离散数学课程教案.docx
《离散》公开课教案
![《离散》公开课教案](https://img.taocdn.com/s3/m/357deb5eb6360b4c2e3f5727a5e9856a56122698.png)
《离散》公开课教案
离散公开课教案
一、教学目标
- 了解离散数学的基本概念和应用领域。
- 掌握离散数学中常用的逻辑、集合论和图论等基础知识。
- 培养学生的逻辑思维和问题解决能力。
二、教学内容
1. 离散数学简介
- 离散数学的定义和作用
- 离散数学在计算机科学、信息技术等领域的应用
2. 逻辑与命题
- 逻辑与命题的基本概念
- 命题的逻辑运算(与、或、非)
- 命题的真值表和推理规则
3. 集合论
- 集合的定义和表示方法
- 集合的基本运算(交、并、差、补)
- 集合的性质和特征
4. 图论
- 图的基本概念和术语
- 图的表示方法(邻接矩阵、邻接表)
- 常见的图算法(深度优先搜索、广度优先搜索)
三、教学方法
1. 授课讲解:通过讲解离散数学的基本概念和原理,帮助学生建立起相关知识框架。
2. 例题演示:通过解析一些典型的例题,引导学生掌握离散数学的基本方法和技巧。
3. 小组讨论:组织学生进行小组讨论,让学生在合作中研究、思考和解决问题。
4. 实践应用:通过实际问题的应用,让学生将离散数学的知识应用到实际情境中去。
四、教学评价
1. 每节课结束后进行小测验,检查学生对当堂课程的掌握情况。
2. 课堂参与度:评估学生在讨论和实践环节中的积极参与度。
3. 作业完成情况:评估学生对作业内容的完成情况和质量。
五、参考资料
1. 《离散数学导论》
2. 《离散数学(第2版)》
3. 《离散数学及其应用》
注:以上教案仅供参考,具体教学内容和方法可根据实际情况
进行调整。
《离散数学》-教案.doc
![《离散数学》-教案.doc](https://img.taocdn.com/s3/m/efc4abf4e45c3b3566ec8b6c.png)
为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。另外一种系统是冯·诺伊曼-伯奈斯-哥德尔集合论。 公理集合论中一个有名的猜想是连续统假设
B
A。
例如N
Z
Q R
C,但Z
N。显然对任何集合
A都有A
A。
注意:属于关系和包含关系都是两个集合之间的关系,
对于某些集合可以同时成立
这两种关系。例如
A={a,{a}}和{a},既有{a}∈A,又有{a}
A。前者把它们看成是
不同层次上的两个集合,后者把它们看成是同一层次上的两个集合,都是正确的。
定义1.1.2
集合的元素是无序的:如{1,2,3}={3,1,2}。
1.1.2集合间的关系
定义1.1.1
设A,B为集合,如果B中的每个元素都是A中的元素,则称
B是A的
子集合,简称 子集。这时也称B被A包含 ,或A包含B,记作B A。称B是A的扩集。
包含的符号化表示为:
B
A
x(x∈B→x∈A)。如果
B不被A包含,则记作
0元子集,也就是空集,只有一个:
;1元子集,即单元集:
{1}
,{2}
,{3}
;
2元子集:
{1,2}
,{1,3}
,{2,3}
;
3
元子集:
{1,2,3}
。
一般地说,对于
n元集
A,它的
0元子集有
离散数学安徽大学教案
![离散数学安徽大学教案](https://img.taocdn.com/s3/m/1ae26317ff4733687e21af45b307e87100f6f807.png)
课程名称:离散数学授课班级:XX级XX班授课教师:XX教学目标:1. 让学生掌握离散数学的基本概念、基本理论和基本方法。
2. 培养学生运用离散数学解决实际问题的能力。
3. 增强学生的逻辑思维和抽象思维能力。
教学内容:1. 离散数学的基本概念2. 图论3. 排列组合与二项式定理4. 逻辑代数与布尔函数5. 计算机算法教学重点:1. 离散数学的基本概念和理论2. 图论的基本概念和应用3. 排列组合与二项式定理的应用4. 逻辑代数与布尔函数的应用5. 计算机算法的基本思想教学难点:1. 离散数学概念的理解和应用2. 图论问题的求解3. 排列组合与二项式定理的综合应用4. 逻辑代数与布尔函数的复杂应用5. 计算机算法的复杂实现教学过程:一、导入1. 通过实际案例引入离散数学的概念,激发学生的学习兴趣。
2. 简要介绍离散数学在计算机科学、信息技术、数学等领域的应用。
二、基本概念与理论1. 讲解离散数学的基本概念,如集合、关系、函数等。
2. 讲解离散数学的基本理论,如鸽巢原理、归纳法等。
3. 通过实例讲解基本概念和理论的应用。
三、图论1. 讲解图论的基本概念,如无向图、有向图、连通图等。
2. 讲解图论的基本算法,如最短路径算法、最小生成树算法等。
3. 通过实例讲解图论在现实生活中的应用。
四、排列组合与二项式定理1. 讲解排列组合的基本概念,如排列、组合、排列数、组合数等。
2. 讲解二项式定理及其应用。
3. 通过实例讲解排列组合与二项式定理在生活中的应用。
五、逻辑代数与布尔函数1. 讲解逻辑代数的基本概念,如逻辑门、逻辑运算等。
2. 讲解布尔函数及其化简。
3. 通过实例讲解逻辑代数与布尔函数在电路设计、信息安全等领域的应用。
六、计算机算法1. 讲解计算机算法的基本思想,如贪心算法、分治算法等。
2. 通过实例讲解算法的设计与实现。
3. 讲解算法在计算机科学中的重要性。
七、总结与复习1. 总结本节课所学内容,强调重点和难点。
高三离散数学教案设计模板
![高三离散数学教案设计模板](https://img.taocdn.com/s3/m/66120829f56527d3240c844769eae009591ba20b.png)
课时:2课时教学目标:1. 理解离散数学的基本概念和性质。
2. 掌握图论的基本术语和基本概念,如顶点、边、路径、回路等。
3. 学会使用图表示实际问题,并能进行简单的图论分析。
4. 培养学生的逻辑思维能力和解决实际问题的能力。
教学内容:1. 离散数学的基本概念2. 图论的基本术语和概念3. 图的表示和图论分析教学过程:第一课时一、导入1. 引导学生回顾高中数学中的集合、逻辑等基本概念。
2. 提出离散数学在计算机科学、信息技术等领域的重要应用。
二、新课内容1. 离散数学的基本概念- 介绍离散数学的定义、研究内容和特点。
- 讲解离散结构的基本概念,如集合、图、树等。
2. 图论的基本术语和概念- 介绍图论的基本术语,如顶点、边、路径、回路等。
- 讲解图的分类,如无向图、有向图、加权图等。
三、课堂练习1. 让学生绘制简单的无向图和有向图,并标明顶点和边。
2. 引导学生分析图的特点,如连通性、路径长度等。
四、小结1. 总结本节课所学内容,强调离散数学的基本概念和图论的基本术语。
2. 布置课后作业,巩固所学知识。
第二课时一、复习1. 复习上节课所学内容,检查学生对离散数学基本概念和图论基本术语的掌握情况。
二、新课内容1. 图的表示- 介绍图的表示方法,如邻接矩阵、邻接表等。
- 讲解如何使用邻接矩阵和邻接表表示图。
2. 图论分析- 介绍图论的基本算法,如最短路径算法、最小生成树算法等。
- 讲解如何应用图论算法解决实际问题。
三、课堂练习1. 让学生使用邻接矩阵和邻接表表示给定的图。
2. 引导学生应用图论算法解决实际问题,如求最短路径、最小生成树等。
四、小结1. 总结本节课所学内容,强调图的表示和图论分析的重要性。
2. 布置课后作业,巩固所学知识。
教学评价:1. 通过课堂练习和课后作业,评价学生对离散数学基本概念和图论基本术语的掌握程度。
2. 通过图论分析的实际问题解决,评价学生应用离散数学解决实际问题的能力。
备注:1. 在教学过程中,注重启发式教学,引导学生主动思考和探索。
离散数学电子教案
![离散数学电子教案](https://img.taocdn.com/s3/m/8d04483fb7360b4c2f3f6417.png)
第1章 命题逻辑
1.1.2 命题联结词
常用的逻辑联结词有五种:否定联结 词、合取联结词、析取联结词、条件联结 词和双条件联结词。 表1.1 p ¬p
0 1 定义1.1.1 设p为命题,则p的否定是一 个复合命题,记作:¬ p,读作“非p”或“p 1 0 的否定”。定义为:若P为T,则¬ p为F; 若p为F,则¬ p的真值为T。 p和¬ p的关系如表1.1所示,表1.1叫做否定联结词“¬ ” 的真值表(下同)。 联结词“¬”也可以看作逻辑运算,它是一元运算。 【例1.2】否定下列命题。 p:王强是一名大学生。
5. 双条件联结词 定义 1.1.5 设 p 和 q 均为命题,其复 表1.5 合命题 p↔q 称为双条件命题,读作: p q p↔q “p双条件q”或者“p当且仅当q”。定 义为:当且仅当 p 和 q 的真值相同时, 0 0 1 p↔q为T。 0 1 0 联结词 “ ↔ ” 的真值表如表 1.5 所示。 0 0 联结词“↔”也可以理解成逻辑运算, 1 它是二元逻辑运算。 1 1 1 双条件联结词表示的是一个充分必 要关系,与前面所述相同,也可以不必顾及其前因后果, 而只根据联结词的定义来确定其真值。 【例1.6】设p:张华是三好学生。 q:张华德、智、体全优秀。 p↔q:张华是三好学生当且仅当德、智、体全优秀。
第1章 命题逻辑
哥尼斯堡七桥问题
哈密尔顿周游世界问题 四色定理
第1章 命题逻辑
离散数学课程设置:
计算机系核心课程 信息类专业必修课程 其它类专业的重要选修课程
第1章 命题逻辑
• 离散数学的后继课程:
•
•
• •
数据结构、编译技术、 算法分析与设计、人工智能与机器人、 数据库、网络和计算机图形学……
《离散数学》电子教案
![《离散数学》电子教案](https://img.taocdn.com/s3/m/f1691f11854769eae009581b6bd97f192279bf89.png)
第一章集合论一、教学内容及要求授课学时:2教学内容1.1 集合的基本概念集合的概念及其表示;集合与集合之间的包含、真包含和相等关系的定义,数学描述及判定和证明方法;空集、全集和幂集三个特殊集合的定义、性质以及幂集的计算算法。
1.2 集合的运算集合运算的定义、性质及证明1.3 无限集可数集合和不可数集合的概念。
1.4 与集合相关的应用与集合相关的简单应用实例。
基本要求1)能正确地用枚举法或叙述法表示一个集合,会画文氏图。
2)能判定元素与集合的属于关系。
3)能利用集合与集合关系的判定与证明方法证明两个集合之间的包含、相等、和真包含的关系。
4)能熟练计算集合之间的并、交、差、补运算,掌握集合运算的定律;5)能熟练地计算P(A)。
6)理解集合的归纳法表示。
7)理解集合的对称差运算。
8)了解集合的递归指定法表示。
9)了解无限集的基本概念。
10)了解集合的简单应用。
能力培养通过课堂讲解和课后实践作业,培养学生的抽象思维和问题解决能力。
二、教学重点、难点及解决办法教学重点:集合的概念及集合间关系的证明;集合的表示方法:列举法、描述法和文氏图;集合运算及定律和幂集P(A)的计算。
教学难点:从集合与元素两个角度去分析集合;集合与集合关系的证明和无限集基数的理解。
解决办法:1)在教学过程中,为了加强学生对一个集合“双重身份”的理解,可以通过实例教学法,让学生具体体会一个集合的“双重身份”带来的问题及解决办法;2)对于新概念—幂集,让学生编程实现求一个集合的幂集,从而加深对幂集的理解。
初步建立学生的发散思维能力以及实际动手编写程序的能力。
三、教学设计从集合伦论的创始人康托尔到集合论的最终完备,让学生明白科学研究的道路是坎坷的,但为全人类做出自己的贡献是有价值和意义的,从而要树立为科学献身的精神和爱国主义情怀。
从集合的定义入手,结合高中阶段对集合的认识,指出当时定义存在的不足,提出新的定义方法;重点介绍大学阶段学习集合的主要意义和内容,关注重点概念的理解;介绍属于关系与包含关系之间的区别与联系,特别是一个集合“双重身份”的理解;强调集合的基本运算,特别是幂集的计算;集合与集合包含、真包含和相等关系的数学描述及相应的证明方法。
离散数学教学设计方案
![离散数学教学设计方案](https://img.taocdn.com/s3/m/0975a62d7ed5360cba1aa8114431b90d6d858961.png)
一、教学目标1. 知识目标:(1)使学生掌握离散数学的基本概念、基本原理和基本方法;(2)培养学生运用离散数学知识解决实际问题的能力;(3)提高学生的逻辑思维能力和抽象思维能力。
2. 能力目标:(1)培养学生的数学建模能力,使其能够将实际问题转化为数学模型;(2)提高学生的编程能力,使其能够运用所学知识进行程序设计;(3)增强学生的团队合作意识,使其能够在团队项目中发挥积极作用。
3. 情感目标:(1)激发学生对离散数学的兴趣,使其热爱数学;(2)培养学生严谨、求实的科学态度;(3)提高学生的自主学习能力和终身学习能力。
二、教学内容1. 离散数学的基本概念:集合、关系、函数、图论等;2. 离散数学的基本原理:逻辑推理、归纳推理、演绎推理等;3. 离散数学的基本方法:算法设计、程序设计、数学建模等;4. 离散数学在各领域的应用:计算机科学、信息技术、经济学、管理学等。
三、教学策略1. 采用启发式教学,引导学生主动探究,培养学生的自主学习能力;2. 结合实际问题,运用离散数学知识解决实际问题,提高学生的应用能力;3. 采用案例教学,让学生在具体案例中掌握离散数学知识;4. 开展小组讨论,培养学生的团队合作意识和沟通能力;5. 运用多媒体教学,丰富教学内容,提高教学效果。
四、教学过程1. 导入新课:通过提问、讨论等方式,激发学生的学习兴趣,引导学生进入学习状态;2. 讲授新课:讲解离散数学的基本概念、基本原理和基本方法,结合实际案例进行分析;3. 练习巩固:布置课后作业,让学生巩固所学知识;4. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和沟通能力;5. 课堂小结:总结本节课所学内容,回顾重点、难点,帮助学生梳理知识体系;6. 课后辅导:针对学生在学习过程中遇到的问题,进行个别辅导。
五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性,评价学生的出勤情况;2. 作业完成情况:检查学生课后作业的完成质量,评价学生的知识掌握程度;3. 小组讨论表现:评价学生在小组讨论中的表现,包括发言质量、团队合作能力等;4. 期末考试:通过考试评价学生对离散数学知识的掌握程度和综合应用能力。
离散数学教案
![离散数学教案](https://img.taocdn.com/s3/m/081f7d9177a20029bd64783e0912a21614797fb0.png)
离散数学教案一、教学目标通过本节课的学习,学生能够:1. 理解离散数学的基本概念和基础知识;2. 掌握离散数学中常用的逻辑、集合和函数等概念及其应用;3. 能够运用离散数学的方法解决实际问题。
二、教学内容1. 离散数学的概述- 离散数学的定义和特点- 离散数学在计算机科学、信息技术等领域的应用2. 逻辑与证明- 命题逻辑的基本概念- 命题逻辑的运算与推理规则- 数理逻辑的基本概念- 数理逻辑的运算与推理规则- 证明方法与常用证明技巧3. 集合与图论- 集合的基本概念- 集合的运算与关系- 图的基本概念和性质- 图的表示方法与应用4. 函数与关系- 函数的定义与性质- 函数的运算与特性- 逆函数与复合函数- 关系与关系矩阵5. 组合数学- 排列与组合的基本概念- 排列与组合的计算方法- 组合数学在密码学和编码中的应用三、教学过程1. 教师引入通过引入一个实际问题,介绍离散数学在解决问题中的重要性和应用场景。
2. 知识讲解依次讲解离散数学的概述、逻辑与证明、集合与图论、函数与关系以及组合数学等知识点,结合具体例子进行说明和展示,引导学生理解和掌握相关概念和方法。
3. 思维拓展训练给学生提供一些离散数学相关的思维拓展训练题,鼓励学生独立思考和解决问题,培养其离散数学思维能力。
4. 实践应用结合实际案例,让学生运用所学的离散数学知识,分析和解决实际问题,锻炼学生的应用能力和实践能力。
5. 总结归纳教师对本节课的内容进行总结和归纳,提醒学生重点和难点,巩固学生对离散数学的理解和掌握。
四、教学资源1. 教材:离散数学教材、相关参考书2. 多媒体教具:电脑、投影仪3. 练习题:离散数学练习题集五、教学评价1. 完成课堂练习和作业,检验学生对于离散数学知识的掌握情况;2. 参与思维拓展训练和实践应用活动,评估学生的思维能力和应用能力;3. 课堂表现和课后反馈,了解学生对于教学内容的理解和反馈,及时调整教学方法和策略。
离散数学课程设计
![离散数学课程设计](https://img.taocdn.com/s3/m/b4f0da0cac02de80d4d8d15abe23482fb5da0247.png)
离散数学课程设计一、教学目标本章的教学目标是让学生掌握离散数学的基本概念、原理和方法,提高他们的问题解决能力,培养他们的逻辑思维和抽象思维能力。
具体来说,知识目标包括:理解离散数学的基本概念,如集合、图论、组合数学等;掌握离散数学的基本原理,如逻辑推理、证明方法等;熟悉离散数学的基本方法,如算法设计、程序实现等。
技能目标包括:能够运用离散数学的知识解决实际问题;能够进行逻辑推理和证明;能够设计和实现简单的算法。
情感态度价值观目标包括:培养学生的团队合作精神,提高他们的创新意识和实践能力。
二、教学内容本章的教学内容主要包括集合、图论、组合数学三个部分。
首先,介绍集合的基本概念和运算,如集合的定义、表示、交集、并集、补集等。
然后,引入图论的基本概念,如图的定义、表示、连通性、路径和圈等。
接着,讲解组合数学的基本原理,如排列组合、计数原理、鸽巢原理等。
最后,结合实例介绍如何运用离散数学的知识解决实际问题。
三、教学方法为了达到本章的教学目标,将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
首先,通过讲授法向学生传授离散数学的基本概念和原理。
然后,通过讨论法引导学生进行思考和交流,提高他们的逻辑推理和证明能力。
接着,通过案例分析法让学生了解离散数学在实际问题中的应用。
最后,通过实验法让学生动手设计和实现简单的算法,培养他们的实践能力。
四、教学资源为了支持本章的教学内容和教学方法的实施,将选择和准备适当的教学资源。
教材方面,选择一本权威的离散数学教材,如《离散数学及其应用》等。
参考书方面,推荐学生阅读一些经典的离散数学著作,如《离散数学基础》等。
多媒体资料方面,制作精美的PPT课件,提供相关的视频讲座和在线习题等。
实验设备方面,确保学生能够 access to a computer实验室,以便进行算法设计和实验操作。
五、教学评估本章的教学评估将采用多种方式,以全面、客观地评估学生的学习成果。
平时表现方面,将通过观察学生的课堂表现、参与讨论的情况等来评估他们的学习态度和理解程度。
《离散》教案完美版
![《离散》教案完美版](https://img.taocdn.com/s3/m/70aad7251fd9ad51f01dc281e53a580216fc508e.png)
《离散》教案完美版一、教学目标- 了解离散数学的基本概念和方法。
- 掌握离散数学在计算机科学、数学、逻辑等领域的应用。
- 培养离散思维和逻辑分析问题的能力。
- 提高学生的数学推理和证明能力。
- 培养学生的合作与沟通能力。
二、教学内容1. 离散数学基础- 集合与命题逻辑- 关系与图论- 函数与计数原理- 离散数学领域的经典问题2. 离散数学的应用- 离散数学在计算机科学中的应用- 离散数学在数学领域的应用- 离散数学在逻辑学中的应用3. 数学推理和证明技巧- 数学推理的基本原理- 基本的证明技巧- 解决离散数学问题的策略和方法三、教学方法1. 讲授法- 结合实例和案例进行讲解,引导学生理解离散数学的基本概念和方法。
- 通过解析经典问题,培养学生的离散思维能力和问题分析能力。
2. 讨论与合作- 组织小组讨论,在小组内合作解决问题,培养学生的合作与沟通能力。
- 鼓励学生提出自己的见解和思考,促进思维的多样性和创新。
3. 实践与应用- 利用计算机模拟和实验等方式,将离散数学应用于实际问题中,提升学生的实践能力。
- 组织实践项目,让学生在实际项目中应用离散数学知识,培养解决实际问题的能力。
四、教学评估1. 日常表现评估- 课堂参与和表现- 课后作业完成情况- 小组讨论参与情况2. 考试评估- 期中考试- 期末考试3. 实践评估- 实践项目报告- 实践项目表现和展示五、教学资源- 课本:《离散数学导论》- 电子资源:相关离散数学课程视频和研究资料- 计算机实验室:进行离散数学的实践项目六、教学反思与改进- 结合学生的实际情况,适时调整教学方法和内容,以提高学生的研究兴趣和研究效果。
- 加强与其他相关教师的合作,共同提升离散数学教学的质量和水平。
七、参考文献- Rosen, K. H. (2020). Discrete Mathematics and Its Applications. McGraw-Hill Education.。
大学二年级离散数学教学案
![大学二年级离散数学教学案](https://img.taocdn.com/s3/m/b2de3c880408763231126edb6f1aff00bed570fe.png)
大学二年级离散数学教学案第一部分:绪论离散数学是计算机科学与技术专业的重要基础课程之一,对于学生培养抽象思维、逻辑思维和解决实际问题的能力具有重要作用。
本教学案旨在帮助大学二年级的学生更好地理解和掌握离散数学的基本概念、理论和方法,培养他们的数学思维能力和运用数学解决问题的能力。
第二部分:教学目标1. 理解离散数学的基本概念,如集合、关系、函数等,并能正确运用这些概念进行问题分析和证明。
2. 掌握离散数学的基本理论,包括图论、逻辑、代数系统等,并能应用这些理论解决实际问题。
3. 培养学生的抽象思维和逻辑思维能力,提高他们的分析问题和解决问题的能力。
4. 培养学生的团队合作精神和实践能力,通过小组讨论、课堂演练等方式提高学生的合作与沟通能力。
第三部分:教学内容和方法1. 集合论1.1 集合的基本概念与运算教学内容:集合的定义、元素的判定、集合的运算。
教学方法:讲解概念,举例说明,进行练习,引导学生思考与讨论。
1.2 集合的表示方法与应用教学内容:集合的表示方法(列表法、描述法、集合生成式),集合在实际问题中的应用。
教学方法:举例说明,进行实际问题分析,引导学生运用集合解决问题。
2. 关系与函数2.1 关系的定义与分类教学内容:关系的定义,等价关系、偏序关系和全序关系的性质与判定。
教学方法:讲解概念,举例说明,进行实际问题分析,引导学生思考与讨论。
2.2 函数与映射教学内容:函数的定义、性质与运算,映射的概念与分类。
教学方法:讲解概念,进行实际问题分析,举例说明,引导学生运用函数解决问题。
3. 图论3.1 图的基本概念与表示方法教学内容:图的定义,顶点和边的基本概念,图的表示方法。
教学方法:讲解概念,进行实际问题分析,举例说明,引导学生思考与讨论。
3.2 图的遍历与连通性教学内容:图的遍历算法,连通图和强连通图的性质与判定。
教学方法:讲解算法原理,进行实际问题分析,进行课堂演练,引导学生思考与讨论。
大学离散数学教案模板范文
![大学离散数学教案模板范文](https://img.taocdn.com/s3/m/16bb82813086bceb19e8b8f67c1cfad6195fe984.png)
课程名称:离散数学授课班级:XX级XX班授课教师:XXX授课时间:第X周星期X 第X节教学目标:1. 知识目标:使学生掌握图的基本概念、图的表示方法、图的遍历算法以及最小生成树的概念。
2. 能力目标:培养学生运用图论解决实际问题的能力,提高逻辑思维和抽象思维能力。
3. 情感目标:激发学生对离散数学的兴趣,培养严谨的学术态度。
教学内容:1. 图的基本概念2. 图的表示方法3. 图的遍历算法4. 最小生成树教学重点:1. 图的基本概念和图的表示方法2. 图的遍历算法3. 最小生成树的概念和构造方法教学难点:1. 图的遍历算法的理解和应用2. 最小生成树的构造方法教学过程:一、导入新课1. 回顾上节课的内容,引导学生回顾图论的基本概念。
2. 引入本节课的主题:图论基础。
二、讲授新课1. 图的基本概念- 介绍图的定义、图的种类(无向图、有向图)、图的性质(连通性、度、路径、圈等)。
2. 图的表示方法- 介绍邻接矩阵、邻接表、边列表等图的表示方法,并举例说明。
3. 图的遍历算法- 介绍深度优先搜索(DFS)和广度优先搜索(BFS)算法,并给出算法的基本思想和步骤。
4. 最小生成树- 介绍最小生成树的概念和构造方法(普里姆算法、克鲁斯卡尔算法)。
三、课堂练习1. 让学生完成课后习题,巩固所学知识。
2. 教师挑选几道典型题目进行讲解,加深学生对知识的理解。
四、课堂小结1. 回顾本节课所学内容,强调重点和难点。
2. 布置课后作业,巩固所学知识。
五、课后作业1. 完成课后习题,包括选择题、填空题、计算题和证明题。
2. 查阅相关资料,了解图论在实际生活中的应用。
教学反思:本节课通过讲解图论基础,使学生掌握了图的基本概念、图的表示方法、图的遍历算法以及最小生成树的概念。
在教学过程中,教师应注重以下几点:1. 注重理论与实践相结合,引导学生运用所学知识解决实际问题。
2. 鼓励学生积极思考,培养学生的逻辑思维和抽象思维能力。
离散数学教案
![离散数学教案](https://img.taocdn.com/s3/m/fe842f9677a20029bd64783e0912a21614797f18.png)
离散数学教案一、教学目标通过本节课的学习,学生将能够:1. 了解离散数学的基本概念和重要性;2. 掌握离散数学中的基本运算规则;3. 理解离散数学在计算机科学和信息技术中的应用。
二、教学内容1. 离散数学的基本概念a. 离散数学的定义和特点b. 与连续数学的区别与联系2. 离散数学中的基本运算规则a. 集合的定义和运算b. 逻辑运算c. 排列与组合3. 离散数学的应用a. 离散数学在计算机科学中的重要性和应用领域b. 离散数学在信息技术中的应用案例分析三、教学过程1. 导入在课堂开始前,通过提问或引入一些相关问题的方式,引起学生的兴趣和思考离散数学的应用场景。
2. 概念介绍和讲解逐步介绍离散数学的定义、离散数学与连续数学的区别,以及离散数学在计算机科学和信息技术中的重要性。
3. 基本运算规则的学习通过示例和练习,教授集合的定义、集合的运算、逻辑运算、排列与组合等基本运算规则,并着重强调它们在离散数学中的应用。
4. 应用案例分析结合实际案例,对离散数学在计算机科学和信息技术中的应用进行分析和讨论。
可以使用图表、演示等形式,提高学生对离散数学应用的理解和实际运用能力。
5. 总结与扩展对本节课的内容进行总结,强调离散数学在计算机科学和信息技术中的重要性,并提供相关扩展资料供学生深入学习和研究。
四、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,包括问题回答和举手提问等。
2. 练习和作业:布置相关的练习和作业,检验学生对离散数学的理解和应用能力。
3. 学习笔记:鼓励学生做好课堂笔记,评价学生对离散数学知识的整理和梳理能力。
五、教学资源1. PowerPoint演示文稿:包含离散数学的基本概念、基本运算规则和应用案例。
2. 练习和作业册:提供相关练习和作业,让学生巩固所学知识。
注意:以上教案仅为示例,具体的教学流程和内容可根据实际情况进行调整和修改。
祝您教学顺利!。
高三离散数学教案模板范文
![高三离散数学教案模板范文](https://img.taocdn.com/s3/m/a60c68d7e43a580216fc700abb68a98271feac39.png)
教学目标:1. 理解离散数学的基本概念和基本原理。
2. 掌握基本的离散数学工具和方法,如逻辑推理、集合论、图论等。
3. 培养学生的逻辑思维能力和问题解决能力。
教学重点:1. 离散数学的基本概念和原理。
2. 逻辑推理、集合论、图论等基本工具的应用。
教学难点:1. 复杂的逻辑推理和证明。
2. 图论中的复杂问题求解。
教学准备:1. 教材及教学辅助材料。
2. 多媒体教学设备。
3. 学生练习题。
教学过程:一、导入1. 复习上节课所学内容,如集合论的基本概念。
2. 提出本节课要学习的内容:逻辑推理、图论等。
二、新课讲解1. 逻辑推理a. 介绍逻辑推理的基本概念,如命题、逻辑连接词等。
b. 讲解命题逻辑的基本规则,如等价式、蕴含式等。
c. 通过实例讲解如何运用逻辑推理解决问题。
2. 集合论a. 介绍集合论的基本概念,如集合、子集、笛卡尔积等。
b. 讲解集合论的基本运算,如并集、交集、补集等。
c. 通过实例讲解如何运用集合论解决实际问题。
3. 图论a. 介绍图论的基本概念,如图、顶点、边等。
b. 讲解图论的基本定理,如欧拉公式、哈密顿回路等。
c. 通过实例讲解如何运用图论解决实际问题。
三、课堂练习1. 让学生进行课堂练习,巩固所学知识。
2. 教师对学生的练习进行点评和讲解。
四、总结与拓展1. 总结本节课所学内容,强调重点和难点。
2. 提出拓展问题,引导学生进行深入思考。
五、课后作业1. 布置课后作业,让学生巩固所学知识。
2. 作业内容:练习题、思考题等。
教学反思:1. 本节课的教学目标是否达成?2. 学生对所学内容的掌握程度如何?3. 教学过程中是否存在难点,如何解决?4. 教学方法是否合理,是否需要改进?教学评价:1. 学生对离散数学的兴趣是否提高?2. 学生在逻辑思维和问题解决能力方面是否有所提高?3. 学生对课后作业的完成情况如何?注意事项:1. 教师在讲解过程中要注重逻辑性和条理性。
2. 结合实例讲解,让学生更好地理解抽象概念。
离散课程设计模板
![离散课程设计模板](https://img.taocdn.com/s3/m/4657d66cef06eff9aef8941ea76e58fafab045bd.png)
离散课程设计模板一、教学目标本章节的教学目标是让学生掌握离散数学的基本概念、原理和方法,具备运用离散数学分析和解决实际问题的能力。
具体包括以下三个方面的目标:1.知识目标:学生能理解并掌握离散数学的基本概念,如集合、图论、逻辑、组合等;了解离散数学在计算机科学和其他领域的应用;2.技能目标:学生会运用离散数学的基本原理和方法分析、解决实际问题,具备一定的算法设计和分析能力;3.情感态度价值观目标:培养学生对离散数学的兴趣,增强学生自主学习、合作交流的能力,培养学生的创新思维和科学精神。
二、教学内容本章节的教学内容主要包括离散数学的基本概念、原理和方法。
具体包括以下几个方面的内容:1.集合论:集合的基本概念、集合的运算、集合的表示方法等;2.图论:图的基本概念、图的表示方法、图的算法等;3.逻辑:命题逻辑、谓词逻辑、推理与证明等;4.组合:组合的基本概念、组合的运算、组合的计数原理等;5.离散数学在计算机科学中的应用:算法设计与分析、编程实践等。
三、教学方法为了实现本章节的教学目标,我们将采用以下几种教学方法:1.讲授法:通过教师的讲解,使学生掌握离散数学的基本概念和原理;2.讨论法:引导学生分组讨论,培养学生的合作精神和交流能力;3.案例分析法:通过分析实际案例,使学生了解离散数学在计算机科学中的应用;4.实验法:安排上机实验,让学生动手实践,巩固所学知识。
四、教学资源为了支持本章节的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的离散数学教材,为学生提供系统、全面的学习材料;2.参考书:推荐一些高质量的离散数学参考书,方便学生深入学习;3.多媒体资料:制作课件、教案等多媒体资源,提高课堂教学效果;4.实验设备:准备计算机等实验设备,为学生提供实践操作的机会。
五、教学评估本章节的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
具体包括以下几个方面的评估:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性;2.作业:布置适量的作业,评估学生的知识掌握程度和应用能力;3.考试:安排期中、期末考试,以检验学生对离散数学知识的掌握情况;4.实践项目:鼓励学生参与实践项目,评估学生的实际操作能力和创新能力。
离散数学
![离散数学](https://img.taocdn.com/s3/m/d6f0021c59eef8c75fbfb396.png)
《离散数学(一)》教学教案第一部分课程总论一、课程简介课程名称:离散数学英文名称:Discrete Mathematics离散数学:离散数学是现代数学的一个重要分支,是计算机科学的核心课程。
以研究离散量的结构和相互间的关系为主要目标,其研究对象是有限个或无限个元素。
离散数学与计算机科学中的数据结构、操作系统、编译理论、算法分析、逻辑设计、系统结构、容错诊断、机器定理证明等课程紧密相关。
是一门重要的基础课程。
教学内容:数理逻辑、集合论、代数结构与布尔代数、图论和在计算机中的应用共五部分。
其中第五部分不做考试要求,不占计划内学时,可在第三学期安排讲座课讲授。
教学要求:通过该课程的学习,培养和锻炼抽象思维和缜密概括的能力,为专业基础课和专业课的学习打下坚实的理论基础。
授课总学时:4学时/周 16周=64学时二、适用对象本课程教学教案主要针对计算机科学与技术本科专业三、学习要领概念(正确):必须掌握好离散数学中大量的概念判断(准确):根据概念对事物的属性进行判断推理(可靠):根据多个判断推出一个新的判断四、离散数学与计算机的关系第一部分数理逻辑计算机是数理逻辑和电子学相结合的产物第二部分集合论集合:一种重要的数据结构关系:关系数据库的理论基础函数:所有计算机语言中不可缺少的一部分第三部分代数系统计算机编码和纠错码理论数字逻辑设计基础计算机使用的各种运算第四部分图论数据结构、操作系统、编译原理、计算机网络原理的基础五、教材及主要参考书教材:左孝凌、李为鑑、刘永才,离散数学,上海科学技术出版社,1982年9月第1版。
参考书:[1] 王元元、张桂芸,离散数学导论,科学出版社,2002[2] Kenneth H.Rosen Discrete Mathematics and Its Applications ( Fourth Edition), 机械工业出版社(华章),2001[3] 王元元、张桂芸,计算机科学中的离散结构,机械工业出版社,2004[4] Bernard Kolman , Robert C. Busby, Sharon Ross, Discrete Mathematical Structures (Fourth Edition), 高等教育出版社,2001[5] 孙吉贵杨凤杰欧阳丹彤李占山,离散数学,高等教育出版社,2002[6] 马振华,离散数学导引,清华大学出版社,1993[7] 王树禾,离散数学引论,中国科技大学出版社,2001[8] Andrew Simpon 著冯速译离散数学导学机械工业出版社2005第二部分课程内容与要求《离散数学》为计算机科学与技术专业的一门重要基础理论课。
离散数学教案范本
![离散数学教案范本](https://img.taocdn.com/s3/m/ddbc4f2d767f5acfa0c7cd0b.png)
《离散数学》教案课目:第一章命题逻辑教师:熊建英学时: 12课时Ⅰ教学提要一、教学对象(人数)学生:信息安全专业本科二年级学生50人二、教学目标(任务)各小结中知识点掌握程度(* 理解;** 基本掌握;***熟练掌握)三、教学要求(一)学生:着重知识点的学习,积极思考,参与提问。
(二)教官:严格纪律,严密组织、保持良好教学秩序,确保教学效果。
四、教官分工主讲教师1名:负责教案编写,课堂的组织教学,教学总结编写。
五、本章重点1、利用联接词构造复合命题公式2、真值表的构建3、等值演算4、复合命题公式转化为主析取范式、主合取范式的方法5、推理证明六、本章难点1、利用命题公式演算、真值表进行等值判断和公式类型判断2、利用命题公式演算、真值表转化主析取范式、主合取范式3、将现实背景下的条件约束构造为命题公式七、教学方法采用课堂教授,主要使用多媒体课件,部分内容及例题用黑板解释。
八、课时分配1.1 命题及联接词2课时;1.2 命题公式及其赋值2课时;1.3 等值式2课时;1.4 析取范式与合取范式2课时;1.5 推理理论与消解法2课时;1.6 命题逻辑应用案例2课时;九、场地器材多媒体教室十、参考书目1、杨圣洪、张英杰、陈义明:《离散数学》,科学出版社,2011年。
2、屈婉玲、耿素云、张立昂:《离散数学》,高等教育出版社,2008年。
3、屈婉玲、耿素云、张立昂:《离散数学学习指导与习题解析》,高等教育出版社,2008年。
Ⅱ教学进程1.1 命题及联接词(2课时)一、教学内容1、命题的概念表示与分类2、五种基本的联接词的逻辑关系3、复合命题的符号化4、复合命题的真值判断二、课程时间安排1、首先介绍本课程的性质,任务和教学安排,对学生明确提出教学上的要求(10分钟)2、介绍离散数学学科的发展历史(20分钟)3、命题与真值、命题的分类、简单命题符号化(15分钟)4、联结词与复合命题(35分钟)5、本次课小结(10分钟)三、教学实施(一)创设意境、导入课程(10分钟)目的体会离散数学理论在现实生活中的应用、是计算机专业多门核心课程的基础,让学生明白“离散数学”课程作用和意义。
离散数学教案
![离散数学教案](https://img.taocdn.com/s3/m/c68fb320793e0912a21614791711cc7931b778bb.png)
离散数学教案教案:离散数学概论教学目标:1.使学生了解离散数学的基本概念和方法。
2.培养学生的逻辑思维和数学推理能力。
3.帮助学生将离散数学的知识应用到实际问题中。
教学内容:1.真值逻辑与命题逻辑2.集合论与其运算3.二元关系与其属性4.递归与归纳5.图论与树论基础6.组合数学与概率论教学重难点:1.对学生来说,最难的可能是理解集合论和命题逻辑的基本概念和运算规则。
2.理解递归和归纳的思想和方法。
3.运用图论和树论的基础概念解决实际问题。
教学过程:第一课时:真值逻辑与命题逻辑(60分钟)1.真值表与命题的逻辑运算(10分钟)-介绍命题逻辑的基本概念和真值表的作用。
-教授真值表的构建方法和命题的逻辑运算规则。
2.命题逻辑的推理法则(20分钟)-介绍命题逻辑的推理法则,如合取范式、析取范式、蕴含式等。
-给出一些例子,帮助学生理解和应用这些推理法则。
3.应用实例:判断命题的真假(30分钟)-提供一些具体的例子,让学生通过构建真值表来判断命题的真假。
-引导学生思考如何通过命题逻辑的推理法则来判断复杂命题的真假。
第二课时:集合论与其运算(60分钟)1.集合的基本概念(10分钟)-介绍集合的定义和表示方法。
-引导学生通过例子理解集合的基本概念。
2.集合的运算(20分钟)-教授集合的运算,包括交集、并集、差集和补集。
-给出一些具体的例子,让学生通过集合运算来解决问题。
3.应用实例:集合的应用问题(30分钟)-提供一些实际问题,让学生通过集合的运算来解决。
-引导学生思考如何应用集合论解决实际问题。
第三课时:二元关系与其属性(60分钟)1.二元关系的定义(10分钟)-介绍二元关系的基本概念和定义。
-引导学生通过例子了解二元关系的特点。
2.二元关系的性质(20分钟)-教授二元关系的自反性、对称性和传递性等基本性质。
-给出一些具体的例子,让学生判断二元关系的性质。
3.应用实例:二元关系的应用问题(30分钟)-提供一些实际问题,让学生通过二元关系解决。
离散数学教案.docx
![离散数学教案.docx](https://img.taocdn.com/s3/m/39ac20ae28ea81c758f578a1.png)
学习目标:1.深刻理解序偶、笛卡尔积、关系、集合的划分与覆盖、等价关系、等价类、商集、相容关系、(最大)相容类、偏序关系、极大元、极小元、上(下)界、上(下)确界、最大(小)元、全序关系、良序关系等概念;2.掌握集合的交、并、差、补、对称差的运算及其运算规律;3.掌握关系的交、并、逆、复合运算、闭包运算及其性质;4.掌握关系的矩阵表示和关系图;5.深刻理解关系的自反性、反自反性、对称性、反对称性和传递性,掌握其判别方法;6.掌握集合的覆盖与划分的联系与区别;7.掌握偏序关系的判别及其哈斯图的画法;会求偏序集中给定集合的极大元、极小元、上(下)界、上(下)确界、最大(小)元。
主要内容:1.集合的基本概念及其运算2.序偶与笛卡尔积3.关系及其表示4.关系的性质及其判定方法5.复合关系和逆关系6.关系的闭包运算7.等价关系与相容关系8.偏序关系重点:1.关系的性质及其判别;2.关系的复合运算及其性质;3.等价关系与等价类、等价关系与集合的划分的联系;4.偏序关系判别及其哈斯图的画法、偏序集中特异位置元素的理解。
难点:1.关系的传递性及其判别;2.等价关系的特性;3.偏序关系的哈斯图的画法;偏序集中特异位置元素的求法。
教学手段:通过多个实例的精讲帮助同学理解重点和难点的内容,并通过大量的练习使同学们巩固和掌握关系的性质及其判别、关系的复合运算及其性质、等价关系的特性、偏序关系的哈斯图的画法及偏序集中特异位置元素的求法。
习题:习题3.1:4,6;习题 3.2:3(8),4(12),6(m );习题 3.4:1 (2)、(4),3;习题3.5:1,4;习题3.6:2,5,6;习题3.7:2,5,6;习题3.8:1(1)-(6);习题3.9:3(2)、(4),4(3);习题3.10:1 ,4,5。
3.1 集合的基本概念集合(set)(或称为集)是数学中的一个最基本的概念。
所谓集合,就是指具有共同性质的或适合一定条件的事物的全体,组成集合的这些“事物”称为集合的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案课程名称类别任课教师授课对象基本教材和主要参考资料教学目的要求教学重点难点离散数学课程编号总计学分 4.5学时: 72讲课必修课(√ )选修课()理论课(√ )实验课()学时: 72实验学时:刘光辉职称讲师上机学时:专业班级:信息科学 0501、 0502、 0503共 3 个班序号教材名称作者出版社出版时间1离散数学孙吉贵等高等教育出版社2002 年2离散数学王兵山等国防科技大学出社2001 年3离散数学(修订版)耿素云高等教育出版社2004 年屈婉玲本课程共分为四个部分,分别是数理逻辑、集合论、代数系统、图论。
在教学过程中除讲清楚各部分的基本内容外,还应使学生在以下几方面得到培养和训练。
1.有效地掌握该门课程中的所有概念。
通过讲课和布置一定数量的习题使学生能够使用所学的概念对许多问题作出正确的判断。
2.通过课程中许多定理的证明过程复习概念,了解证明的思路,学会证明的方法,并使学生掌握定理的内容和结果。
3.通过介绍各种做题的方法,启发学生独立思维的能力。
创造性的提出自己解决问题的方法,提高学生解决问题的能力。
4.通过该门课程的学习使学生掌握逻辑思维和逻辑推理的能力,培养学生正规的逻辑思维方式。
教学重点:1.数理逻辑:等价演算,推理理论2.集合论:集合恒等式,关系运算,关系性质,等价关系,偏序关系3.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群4.图论:图的基本概念,图的矩阵,根树,平面图的概念与性质教学难点:一阶逻辑推理,关系的运算,偏序关系,陪集,置换群,根树的应用,平面图的性质授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第二章命题逻辑基本概念 2.2命题公式及其赋值教学目的、要求:1.理解命题公式的概念2.掌握基本复合命题及复合命题符号化3.掌握公式真值表的构造,掌握公式类型的判断4.深刻理解等值式的定义,知道公式之间的等值关系具有自反性、对称性、传递性。
5.牢记基本等值式的名称及它们的内容,掌握公式的等值演算教学重点及难点:教学重点:复合命题的符号化; 构造公式的真值表,并根据真值表求公式的成真赋值、成假赋值 ; 公式的分类,根据真值表判断公式的类型 ; 等值式 ; 等值演算教学难点:复合命题的符号化教学基本内容一、命题公式、翻译1 .合式公式的定义、合式公式的层次 ;2 .命题的翻译二、真值表1 、赋值 ;2 、真值表的概念以及构造方法 ; 3、命题公式的成真赋值、成假赋值三、公式分类1 .公式的类型 ;2 .根据真值表判断公式的类型四、等值式1.等值式的概念 ; 2 .基本的等值式模式 ;3 .等值演算方法及手段1.教学过程,坚持吸收国内外最新研究成果,相互补充综合利用特色材料教学。
2.将课堂教学、网上自主学习、课后实践教学融入一体的立体化教学体系 3.传统教学方式与现代教学手段相结合作业和思考题:P39:3 , P41:1,2 ,教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第二章命题逻辑基本概念 2.1命题与联结词教学目的、要求:1.分清简单命题(既原子命题)与复合命题2.深刻理解 5 种常用联结词的涵义,每种联结词的真值3.分清“相容或”与“排斥或”教学重点及难点:教学重点:命题的概念;简单命题(既原子命题)与复合命题;5种常用联结词;“相容或”与“排斥或”教学难点:“相容或”与“排斥或”逻辑区别教学基本内容方法及手段0.引言:离散数学的基本内容,与其他课程的联系,可以解决的实际问题1.命题的概念,真命题,假命题,真值2.命题的判断,简单命题的符号化3.联结词:4.每个联结词表示的逻辑关系5.每个联结词的真值1.教学过程,坚持吸收国内外最新研究成果,相互补充综合利用特色材料教学。
2.将课堂教学、网上自主学习、课后实践教学融入一体的立体化教学体系 3.传统教学方式与现代教学手段相结合作业和思考题: P39:1,2 ,教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第二章命题逻辑 2.3等值式 2.4析取范式与合取范式教学目的、要求:1.了解文字、简单析取式、简单合取式、析取范式,合取范式,主析取范式与主合取范式等概念。
2.熟练掌握求主析取 ( 主合取 ) 范式的方法。
3.会用主析取范式求公式的成真赋值、成假赋值、判断公式的类型、判断两个公式是否等值。
4.掌握使用主析取范式方法解决实际问题教学重点及难点:教学重点:1.析取范式,合取范式的概念2. 求主析取 ( 主合取 ) 范式的方法3. 主析取范式求公式的成真赋值、成假赋值、判断公式的类型、判断两个公式是否等值4. 使用主析取范式方法解决实际问题教学难点: 1. 求主析取 ( 主合取 ) 范式 2. 使用主析取范式方法解决实际问题教学基本内容一、析取范式与合取范式1.文字、简单析取式、简单合取式、析取范式、合取范式等概念 ;2. 析取范式和合取范式的存在定理 ;3. 求公式的析取范式和合取范式的步骤 ;4. 公式的析取范式和合取范式的应用二、主析取范式与主合取范式1.极小项、极大项的定义,名称、下角标与成真赋值的关系,主析取范式与主合取范式的定义 ;2. 主析取范式和主合取范式的存在定理 ;3. 求主析取范式与主合取范式的方法 ;4. 用主析取范式求公式的成真赋值、成假赋值、判断公式的类型、判断两个公式是否等值 ;5. 使用主析取范式解决实际问题方法及手段1.教学过程,坚持吸收国内外最新研究成果,相互补充综合利用特色材料教学。
2.将课堂教学、网上自主学习、课后实践教学融入一体的立体化教学体系 3.传统教学方式与现代教学手段相结合作业和思考题: P47:1 ( 2,4) ,6 ,教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第二章命题逻辑 2.3联结词的完备集教学目的、要求:1.掌握扩充的联结词2.熟悉联结词完备集的概念教学重点及难点:教学重点: 1. 联结词的扩充 ;2. 联结词的完备集教学难点:联结词完备集的证明教学基本内容方法及手段一、析取范式和合取范式 1 .教学过程,坚持吸收练习国内外最新研究成果,相二、联结词的扩充和功能完全组互补充综合利用特色材料教学。
2.将课堂教学、1.与非联结词网上自主学习、课后实践2.或非联结词教学融入一体的立体化三、联结词的完备集教学体系 3.传统教学方1.联结词完备集的概念式与现代教学手段相结2.联结完备集的证明合作业和思考题: P53:3 , 4,5教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第二章命题逻辑推理理论 2.3推理的形式结构教学目的、要求:1.了解推理的基本概念2.了解推理的形式表示教学重点及难点:教学重点:教学难点:推理的形式1. 推理规则和推理定律2.证明教学基本内容方法及手段一、理的基本概念1.教学过程,坚持吸收1.推理的概念国内外最新研究成果,相互补充综合利用特色材2.推理形式结构:料教学。
2.将课堂教学、二、推理规则和定律网上自主学习、课后实践1.推理规则: P 规则, T 规则,替换规则,代入规则, CP规则教学融入一体的立体化2.推理定律教学体系 3.传统教学方式与现代教学手段相结合作业和思考题: P47: 7 , 8,教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):教学目的、要求:1.掌握推理规则和推理定律2.掌握证明有效结论的方法教学重点及难点:教学重点: 1.推理规则和推理定律;2 .证明有效结论的方法教学难点: 1.推理规则和推理定律 2.证明教学基本内容方法及手段1.教学过程,坚持吸收国内外最新研究成果,相互补充综合利用特色材料教学。
2.将课堂教学、网上自主学习、课后实践教学融入一体的立体化教学体系3.传统教学方式与现代教学手段相结合作业和思考题:教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第三章一阶逻辑基本概念 3.1 一阶逻辑命题符号化教学目的、要求:1.掌握个体词、谓词和量词的概念以及表示方法2.掌握在谓词逻辑中命题的翻译教学重点及难点:教学重点:1.个体词、谓词和量词的概念2.个体词、谓词和量词的表示方法2.谓词逻辑中命题的翻译教学难点:谓词逻辑中命题的翻译教学基本内容谓词逻辑中基本概念与表示1.个体词,谓词和命题的谓词形式2.原子谓词3.量词4.谓词逻辑的翻译方法及手段1.教学过程,坚持吸收国内外最新研究成果,相互补充综合利用特色材料教学。
2.将课堂教学、网上自主学习、课后实践教学融入一体的立体化教学体系 3.传统教学方式与现代教学手段相结合作业和思考题: P59:1,3 ,教学后记:授课时间第_____周周____ 第 ______节课次授课方式理论课√讨论课□实验课□ 习题课□其他□课时2 学时(请打√)□安排授课题目(教学章、节或主题):第三章一阶逻辑 3.2 一阶逻辑公式及解释教学目的、要求:1.掌握一阶逻辑公式的概念2.熟悉一阶逻辑的解释的组成,一阶公式在不同的解释中的不同真值情况3.了解赋值满足公式的定义,了解等同赋值的概念4.了解一阶公式的真与逻辑有效的概念教学重点及难点:教学重点:1.一阶逻辑的解释的组成2.一阶公式在不同的解释中的不同真值情况3.赋值满足公式的定义,等同赋值的概念4.一阶公式的真与逻辑有效教学难点: 1. 赋值满足公式的定义,等同赋值的概念教学基本内容一、一阶逻辑公式的解释1.一阶逻辑公式的定义1.一阶逻辑解释的定义2.赋值的概念, x- 等同赋值的定义3.赋值满足公式的定义二、真与逻辑有效1.公式在某个解释中为真的概念2.逻辑有效的定义3.逻辑有效的判定2.逻辑有效的判定方法及手段1.教学过程,坚持吸收国内外最新研究成果,相互补充综合利用特色材料教学。