴最大误差补偿点数。

根据该机床的特点,X轴螺距误差参数补偿点数为50,即MD 38000 [0 AX1] =50;Z轴螺距误差补偿点数为100,即MD 38000 [0 AX2] =100。

参数设定好后,系统自动产生相应轴的补偿文件,补偿文件存放在目录/NC-ACTIVE-DATA/Meas-System-err-comp下。

可以修改每轴的补偿点数。

如果改变MD38000,系统会在下一次上电时重新对内存进行分配。

建议在修改该参数之前,备份已存在的零件加工程序、R 参数和刀具参数的驱动数据。

② MD32700螺距误差补偿使能。

MD32700=0 螺距补偿不生效,允许修改补偿文件。

【豆丁-免费】-》数控机床螺距误差补偿与分析

【豆丁-免费】-》数控机床螺距误差补偿与分析

文章编号:1001-2265(2010)02-0098-04收稿日期:2009-09-29;修回日期:2009-10-26作者简介:李继中(1963—),男,湖南人,深圳职业技术学院高级工程师,副处长,从事数控技术研究,(E -mail )ljizhong@szp t .edu .cn 。

数控机床螺距误差补偿与分析李继中(深圳职业技术学院,深圳 518055)摘要:文章通过实例介绍数控机床滚珠丝杆传动机构的螺距误差的测量、补偿依据、补偿方法与操作要点,以及补偿效果的验证与分析。

通过利用英国REN I SHAW 公司的ML10激光干涉仪对F ANUC 0i 系统数控铣床X 轴的螺距误差进行测量、补偿及验证,结果说明,对滚珠丝杆传动机构的反向偏差与螺距误差进行补偿是提高机床精度的一种重要手段。

关键词:滚珠丝杆;螺距误差;反向偏差;补偿;定位精度;激光干涉仪中图分类号:TH16;TG65 文献标识码:AThe Com pen s a ti on and Ana lysis of P itch Error for NC M ach i n i n g ToolsL I J i 2zhong(Shenzhen Polytechnic,Shenzhen 518055,China )Abstract:22、’2Key words:0 引言目前,机床的传动机构一般均为滚珠丝杆副。

当机床几何精度得到保证后,机床轴线的反向偏差与滚珠丝杆的螺距误差是影响机床定位精度与重复定位精度的主要因素,对机床轴线的反向偏差、滚珠丝杆的螺距误差进行补偿能极大地提高机床精度,机床控制系统也对这个两个补偿参量设置了专门的参数,供轴线误差补偿之用,并将其补偿功能作为控制系统的基本控制功能。

1 螺距误差的补偿方式由于加工设备的精度及加工条件的变化影响,滚珠丝杆都存在螺距误差。

螺距误差补偿对开环控制系统和半闭环控制系统具有显著的效果,可明显提高系统的定位精度和重复定位精度;对于全闭环控制系统,由于其控制精度高,螺距误差补偿效果不突出,但也可以进行螺距误差补偿,以便提高控制系统的动态特性,缩短机床的调试时间。

13、螺距误差补偿及反向间隙补偿

13、螺距误差补偿及反向间隙补偿

螺距误差补偿及反向间隙补偿根据下表设置螺距误差补偿相关参数:参数号参数位设定值设置说明3620 XZ 100200每个轴的参考点的螺距误差补偿点号3621 XZ 负方向最远的补偿位置号根据下面的公式进行计算:参考点的补偿位置号—(负方向的机床行程/补偿位置间隔)+ 1 100-(1000/50)+1=81 所以负方向补偿位置号设置为813622 XZ 正方向的最远补偿位置号根据下面的公式进行计算:参考点的补偿位置号+(正方向的机床行程/补偿位置间隔)+ 1 100+(0/50)+1=101 所以参考点正方向补偿位置号为101.3624 补偿点间隔输入格式为无小数点输入格式,由于X轴为直径值编程,所以X轴补偿点间隔应为实际补偿点间隔的2倍,应设置为100000,为100mm.参数号参数位设定值设置说明1800 #4(RBK) 是否分别进行切削进给/快速移动反向间隙补偿0: 不进行。

1: 进行。

1851 XZ 每个轴的反向间隙补偿量,设置后,回零生效1852 XZ 每个轴的快速移动时的反向间隙补偿量,回零生效由于FANUC系统螺距误差补偿采用增量式的补偿方式,所以在进行螺距误差补偿时,需根据补偿数据进行补偿数据的设定个。

下表为螺距误差补偿表由于每个补偿点的最大补偿值只能到7,在上表中可以看到,在-400mm测量位置处出现了一次22的值,此点是所有补偿点误差的最大值,所以补偿倍率按此点进行计算,而且考虑其它点的误差值,将补偿倍率设置为3倍。

补偿倍率设置为3倍,所有的补偿值都放大了三倍,所以在补偿数据处看到的是计算值的1/3,如果测量人员给出的是补偿值,那么补偿数据就按上图中的数据进行输入,如果给出的是误差值,则需将上图中的补偿数据取反。

螺距误差补偿在回零后即可生效。

fanuc螺距补偿

fanuc螺距补偿

FANUC 螺距补偿一、为什么要进行螺距误差补偿螺距误差补偿是将机床实际移动的距离与指令移动的距离之差,通过调整数控系统的参数增减指令值的脉冲数,实现机床实际移动距离与指令值相接近,以提高机床的定位精度。

螺距误差补偿只对机床补偿段起作用,在数控系统允许的范围内补偿将起到补偿作用。

二、螺距误差补偿参数螺距误差补偿是按轴进行的,与其相关的轴参数有五个:3620各轴参考点的螺距误差补偿点号3621为设置补偿区间内的最负点补偿点号3622为设置补偿区间内的最正点补偿点号3623为补偿倍率3624为设置测量时候实际的间隔说明:1、如果需要更改参数,NC需要从新上电。

2、FANUC系统为增量补偿。

三、螺距误差补偿方法1、分配补偿点FANUC系统的补偿点共计为0—1023个点,为X、Z(Y、C)轴所共用,在车床里,我们只为XZ两个轴设定相应的有效区间即可,我们可设置0-200号码,为X轴使用;201-400为Z轴使用;401以后为其他轴使用。

所以对应轴的参考点地址根据需要设置为相应区间的任意点。

2、设置参数说明:1、补偿点号是和机械坐标对应的,如果机械坐标改变,需要重新补偿。

2、我厂机床出厂时X轴零点为主轴中心,如果补偿10个点,有效点号为100-110;Z轴零点为卡盘端面,如果补偿15个点,有效点号为300-315。

X轴 Z轴3、3623为补偿倍率。

FANUC系统相对补偿参数限制为0—±7,所以倍率为1的情况下,如误差中有很多的+7或者-7的话说明实际补偿误差可能大于这个数值,(例如:误差可能大于±7,比如误差有8,10,-9那它也只能显示到7,7,-7,)那这个时候我们就要改倍率为2。

这时的实际补偿数值=补偿值*倍率。

3、输入补偿值通过激光干涉仪。

测得机床某个轴实际定位情况。

生成补偿值,并填入补偿值如下:X轴 Z轴填入后,复位即可生效.整个螺距补偿完毕.注意:由于FANUC系统螺距补偿是相对补偿,如果想调整单个或几个点时要从补偿起点方向开始向终止方向调整。

数控车床的螺距误差补偿分析

数控车床的螺距误差补偿分析

数控车床的螺距误差补偿分析作者:吴亚兰李庆来源:《绿色科技》2017年第22期摘要:分析了螺距误差产生原因及其影响因素,提出了多种螺距误差的测量和补偿方法,并对各种方法进行了比较,得出了其使用场合。

使得螺距误差补偿大幅减小开环和半闭环控制机床的加工误差,提高合格率。

关键词:螺距误差;测量方法;补偿方法;数控车床中图分类号:TG502.113文献标识码:A 文章编号:16749944(2017)220145021 引言数控机床的螺距误差是指在滚珠丝杠的中经线上同一根螺旋线的对应点之间的实际距离与基本值的偏差。

滚珠丝杠的螺距误差将直接影响机床的定位精度和重复定位精度,为进一步保证机床的加工精度,需要对机床的螺距误差进行补偿。

2 产生原因滚珠丝杠的螺距误差是任何机床都存在的,其产生的主要原因有两点:由于原始加工滚珠丝杠母设备的误差,导致加工出的滚珠丝杠螺距存在误差;滚珠丝杠经长期使用后磨损引起的螺距误差。

3 检测方法3.1 步距规测量法机床螺距误差一般是通过机床软件来进行补偿的(图1),其检测方法主要有两种,一种是用千分表配合步距规进行检测,这是一种线性补偿方法,它一般是将机床参考点设置为补偿的原点,把滚珠丝杠的行程分为n段,在每一段上进行检测,然后将检测出的值输入到机床固定的参数中,则机床相应轴在运动至该段时会向运动的反方向进行设定值的偏移,实现螺距误差的自动补偿。

步距规结构见图2。

3.2 用激光干涉仪进行检测在机床的实际使用过程中,由于加工零件的不同,滚珠丝杠的磨损并不是均匀的,经常使用的地方磨损量大,使用线性补偿只能是均匀的统一补偿,不能对特殊点进行补偿,补偿精度较低。

为提高补偿精度,可将步距尽量的缩小,测出尽量多的点,此种方法称为点补偿法。

由于步距规步距值的限制,取点数量有限,所以点补偿一般才用激光干涉仪进行检测。

螺距误差检测是在无螺距误差补偿的情况下进行的,也就是说在进行检测之前,应将相应的误差补偿数值设置为0。

6.1反向间隙与螺距误差的补偿

6.1反向间隙与螺距误差的补偿
第6步:继续用手脉负向移动X轴0.5~1 mm(以NC显示器X轴相对
坐标显示值为准),记录下百分表或千分表表盘读数(注意,移
动期间不能换向)。 第7步:用手脉正向移动X轴,直至NC显示器X轴相对坐标显示值为 0止,记录下百分表或千分表的读数。 第8步:计算出负向移动向正向移动换向时的反向偏差值(表盘读 数的相对变化值),这是第1次测量的X轴中点位置正向反向偏差
RS-232接口,自动对两轴线性误差分别进行补偿。
6)数控机床动态性能检测——利用RENISHAW动态特性测量与评 估软件,可用激光干涉仪进行机床振动测试与分析(FFT)、滚珠丝
杠的动态特性分析、伺服驱动系统的响应特性分析、导轨的动态特
性(低速爬行)分析等。
(2)激光干涉仪的安装 激光干涉仪的安装 (3)位置误差补偿操作 1)准备工作
三、检测结果
1.反向间隙-负值 (机床误差)
(1)图样
反向间隙-负值
(2)诊断值
(3)可能起因
1)在机床的导轨中可能存在间隙,导致当机床在被驱动换向 时出现在运动中跳跃。
2)用于弥补原有反向间隙而对机床进行的反向间隙补偿的数
值过大,导致原来具有正值反向间隙问题的机床出现负值反向间 隙。
3)机床可能受到编码器滞后现象的影响。
4)目标点定义
测量轴目标点定义界面(图中箭头表示操作顺序,后续图类同)
5)根据所选测量轴,建立满足测量要求的激光光路
线性测量镜组及其组合
光路调节示意图
反射光强度条
光路调节及反射光强度检查图
6)生成测量程序
①程序号或程序名。
②轴名: ③运行次数:
④选择方向:
⑤暂停周期: ⑥越程值:
⑦进给量:
⑧数据采集方式/零件程 序类型:

数控车床丝杠螺距误差的补偿

数控车床丝杠螺距误差的补偿

项目数控车床丝杠螺距误差的补偿一、工作任务及目标1.本项目的学习任务(1)学习数控车床丝杠螺距误差的测量和计算方法;(2)学习数控车床螺距误差参数的设置方法。

2.通过此项目的学习要达到以下目标(1)了解螺距误差补偿的必要性;(2)掌握螺距误差补偿的测量和计算方法;(3)能够正确设置螺距误差参数。

二、相关知识滚珠丝杠螺母机构数控机床进给传动装置一般是由电机通过联轴器带动滚珠丝杆旋转,由滚珠丝杆螺母机构将回转运动转换为直线运动。

1、滚珠丝杠螺母机构的结构滚珠丝杠螺母机构的工作原理见图1;在丝杠1 和螺母 4 上各加工有圆弧形螺旋槽,将它们套装起来变成螺旋形滚道,在滚道内装满滚珠2。

当丝杠相对螺母旋转时,丝杠的旋转面经滚珠推动螺母轴向移动,同时滚珠沿螺旋形滚道滚动,使丝杠和螺母之间的滑动摩擦转变为滚珠与丝杠、螺母之间的滚动摩擦。

螺母螺旋槽的两端用回珠管 3 连接起来,使滚珠能够从一端重新回到另一端,构成一个闭合的循环回路。

2、进给传动误差螺距误差:丝杠导程的实际值与理论值的偏差。

例如PⅢ级滚珠丝杠副的螺距公差为0.012mm/300mm。

反向间隙:即丝杠和螺母无相对转动时丝杠和螺母之间的最大窜动。

由于螺母结构本身的游隙以及其受轴向载荷后的弹性变形,滚珠丝杠螺母机构存在轴向间隙,该轴向间隙在丝杠反向转动时表现为丝杠转动α角,而螺母未移动,则形成了反向间隙。

为了保证丝杠和螺母之间的灵活运动,必须有一定的反向间隙。

但反向间隙过大将严重影响机床精度。

因此数控机床进给系统所使用的滚珠丝杠副必须有可靠的轴向间隙调节机构。

图2为常用的双螺母螺纹调隙式结构,它用平键限制了螺母在螺母座内的转动,调整时只要扮动圆螺母就能将滚珠螺母沿轴向移动一定距离,在将反向间隙减小到规定的范围后,将其锁紧。

3、电机与丝杠的联接、传动方式直联:用联轴器将电机轴和丝杠沿轴线联接,其传动比为1:1;该联接方式传动时无间隙;同步带传动:同步带轮固定在电机轴和丝杠上,用同步带传递扭矩;该传动方式传动比由同步带轮齿数比确定,传动平稳,但有传动间隙;齿轮传动:电机通过齿轮或齿轮箱将扭矩传到丝杠,传动比可根据需要确定;该方式传递扭矩大,但有传动间隙。

FANUC数控系统螺距误差补偿功能.

FANUC数控系统螺距误差补偿功能.

FANUC数控系统螺距误差补偿功能数控机床的直线轴精度表现在轴进给上主要由三项精度:反向间隙、定位精度和重复定位精度,其中反向间隙、重复定位精度可以通过机械装置的调整来实现,而定位精度在很大程度上取决于直线轴传动链中滚珠丝杠的螺距制造精度。

在数控机床生产制造及加工应用中,在调整好机床反向间隙、重复定位精度后,要减小定位误差,用数控系统的螺距误差螺距补偿功能是最节约成本且直接有效的方法。

FANUC数控系统已广泛应用在数控机床上,其螺距误差补偿功能有一定的典型性。

螺距补偿原理是将机械参考点返回后的位置作为螺距补偿原点,CNC系统以设定在螺距误差补偿参数中的螺距补偿量和CNC移动指令,综合控制伺服轴的移动量,补偿丝杠的螺距误差。

1 螺距误差补偿前的准备工作回参考点后,编程控制需要螺距误差补偿的轴,从参考点或机床机械位置某一点间歇移动若干个等距检测点,用激光干涉仪等检测计量仪器检测出各点的定位误差。

检测点数量可根据机床的工作长度自设。

2 设定螺距误差补偿参数打开参数开关在MDI方式下设置参数PWE=1,系统出现1000报警,同时按CAN和RESET键清除报警。

⑴参考点的螺距误差补偿点号码参数X轴参数No.1000Z轴参数No.2000⑵螺距误差补偿倍率参数参数No.0011的PML1,PML2。

.PML2 PML1 倍率( 0 0 31,0 1 32,1 0 34,1 1 38)设定的螺距补偿值,乘上该倍率,即为输出值.⑶螺距误差补偿点间隔X轴参数No.756Z轴参数No.757螺距误差补偿点为等间隔,设定范围从0到999999999。

一般设定单位是0.001毫米。

⑷螺距补偿点数目各轴从0到127共128个螺距补偿点⑸螺距补偿量及螺距补偿点的号X轴参数No.(1001+螺距补偿点号)Z轴参数No.(2001+螺距补偿点号)每个螺距补偿点螺距补偿量的范围为(-7)~(+7)乘以螺距补偿倍率。

负侧最远补偿点的号=原点补偿点-(负侧的机床长/补偿点间隔)+1正侧最远补偿点的号=原点补偿点+(正侧的机床长/补偿点间隔)3设定好螺距补偿参数后,在MDI方式下,设置参数PWE=0,关闭参数写状态。

数控机床定位精度的补偿方法

数控机床定位精度的补偿方法

数控机床定位精度的补偿方法螺距误差补偿这项工作应该是在机床几何精度(床身水平、平行度、垂直度等)调整完成后进行的,这样可以尽量减少几何精度对定位精度的影响。

另外,进行螺距误差补偿时应使用高精度的检测仪器(如激光干涉仪),这样可以先测量再补偿,补偿后再测量,并按照相应的分析标准(如VDI3441、JIS6330、GB10931-89等)对测量数据进行分析,直到达到机床对定位精度的要求范围。

机床的螺距误差补偿功能包括线性轴和旋转轴两种方式,分别可以对直线轴和旋转工作台的定位精度进行补偿。

但有一点需要注意,就是在补偿旋转轴时应注意:在0°~360°之间各补偿点的补偿值总和应为0,以使0°和360°的绝对位置保持一致,否则旋转轴旋转角度每超过360°一次,就产生一次累积误差,从而影响机床的加工精度。

另外,螺距误差补偿功能的实现方法又有增量型和绝对型之分。

所谓补偿就是指通过特定方法对机床的控制参数进行调整,其参数调整方法也依各数控系统不同而各有差异。

所谓增量型是指以被补偿轴上相领两上补偿点间的误差差值为依据来进行补偿,而绝对型是指以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿。

FANUC-0数控系统的螺距误差补偿功能是一种增量型补偿方法,FANUC-0数控系统与螺距误差补偿功能有关的参数如下:765432100011 PML2PML1765432107011 PML2SPML1SPML2和PML1的组合决定误差补偿倍率,它对X、Y、Z和第四轴有效。

PML2S和PML1S的含义与PML2和PML1相同,它对第5、第6轴有效。

设定的补偿值乘以此倍率即为应补偿的误差值。

PML2(S) PML1(S) 补偿倍率1 0 ×10 1 ×21 0 ×41 1 ×80535 BKLX0536 BKLY0537 BKLZ0538 BKL47535 BKL57536 BKL67537 BKL77538 BKL8BKLX、BKLY、BKLZ,BKL4~BKL8依次为X、Y、Z和第4~第8轴的反向间隙补偿量,其设定范围为0~2550(检测单位)0712 PRSX0713 PRSY0714 PRSZ0715 PRS47713 PRS57714 PRS6PRSX、PRSY、PRSZ和PRS4~PRS6依次为X、Y、Z和第4~第6轴的各螺距误差补偿点间的距离。

浅析数控机床的螺距误差检测和补偿

浅析数控机床的螺距误差检测和补偿

浅析数控机床的螺距误差检测和补偿作者:董丽来源:《品牌与标准化》2020年第04期【摘要】本文阐述了数控机床的螺距误差定义及产生原因、螺距补偿依据及基本原理、螺距误差的检测方法和补偿方法。

【关键词】数控机床;螺距误差;滚珠丝杠【DOI编码】 10.3969/j.issn.1674-4977.2020.04.018Analysis of the Ptch Error Measurement and Compensation of CNC Machine ToolsAbstract: This paper expounds the definition and cause of pitch erro,the basis and basic principle of pitch compensation,the detection method and compensation method of pitch error.Key words: numerical control machine;pitch error;ball screwDONG Li(Shenyang product quality supervision and Inspection Institute,Shenyang 110021,China)机床的进给机构一般均为滚珠丝杠副,当机床几何精度达到客户要求后,机床轴线的反向间隙与滚珠丝杠的螺距误差是影响机床定位精度的重要因素,通过机床控制系统设定补偿参数,实现对机床轴线的误差补偿,达到提高数控机床的加工精度。

本文主要介绍数控系统的螺距误差检测和补偿1 螺距误差定义及产生原因數控机床的螺距误差是指在滚动丝杠的中经线上同一根螺旋线的对应点之间的实际距离与基本值的偏差,其产生的主要原因有两点:由于原始加工滚珠丝杠机器的误差,导致被加工的滚珠丝杠存在螺距误差;生产企业数控机床的滚珠丝杠经长期使用后磨损引起的误差。

三菱数控系统MITSUBISHI螺距误差补偿及反向间隙

三菱数控系统MITSUBISHI螺距误差补偿及反向间隙

三菱数控系统MITSUBISHI螺距误差补偿及反向间隙参数号项⽬说明设定范围4000pinc误差补偿⽅法确定采⽤误差绝对值或误差增量值进⾏补偿0:误差绝对值法1:误差增量值法轴参数号项⽬说明设定范围4001cmpax基本轴指定误差补偿基本轴的地址1.螺距误差补偿时,设定补偿轴的名称2.相对位置补偿时,设定基准轴的名称X、Y、Z、U、V、W、A、B、C4002drcax补偿轴指定误差补偿补偿轴的地址1.螺距误差补偿时,设定与4001 cmpax相同的轴名称2.相对位置补偿时,设定要补偿轴的名称X、Y、Z、U、V、W、A、B、C4003rdvno参考点分割点号设定参考点的补偿号,参考点是实际的基准点,因此该点⽆补偿号,设定号以1递增4101-51244004mdvno最负侧分割点号设定最负侧的补偿号4101-51244005pdvno最正侧分割点号设定最正侧的补偿号4101-51244006sc补偿⽐例系数设定补偿⽐例系数0-994007spcdy分割间隔设定基本轴的补偿间距1-9999999第2轴第3轴第4轴第5轴说明4011402140314041设定各轴补偿参数,第1轴的参数号为4001⾄4007,最多可控制4个轴,但作为相对位置补偿,可设定第5轴401240224032404240134023403340434014402440344044401540254035404540164026403640464017402740374047参数号项⽬说明设定范围4101.. . 5124设定各轴的补偿值-128 ~ 128实际补偿值由设定值乘以补偿⽐例系数参数号项⽬说明设定范围2011G0back G0反向间隙设定快速或⼿动反向间隙补偿-9999999~9999999mm 2012G1back G1反向间隙设定进给速度反向间隙补偿-9999999~9999999mm。

西门子840D数控系统螺距误差及补偿分析

西门子840D数控系统螺距误差及补偿分析

西门子840D数控系统螺距误差及补偿分析摘要:针对西门子840D数控系统螺距误差类别,进行有效性分析,并简单介绍了分析西门子840D数控系统螺距误差及补偿的重要性,提出数控系统螺距误差补偿要点,获取较好的应用效果,旨在为相关工作人员提供良好的帮助与借鉴。

关键词:西门子840D数控系统;螺距误差;补偿0引言:数控机床精度等级,对加工工件质量起到决定性作用,由于数控技术的快速发展,系统软件误差补偿技术的有效运用,显著提升数控机床精度,本文重点探讨西门子840D数控系统螺距误差和无偿要点,内容如下。

1分析西门子840D数控系统螺距误差及补偿的重要性结合西门子840D数控系统运行特点,引起误差的因素比较多,各类因素之间存在密切联系,通过对系统螺距误差进行合理补偿,能够有效减小误差的出现。

同时,利用系统螺距误差补偿功能,无需调整机床硬件,不但可以提高机床的精度,而且能够显著减少材料损耗。

通过分析西门子840D数控系统螺距误差及补偿,能够更好的满足数控机床高精度加工要求。

有关人员要结合西门子数控系统类型,进行科学的补偿。

2误差补偿2.1机床误差类别分析第一,数控机床结构,包括各项零部件几何误差类别。

在机床制造过程当中,各个零部件容易出现尺寸误差,在装配期间,因为装配技术不规范,容易引起较大误差[1]。

可以对机床结构进行全面改进,并提升数控机床加工精度,有效减少系统误差的出现。

第二,数控机床的变形误差类别。

数控机床运行期间,因为其内部的传动部件,以及润滑液管路产生较大的热量,数控机床特别容易出现热变形,引发变形误差。

数控机床内部的液压元件安装部位,以及外界温度条件,均会引发机床变形误差。

为了减少此种类型误差的出现,操作人员可以安装风冷设备,确保数控机床液压系统温度得到良好控制,避免数控系统出现较大的螺距误差。

第三,加工工件过程中所产生的误差。

因为工件材料质地比较差,存在严重的磨损现状,在实际加工过程中,出现严重的负载变化,最终引起较大误差。

13、螺距误差补偿及反向间隙补偿

13、螺距误差补偿及反向间隙补偿

螺距误差补偿及反向间隙补偿根据下表设置螺距误差补偿相关参数:参数号参数位设定值设置说明3620 XZ 100200每个轴的参考点的螺距误差补偿点号3621 XZ 负方向最远的补偿位置号根据下面的公式进行计算:参考点的补偿位置号—(负方向的机床行程/补偿位置间隔)+ 1 100-(1000/50)+1=81 所以负方向补偿位置号设置为813622 XZ 正方向的最远补偿位置号根据下面的公式进行计算:参考点的补偿位置号+(正方向的机床行程/补偿位置间隔)+ 1 100+(0/50)+1=101 所以参考点正方向补偿位置号为101.3624 补偿点间隔输入格式为无小数点输入格式,由于X轴为直径值编程,所以X轴补偿点间隔应为实际补偿点间隔的2倍,应设置为100000,为100mm.参数号参数位设定值设置说明1800 #4(RBK) 是否分别进行切削进给/快速移动反向间隙补偿0: 不进行。

1: 进行。

1851 XZ 每个轴的反向间隙补偿量,设置后,回零生效1852 XZ 每个轴的快速移动时的反向间隙补偿量,回零生效由于FANUC系统螺距误差补偿采用增量式的补偿方式,所以在进行螺距误差补偿时,需根据补偿数据进行补偿数据的设定个。

下表为螺距误差补偿表由于每个补偿点的最大补偿值只能到7,在上表中可以看到,在-400mm测量位置处出现了一次22的值,此点是所有补偿点误差的最大值,所以补偿倍率按此点进行计算,而且考虑其它点的误差值,将补偿倍率设置为3倍。

补偿倍率设置为3倍,所有的补偿值都放大了三倍,所以在补偿数据处看到的是计算值的1/3,如果测量人员给出的是补偿值,那么补偿数据就按上图中的数据进行输入,如果给出的是误差值,则需将上图中的补偿数据取反。

螺距误差补偿在回零后即可生效。

机床补偿你知道多少?

机床补偿你知道多少?

机床具有的系统性的机械相关偏差,可以被系统记录,但由于存在温度或机械负载等环境因素,在后续使用过程中,偏差仍然可能出现或增加。

在这些情况下,SINUMERIK可以提供不同的补偿功能。

使用实际位置编码器(如光栅)或额外的传感器(如激光干涉仪等)获得的测量值来补偿偏差,从而获得更佳的加工效果。

本期给大家介绍一下SINUMERIK常见的补偿功能,“CYCLE996 运动测量”等实用的SINUMERIK测量循环可在机床的持续监控与维护过程中为最终用户提供全面支持。

反向间隙补偿在机床移动部件和其驱动部件——如滚珠丝杠——之间进行力的传递时会产生间断或者延迟,因为完全没有间隙的机械结构会显著增加机床的磨损,而且从工艺上讲也是难以实现的。

机械间隙导致轴/主轴的运动路径与间接测量系统的测量值之间存在偏差。

这意味着一旦方向改变,轴将移动得过远或过近,这取决于间隙的大小。

工作台及其相关编码器也会受到影响:如果编码器位置领先工作台,它提前到达指令位置,这意味着机床实际移动的距离缩短了。

在机床运行,通过在相应轴上使用反向间隙补偿功能,在换向时,以前记录的偏差将自动激活,将以前记录的偏差叠加到实际位置值上。

丝杠螺距误差补偿CNC控制系统中间接测量的测量原理基于这样一个假设:即滚珠丝杠的螺距在有效行程内保持不变,因此在理论上,可以根据驱动电机的运动信息位置推导出直线轴的实际位置。

但是,滚珠丝杠的制造误差会导致测量系统产生偏差(又称丝杠螺距误差)。

测量偏差(取决于所用测量系统)与测量系统在机床上的安装误差(又称为测量系统误差)可能进一步加剧此问题。

为了补偿这两种误差,使可使用一套独立的测量系统(激光测量)测量CNC机床的自然误差曲线,然后,将所需补偿值保存在CNC系统中进行补偿。

摩擦补偿(象限误差补偿)和动态摩擦补偿象限误差补偿(又称为摩擦补偿)适合上述所有情况,以便在加工圆形轮廓时大幅提高轮廓精度。

原因如下:在象限转换中,一个轴以最高进给速度移动,另一轴则静止不动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机床螺距误差补偿知多点
1.什么是螺距误差
开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。

但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

螺距误差是指由螺距累积误差引起的常值系统性定位误差。

2.螺距误差补偿的原理
螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将误差以表格的形式输入数控系统中。

这样数控系统在控制该轴的运动时,会自动考虑到误差值,并加以补偿。

3.螺距误差补偿方法
硬件方法
提高机床部件的加工装配精度,此方法不仅受到加工机床精度等级的制约,而且随着加工精度的提高,加工成本呈指数级增加,效益不高;
软件方法
通过SJ6000激光干涉仪采集数控机床的定位精度,再利用数控机床的可编程、智能性,对机床误差进行补偿从而达到提高机床精度的要求。

采用这种方法,无需对数控机床的硬件进行改造遍可较大幅度的提高数控机床的加工精度。

4. SJ6000激光干涉仪基本参数
稳频精度:0.05ppm
动态采集频率:50 kHz
预热时间:约8分钟
工作温度范围:(0~40)℃
存储温度范围:(-20~70)℃
环境湿度:(0~95)%RH
空气温度传感器:±0.1℃(0~40)℃,分辨力0.01℃材料温度传感器:±0.1℃(0~55)℃,分辨力0.01℃空气湿度传感器:±5%RH (0~95)%RH
大气压力传感器:±0.1kPa (65~115)kPa
测量距离:(0~80)m (无需远距离线性附件)
测量精度:0.5ppm (0~40)℃
测量分辨力:1nm
测量最大速度:4m/s。

相关文档
最新文档