数控机床几何误差及补偿方法(精)

合集下载

数控机床误差来源分析与补偿方法

数控机床误差来源分析与补偿方法

数控机床是制造业价值生成的基础,是基础制造能力构成的核心。

数控机床水平的高低一定程度上体现了制造业水平的高低。

高精度插补和动态补偿是高档数控机床需要重点开发的方向。

提高数控机床精度的方法:一是误差预防法,在设计和制造环节消除或减少可能的误差源,提高机床机械精度和动态性能,并采用良好的温度控制、隔振措施、气流扰动以及其他机床内外部环境控制手段降低误差源影响;二是误差补偿法,通过软件技术人为制造误差抵消机床原始误差。

相对而言,机械精度提高到一定程度后提升空间有限且成本高昂,且加工条件不断变化导致机床误差也会不断发生变化,必须辅以误差补偿的方法。

1 误差来源机床部件在加工制造过程中存在精度误差,装配安装过程中又会产生累积误差,使得机床最终实际几何参数和位置相对于理想几何参数和位置发生偏移,这个过程中形成的误差叫几何误差。

机床受内部热源(如切削热、摩擦热等)和外部热源(如环境温度变化、热辐射等)的影响,导致机床与标准稳态相比产生附加热变形,由此改变了各组成部分的相对位置,从而产生附加误差,此部分叫热误差。

由于机械刚性不足,机床在切削力、夹紧力、重力和惯性力等作用下产生附加几何形变,导致机床各组成部分相对位置变化而产生的误差叫力误差。

此外,还有机床震颤引起的振动误差,数控系统性能和插补算法产生的控制误差,编码器、光栅等位置检测系统的测量精度产生的检测误差以及其他外界因素干扰造成的随机误差。

其中,几何误差、热误差及力误差3项误差占据绝大部分加工误差,是影响加工精度的关键因素。

对于高速精密数控机床,由于使用电主轴技术,几何精度和刚性均较高。

加工的零件尺寸通常较小,加工过程中的负载也相对较小。

切削力引起的误差在总加工误差的比例,相对于几何误差和热误差也较小。

因此,本文主要介绍几何误差和热误差的测量和补偿。

2 误差测量与补偿方法误差补偿的类型按照补偿实时性分为非实时误差补偿和实时误差补偿。

非实时误差补偿中,误差的检测和补偿是分离的。

五轴数控机床回转中心的几何误差检测与补偿

五轴数控机床回转中心的几何误差检测与补偿

4 测量原 理
00 6 — .1 .1 00 5
O0 3 一 .0 .o Oo 3
以只考 虑直线轴联动 回转 中心与 c轴 回转 中心在 0m 1 0 30 6o O O 3 0 6。 y方向上误差 为例。如 图 2 所示 , 数控机床 、 、 y C轴 8 结 语 在 X Y平面内 , / 做大圆联动 , 通过千分表的变化来进行误 转摆台式五轴数控机床 中心不重合几何误差 ,需要 差分析。 图 3 如 所示 , y插 补 轨迹 与理 想 轨迹 之 间的误 建立误差综合模型 , 、 进行多次检测与补偿 , 才可达 到理想 差是 由于直线轴联动 回转 中心 D 与 c轴 回转中心 0在 的几何精度 , : 以提高机床加工精度 。
解决方案
工艺 , 工装 , 骥真 , 诠断 , 姬焉 , 维俺 , 改造 墨臣墨圆
数控机床进行实例研究 , 验证此方法有效 。
2 转摆 台式 五轴 数 控机 床 结构 建模 如图 1 所示 为 转摆 台
5 误 差 补 偿 参 数 算
法 描述
以只 考 虑 直 线 轴
式 五轴 数控 机 床结 构 示 联动回转中心 0 与 C 意图。 直线轴 、 、 l Z联动 轴 回转 中心 0在 、 , y
最小 , 成为了提高五轴机床联动精度的必要手段。
3 几 何误 差 检测 方 法设 计
ak cs =・ O o
() 2
6 HE D N A N I NC 3 数 控 系统 结构 参数 修正 IE H I T 50
() 1检测球头检棒长度补偿值 , 半径补偿值 ;
( ) 量 A 轴 回转 中心 与 C轴 回转 中心 在 y方 向上 2测
回 转 中 心 矢 量 位 置 由加 工 中 心 数 控 系 统 按 照 加

《2024年多轴数控机床精度建模与误差补偿方法研究》范文

《2024年多轴数控机床精度建模与误差补偿方法研究》范文

《多轴数控机床精度建模与误差补偿方法研究》篇一一、引言随着制造业的快速发展,多轴数控机床作为现代制造技术的重要组成部分,其精度和效率直接影响到产品的质量和生产效率。

因此,对多轴数控机床的精度建模与误差补偿方法进行研究,具有重要的理论价值和实践意义。

本文旨在探讨多轴数控机床的精度建模及误差补偿方法,以期为提高机床的加工精度和稳定性提供理论支持。

二、多轴数控机床精度建模多轴数控机床的精度建模主要包括几何精度建模和运动学精度建模两个方面。

几何精度建模主要关注机床各部件的几何形状、尺寸和相对位置等参数对机床整体精度的影响;运动学精度建模则主要关注机床运动过程中各轴的运动轨迹、速度和加速度等参数对加工精度的影响。

在几何精度建模方面,需要综合考虑机床的机械结构、传动系统、导轨系统等因素,建立准确的数学模型,以便分析各因素对机床精度的影响。

运动学精度建模则需要基于机床的运动学原理,建立各轴的运动方程,分析各轴在运动过程中的动态特性,以及其对加工精度的影响。

三、误差来源及分析多轴数控机床的误差来源主要包括机床本身的制造误差、装配误差、热误差、切削力引起的误差等。

这些误差会导致机床的几何精度和运动学精度下降,从而影响加工质量。

因此,需要对这些误差进行深入分析,找出其主要来源和影响因素。

四、误差补偿方法针对多轴数控机床的误差,可以采取多种补偿方法。

其中,误差预测模型法、神经网络法、模糊控制法等是较为常用的方法。

这些方法可以根据不同的误差来源和影响因素,建立相应的预测模型或补偿算法,对机床的误差进行实时补偿。

具体而言,误差预测模型法可以通过建立机床误差与各影响因素之间的数学模型,预测机床的误差值,并进行实时补偿。

神经网络法则可以利用神经网络的学习和记忆能力,对机床的误差进行学习和预测,并实现自动补偿。

模糊控制法则可以利用模糊控制理论,对机床的误差进行模糊化处理,并实现精确补偿。

五、实验研究为了验证所提出的误差补偿方法的有效性和可行性,需要进行实验研究。

数控机床误差与补偿

数控机床误差与补偿
通过控制机床内部和外部的温度,减小温度变化对机床精度 的影响。
误差补偿法
通过软件或硬件方法,对机床的热变形进行补偿,减小或消 除热误差对加工精度的影响。
04
几何误差补偿
几何误差来源与分类
01
制造误差
由于机床零部件制造精度不足导致 的误差。
热误差
由于机床运行过程中温度变化导致 的误差。
03
02
装配误差
电气误差补偿
通过调整电机的电气参数,如电 流、电压等,来减小或消除由于 电机性能差异和传动系统误差引 起的误差。
传感误差补偿
通过使用高精度的传感器来检测 机床的实际位置和姿态,并将这 些信息反馈给控制系统,以实现 误差的实时补偿。
软件补偿
数学模型补偿
通过建立机床的数学模型,并利用软件算法对模型进行优化,以减小或消除误差。这种方法需要精确的数学模型和高 效的算法支持。
感谢您的观看
THANKS
几何误差补偿方法
硬件补偿
通过改进机床零部件制造和装配精度来降低几何误差。
软件补偿
利用数控系统软件对几何误差进行补偿,如螺距误差 补偿、反向间隙补偿等。
复合补偿
结合硬件和软件补偿方法,通过优化机床结构设计和 改进控制系统实现更精确的几何误差补偿。
05
运动误差补偿
运动误差产生机理
机械传动误差
由于数控机床的机械传动系统(如丝杠、齿轮等)存在制造和装 配误差,导致运动过程中产生误差。
自适应补偿技术
总结词
自适应补偿技术是一种能够自动调整和 优化补偿参数的误差补偿方法。
VS
详细描述
传统的误差补偿方法通常需要人工设定和 调整补偿参数,操作复杂且精度不高。自 适应补偿技术能够根据加工过程中的实时 反馈信息,自动调整和优化补偿参数,实 现动态误差补偿,进一步提高数控机床的 加工精度和稳定性。

数控机床几何误差及其补偿方法

数控机床几何误差及其补偿方法

数控机床几何误差及其补偿方法汇报人:日期:contents •数控机床几何误差概述•数控机床几何误差检测技术•数控机床几何误差建模与辨识•数控机床几何误差补偿技术•数控机床几何误差补偿实例分析•总结与展望目录01数控机床几何误差概述几何误差的定义与来源机床使用过程中磨损、变形等因素。

制造和装配过程中的精度限制。

机床结构设计缺陷。

定义:几何误差是指数控机床在加工过程中,由于机床本身几何元素的形状、位置和运动误差导致加工精度降低的现象。

来源几何误差对机床加工精度的影响影响加工件的尺寸精度和形状精度。

导致表面质量下降,增加粗糙度。

降低机床的整体性能,缩短使用寿命。

几何误差补偿的意义和必要性必要性现代制造业对加工精度的要求越来越高,几何误差补偿是实现高精度加工的关键手段。

几何误差补偿有助于延长机床使用寿命,提高机床的经济效益。

随着数控机床技术的发展,机床结构越来越复杂,几何误差的影响也越来越显著,需要相应的补偿技术来应对。

意义:通过几何误差补偿,可以提高数控机床的加工精度,保证产品质量,提高生产效率,降低生产成本。

02数控机床几何误差检测技术激光干涉检测技术利用激光的干涉现象进行高精度测量,能够准确地检测数控机床的几何误差。

高精度测量非接触式测量实时动态测量激光干涉检测技术采用非接触式测量方式,避免了传统接触式测量中可能引入的附加误差。

该技术具备实时动态测量能力,能够在数控机床运行过程中进行误差检测,提高检测效率。

03激光干涉检测技术0201球杆仪检测技术经济实用相较于其他高精度检测技术,球杆仪检测技术具有较低的成本,适用于大批量数控机床的误差检测。

便于携带球杆仪体积较小,便于携带,可实现在不同机床间的快速检测。

原理简单球杆仪检测技术基于简单的机械原理,通过测量球杆仪在数控机床上的运动轨迹来推断机床的几何误差。

电容传感检测技术非接触式检测与激光干涉检测技术类似,电容传感检测技术也采用非接触式检测方式,确保测量精度不受附加误差影响。

数控机床三维空间几何误差补偿方法

数控机床三维空间几何误差补偿方法

数控机床三维空间几何误差补偿方法朱建伟;陈蔚芳;郑德星;朱赤洲【摘要】ln order to improve the machining accuracy of CNC machine tools, the CNC system interpolated data based geometric er-ror compensation method is proposed on the basis of systematic analysis of the commonly used CNC machine tool geometric error compensation method. The error compensation function is integrated into the domestic CNC system to improve its overal perform-ance. Experiments and simulation show that the CNC system interpolated data based geometric error compensation scheme can im-prove the machining precision.%为了提高数控机床的加工精度,在系统分析数控机床几何误差常用补偿方法基础上,提出了基于数控系统插补数据的几何误差补偿方法,并将误差补偿功能集成于国产数控系统中,以提高国产数控系统的综合性能。

通过实验与仿真结果表明,数控系统插补数据的几何误差补偿方案能显著提高数控机床的加工精度。

【期刊名称】《机械制造与自动化》【年(卷),期】2016(000)003【总页数】4页(P27-30)【关键词】数控机床;数控系统;误差补偿;机床精度【作者】朱建伟;陈蔚芳;郑德星;朱赤洲【作者单位】南京航空航天大学机电学院,江苏南京210016;南京航空航天大学机电学院,江苏南京210016;南京航空航天大学机电学院,江苏南京210016;南京航空航天大学机电学院,江苏南京210016【正文语种】中文【中图分类】TH161+.21随着机械制造业的不断发展,精密加工已逐渐成为现代制造业的主要趋势,误差补偿技术也因此获得了迅速发展。

浅谈数控机床几何误差的补偿方法

浅谈数控机床几何误差的补偿方法

浅谈数控机床几何误差的补偿方法【摘要】随着我国经济的快速发展和机床加工技术的迅猛进步,数控机床作为一种加工设备已经应用广泛。

在现有的技术水平上提高机床的加工精度就成了市场竞争的主要方向。

提高数控机床精度的方法一般而言主要有两种:一种是通过提高零件设计制造和零件装配的水平来消除可能产生的误差源,称为误差防止法。

该方法一方面主要受到加工母机精度的制约;另一方面零件质量的提高导致加工成本膨胀,致使该方法的使用受到一定限制。

另一种叫误差补偿法,通常通过修改机床的加工指令,对机床进行误差补偿,达到理想的运动轨迹,实现机床精度的升级。

本文就对对数控机床几何误差产生的原因作了比较详细的分析,将系统误差的补偿方法进行了归纳和总结。

并在此基础上阐述了各类误差补偿方法的应用场合,为进一步实现机床精度的升级打下基础。

【关键词】数控机床;几何误差;误差补偿关于数控机床几何误差的补偿,不但可以改进单个零件的加工精度,加强零件的质量水平,提升企业的市场竞争能力,甚至可以提高整个机械工业的加工水平,对促进科学技术进步,提高我国的科技创新实力,继而极大增强我国的综合国力都具有重大意义。

有关研究表明:几何误差和由温度引起的误差约占机床总体误差的70%,其中几何误差相对较为稳定,易于进行误差补偿。

1 几何误差产生的原因1.1 机床的原始制造误差是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。

1.2 机床的控制系统误差包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。

1.3 热变形误差由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。

1.4 切削负荷造成工艺系统变形所导致的误差包括机床、刀具、工件和夹具变形所导致的误差。

这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。

1.5 机床的振动误差在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。

数控机床空间误差补偿与应用

数控机床空间误差补偿与应用

数控机床空间误差补偿与应用摘要数控机床精度要求的不断提升,逐渐向精密加工发展,因此从对数控机床精度提升角度进行研究,分析了三轴数控机床的各个直线轴误差及三个轴线之间的空间误差关系,对几种误差补偿方法进行综合分析。

从空间误差补偿的角度研究对机床精度的提升,对空间中三个轴线之间的本身误差以及它们之间的误差进行补偿,从空间三维多角度保证机床的精度,同时也是对补偿方法的应用及验证。

关键词:误差;精度;空间误差;误差补偿引言对于数控机床这种基础制造工程技术的发展伴随而来的就是对加工精度要求逐渐由粗加工到精加工再到超精密加工的过程,在这个过程中数控机床的精度发展技术对精密以及超级精密加工尤为重要,通过减少单动环节增加联动过程的误差减小来确保精度的精密程度以及可靠运行的过程。

之所以被称为精密或者超精密加工这都跟工作母机即能达到精细精度的数控机床有着千丝万缕的关系,甚至可以说精密的数控机床决定了加工工件的精密程度等级。

在以往的精密加工过程中往往通过数控机床的装配原件的基准实现,这样的机床生产过程所需时间之长,产量低,从而影响精密技术的发展脚步。

在加工中出现的误差难以避免并消除,通过提升机床装配部件精度的方法不能一直持续进行,因为这种提升程度有限,到一定程度之后就难以进步。

自动化控制技术以及软件技术的飞跃发展,能逐步实现通过微小的进给位移消除在加工过程中产生的误差,从而实现精密加工的保证。

现代的误差补偿技术大多都是随着数控机床的控制系统而进步,不同的数控系统虽然对误差的计算方法及补偿的原理不同,但能实现的效果却是一致的,误差补偿技术的不断持续发展,从多方面补充了因机床元件到达一定程度之后对精度提升没有效果的不足。

做好误差补偿工作对机床精度提升有重要的作用,也是对提升我国工业基础的关键技术,可以减少硬件投入的资金,增强装备制造的能力的重要环节。

1 空间误差分类与定义1.1轴线误差机床X、Y、Z轴运动时,分别产生6项基本误差及三项垂直度误差。

数控机床误差实时补偿技术及应用

数控机床误差实时补偿技术及应用

数控机床误差实时补偿技术及应用数控机床误差实时补偿技术是一种通过测量和监控机床的误差,然后通过算法和控制系统来实时修正这些误差的技术。

它可以显著提高机床的加工精度和稳定性,使得加工的零件更加精确和一致。

下面将介绍数控机床误差实时补偿技术的原理、方法和应用。

数控机床误差实时补偿技术的原理是基于机床的误差源和误差特点进行建模,并通过控制系统实时调整机床的运动轨迹来补偿这些误差。

机床的误差主要包括几何误差、动态误差和热误差等。

几何误差是由机床结构、加工刀具和工件等因素引起的,例如导轨的尺寸偏差、传动装置的误差等。

动态误差是由机床运动过程中的惯性力、弹性变形等因素引起的,例如加工过程中的振动和共振等。

热误差是由于机床在工作过程中产生的热源,例如主轴的热膨胀和冷却液的温度变化等。

数控机床误差实时补偿技术的方法一般包括两个步骤:误差测量和误差补偿。

误差测量是通过传感器或测量仪器实时检测机床的误差,并将其反馈给控制系统。

常用的测量方法包括激光干涉法、电容法和光栅尺等。

误差补偿是在控制系统中根据误差测量结果进行数学建模和分析,并根据补偿算法调整控制指令,使得机床的运动轨迹达到期望的精度。

数控机床误差实时补偿技术在实际应用中具有广泛的应用领域。

首先,它可以应用于航空航天领域的高精度零件加工。

航空航天零件对精度和质量要求非常高,数控机床误差实时补偿技术可以有效提高加工精度,降低零件的尺寸偏差和表面光洁度,从而提高航空航天产品的性能和可靠性。

其次,它可以应用于汽车制造领域的模具加工。

模具制造对精度和一致性要求较高,数控机床误差实时补偿技术可以有效减少模具的尺寸和形状偏差,提高模具的加工质量和寿命。

此外,它还可以应用于医疗器械制造、光学仪器加工等领域。

总之,数控机床误差实时补偿技术是一种通过测量和监控机床的误差,并通过控制系统实时调整机床运动轨迹的技术。

它可以显著提高机床的加工精度和稳定性,广泛应用于航空航天、汽车制造、医疗器械等领域,为实现高精度和高质量的零件加工提供了重要的技术手段。

数控机床几何与热误差研究方法综述

数控机床几何与热误差研究方法综述

数控机床几何与热误差研究方法综述一、数控机床几何误差研究方法几何误差主要来源于数控机床的制造、装配、使用等环节。

在制造阶段,误差可能源于零件尺寸、形位公差、表面粗糙度等方面的偏差;在装配阶段,误差可能源于零部件之间的配合误差、安装误差等;在使用阶段,误差可能源于操作人员的技能水平、机床的维护保养等因素。

研究几何误差的来源对于提高数控机床加工精度具有重要意义。

为了准确地测量数控机床的几何误差,需要采用相应的误差检测方法。

常用的误差检测方法包括直接测量法、间接测量法和综合测量法。

直接测量法是指通过直接接触被测物体进行测量的方法,如卡尺、游标卡尺等;间接测量法是指通过测量与被测物体相关的其他物理量来推算几何误差的方法,如利用干涉仪、光栅尺等进行非接触式测量;综合测量法是指结合多种测量方法对几何误差进行综合分析的方法。

针对不同类型的几何误差,可以采取相应的误差控制方法来减小其对数控机床加工精度的影响。

对于轴向间隙误差,可以通过调整主轴箱体与轴承之间的间隙、更换高精度轴承等方式进行控制;对于圆度误差,可以通过改进刀具形状、提高切削参数等方式进行控制;对于平面度误差,可以通过优化加工工艺、提高工件表面质量等方式进行控制。

还可以采用补偿技术、自适应控制技术等方法对几何误差进行实时修正和调整。

数控机床几何误差的研究方法涉及多个学科领域,需要综合运用理论分析、实验研究和实际应用等多种手段。

通过对几何误差的研究和控制,可以有效提高数控机床的加工精度和稳定性,为现代制造业的发展提供有力支持。

1. 传统误差分析方法在数控机床几何与热误差研究中,传统误差分析方法主要包括有限元法、边界元法和接触单元法等。

这些方法主要通过对机床结构、刀具和工件的几何形状进行离散化处理,建立数学模型,然后通过求解线性方程组或非线性方程组来计算误差。

有限元法是一种将连续体分割为有限个单元,通过求解各单元上的微分方程组成的积分方程来描述整个系统的运动和变形过程的方法。

五轴数控机床几何误差的建模与补偿技术

五轴数控机床几何误差的建模与补偿技术
Ke y wo r ds:e r r o r c om p e ns a t i o n,m ul t i bo dy s ys t e m s,i d e nt i f yi ng, m u l t i — ax i s CN C ma c hi ne t o ol s
ke y t e c h ni que of c o m pe ns a t i on - i d e nt i f yi ng ge o me t r i c e r r o r pa r a me t e r s wa s de v e l op e d. The pr o c e s s s i m ul a t i o n of c u t t i ng
来 的 问题 , 因而得 到 了广泛应 用 。然而 , 设计 技 术不
能仅 依靠 物 理上 的 限制 来 提 高 精 度 , 为 了经 济 地 提 高 机床精 度 , 有必 要研 究识别 、 描 述和 补偿误 差 的技
术; 因此 , 基 于软件 技 术 的实 时误 差补 偿技 术也 获得
了广泛 的关 注l 1 训。
wo r k p i e c e t o v e r i f y t h e mo d e l i n g b a s e d o n t h e mu l t i — b o d y s y s t e m wa s r e s e a r c h e d f o r e v a l u a t i n g t h e r e s u l t s o f mo d e l i n g .
M o de l i ng a n d Co mp e ns a t i o n Te c hn i qu e f o r Ge o me t r i c Er r o r s o f Fi v e 。 a xi s CNC M a c hi ne To o l s

CNC机床加工中的加工误差分析与校正

CNC机床加工中的加工误差分析与校正

CNC机床加工中的加工误差分析与校正CNC(Computer Numerical Control)机床是利用计算机控制的自动化机床,其高精度和高效率使其在各行各业中得到广泛应用。

然而,由于加工过程中的各种因素,在机器的运行中常常会产生一些误差,影响零件的精度和质量。

因此,加工误差的分析和校正显得尤为重要。

一、加工误差的分类在CNC机床的加工过程中,加工误差可以分为系统误差和随机误差两类。

1.系统误差:系统误差是由于机床本身的结构、刀具磨损、切削力的变化等原因引起的误差。

这些误差是固定的,可以通过校正方法来减小或消除。

2.随机误差:随机误差是由于加工材料的不均匀性、温度变化、切削液的不稳定等原因引起的误差。

这些误差是随机的、不可预测的,很难完全避免,但可以通过统计学方法进行分析和控制。

二、加工误差的分析与评估为了准确评估CNC机床的加工误差,需要进行误差的分析与测量。

常用的方法有以下几种:1.刚度测试:通过在不同刀具载荷下测量机床的变形量,来评估机床的刚度,从而得到系统误差的信息。

2.几何误差测量:利用测量仪器如测角仪、千分尺等,测量机床各个部分的几何误差,如直线度、平行度等,以确定系统误差的来源。

3.工件测量:通过测量机床加工出的工件的尺寸和形状,与理论值进行对比,确定系统误差的大小和分布。

三、加工误差的校正方法根据加工误差的分析结果,可以采取以下一些校正方法来提高CNC 机床的加工精度:1.几何误差补偿:通过调整机床的机械结构,如滚珠丝杠的间隙、导轨的松紧程度等,来减小或消除系统误差。

2.温度补偿:由于温度的变化会导致机床零件的热膨胀,从而引起误差。

采用温度传感器和控制系统,可以根据实时温度变化来进行补偿。

3.刀具磨损监测与自动补偿:由于刀具的磨损会影响加工精度,因此可以通过监测刀具磨损情况,并及时进行自动补偿,以保证工件的精度。

4.工艺参数优化:通过调整切削速度、进给量等工艺参数,来减小误差的影响,以提高加工的精度。

数控加工中的误差及补偿方法分析

数控加工中的误差及补偿方法分析

数控加工中的误差及补偿方法分析摘要:数控机床现在应用十分普遍,相比普通机床,无论是生产效率还是加工精度均有了明显提升,可保证产品质量满足市场要求。

以提高数控加工精度为目的,分析各种误差产生的原因,以及寻求高精度误差补偿方法,保障数控机床可以稳定运行,维持高精度加工状态。

文章就数控加工误差类型以及补偿方法进行了简单的分析。

关键词:数控加工;高精度;误差补偿数控加工存在着精度高且柔性自动化等特点,对于复杂零件的加工优势突出,被越发广泛的应用于制造业,且取得了显著成果。

为了进一步做到高精度加工,不断减小误差,就需要在生产加工中总结各类误差的表现形式,并分析其产生的原因,寻求更有效的误差补偿方法,例如通过控制温度与振动从根源上来减少甚至消除误差,或者是应用软件工程来进行纠错等,更大程度上实现高精度数控加工。

一、数控加工误差分析1.加工误差分类数据加工生产过程中受多种因素影响而产生加工误差,一类是根据误差条件可分为静态误差、准静态误差和动态误差。

其中,静态误差即数控加工过程中准确度和误差不会因为时间影响而发生变化。

准静态误差是在给定工作环境中会缓慢的发生变化,但是该条件下会始终保持不变,例如特定工作条件下产生的准静态误差本质并不会发生变化或者是变化速度非常缓慢[1]。

另一类则是根据误差来源可分为位置误差与非位置误差。

位置误差即数控加工生产过程中,随着零部件的运动,产生的运动轨迹以及位置与理想条件有着一定偏差,同时期望运动轨迹以及位置与指令相差较大,如几何误差。

数控机床不同零件与零件在生产运动过程中因外界条件的干扰,零部件的实际运行轨迹以及位置与理想条件偏差较大,包括力误差、热误差以及刀具磨损误差等。

2.误差产生原因数控加工生产中因各因素的影响不可避免的会有误差形成,促使切削工艺中工件与刀具的位置发生变化,影响零部件加工精度。

一般数控加工误差产生原因可从加工方法误差与调安误差两个方面分析,只有当误差总和低于允许差值时,才能够做到高精度数控加工。

基于球杆仪的数控车床几何误差检测和补偿

基于球杆仪的数控车床几何误差检测和补偿

基于球杆仪的数控车床几何误差检测和补偿王家兴;郭宏伟;赵峰;马晓波;孙名佳【摘要】In this paper Renishaw QC10 double-ball-bar was adopted which can conveniently and quickly measure roundness error of NC lathe while processing the measured data by software. Then error terms such as reversal spikes, backlash, linearity, servo mismatch and proportion mismatch were separated. It can also analyze the percentage taken by various of error terms. Error compensation was realized by optimization of electrical parameters based on accurate mastering of error diagnosis table of double-ball-bar for NC lathe. The results of compensation experiment show that this method of error recognition and compensation is effective.%采用Renishaw的QC10球杆仪可以方便快捷地测量出数控车床的圆度误差,同时用软件对测量数据进行处理,从中分离出反向越冲、反向间隙、直线度、伺服不匹配和比例不匹配等误差项,并可以分析出各种误差项所占的百分比.在精确掌握数控车床球杆仪误差诊断表的基础上,采用电气参数优化实现误差补偿,补偿实验结果证明该误差识别与补偿方法省时有效.【期刊名称】《制造技术与机床》【年(卷),期】2011(000)010【总页数】5页(P132-135,139)【关键词】数控车床;球杆仪;几何误差测试;误差补偿【作者】王家兴;郭宏伟;赵峰;马晓波;孙名佳【作者单位】沈阳第一机床厂,辽宁沈阳110142;沈阳机床(集团)有限责任公司国家重点实验室,辽宁沈阳110142;沈阳机床(集团)有限责任公司国家重点实验室,辽宁沈阳110142;沈阳机床(集团)有限责任公司国家重点实验室,辽宁沈阳110142;沈阳机床(集团)有限责任公司国家重点实验室,辽宁沈阳110142【正文语种】中文【中图分类】TG5现代机械制造技术正朝着高效率、高质量、高精度、高集成和高智能方向发展。

浅析数控系统位置误差及参数补偿

浅析数控系统位置误差及参数补偿

OCCUPATION2011 1110制造业是否发达,决定着一个国家的经济技术发达与否。

制造业的每次飞跃,都会给一个社会带来比较深远的影响。

数控机床是先进制造技术的基础设备,当今社会的飞速发展,对数控机床的精确度和效率也提出了越来越高的要求。

也正是由于时代的发展,生产过程自动化的快速发展和精密加工的广泛应用,对数控机床的精确度提出了越来越高的要求。

一、误差产生的原因动平台沿直线(或圆)向既定目标位置点趋近定位,总会有定位误差存在。

定位误差的产生,主要有以下四点原因:1.系统误差它主要是指在一定行程长度或整个行程中的周期性误差。

系统误差产生的原因,主要是机床位移系统的基本元件丝杠、螺母、轴承等,或测量系统的基本元件,如刻度尺等误差。

2.随机误差它主要是表示机床移动部件反复移向各个目标位置点时定位的偏差问题,是一个统计数学概念,描述实际到达位置平均值的一定概率程度的预期偏差。

3.反向定位的失动量它指的是在向某一位置作正向和负向定位后,两个静止位置之差。

其产生的原因,一是驱动电机、传动元件和机床执行原件间存在着间隙;二是传动系统的柔度和导轨摩擦特性的影响。

4.最小可能移动量这是机床移动执行件实际能够给出的最小位移量值,理论上应该等于数控系统的脉冲当量,但由于导轨摩擦特性、传动系统柔度、工作台及其上面放置工件的质量所引起的惯性以及润滑条件等的综合作用,它往往大于脉冲当量值。

二、如何界定位置误差在对数控系统的误差元素进行检测时,有两种方式,即:直接检测和间接估计。

直接测量误差元素是在机床不同的位置和温度分布条件下,使用激光干涉仪或光学方法来测量误差元素。

间接估计误差是用可伸缩式球棒等测量仪器测量机床上工件表面形状误差或最终误差,而后基于运动学模型估计各误差分量。

两者相对而言,直接测量误差分量更精确、简单明了。

简介估计误差分量只是提供了一种快速和有效估计机床误差分量的方法。

此外,还有一种方法是将工件尺寸和形状误差的测量值用于估计机床误差。

机床数控系统的校准与调试技术

机床数控系统的校准与调试技术

机床数控系统的校准与调试技术机床数控系统在现代工业生产中起着至关重要的作用,它能够实现自动化、精确控制和高效生产。

然而,为了保证机床数控系统的正常运行和达到预期的精度要求,校准与调试工作显得尤为重要。

本文将介绍机床数控系统的校准和调试技术,以帮助工程师更好地进行相关工作。

一、机床数控系统的校准技术1. 几何误差校准机床数控系统的几何误差主要包括直线插补误差、圆弧插补误差和坐标系误差。

几何误差校准的目的是通过调整机床各个轴线的运动参数,使得实际运动轨迹与理论轨迹尽量一致。

首先,需要进行轴线直线度校准。

通过测量轴线的直线度误差,并调整相应的参考点,可以使得轴线的运动更加精确。

其次,圆弧插补误差校准是为了保证机床的圆弧插补运动能够实现高精度的运动轨迹。

最后,坐标系误差校准是为了消除坐标系变换带来的误差,需要通过仔细测量和调整机床的坐标系。

2. 系统刚度的校准机床数控系统的刚度是指在加工中所受外力作用下,机床各个轴线的变形程度。

刚度的大小直接影响着加工精度和工件质量。

因此,刚度校准是非常重要的一个环节。

在刚度校准过程中,一般会通过力传感器等设备来测量机床各个轴线的变形情况。

然后,根据测得的数据进行分析,找出影响刚度的关键因素,并进行调整和优化。

校准后的机床能够更好地抵抗外力的影响,从而提高加工精度和稳定性。

3. 系统精度补偿机床数控系统的精度补偿是通过软件或硬件方式来纠正机床在加工过程中产生的误差。

根据加工要求和测量结果,可以将误差信息输入到数控系统中,系统将自动进行误差补偿,从而提高加工精度。

精度补偿主要包括长度补偿、半径补偿和磨损补偿。

长度补偿是根据测量结果对轴向误差进行修正,以提高工件的几何尺寸精度。

半径补偿是对圆弧插补误差进行修正,保证加工出的圆弧轨迹准确无误。

磨损补偿是通过监测关键部件的磨损程度,及时进行调整和更换,以保证系统的可靠性和稳定性。

二、机床数控系统的调试技术1. 系统参数的调试机床数控系统的参数调试是指对系统的各项参数进行合理设置和调整,以保证系统能够稳定工作和达到预期的性能要求。

数控机床几何误差及其补偿方法的

数控机床几何误差及其补偿方法的

几何误差的分类与识别
分类
根据误差的性质和来源,几何误差可分为定位误差、直线度误差、角度误差、垂 直度误差等。
识别
通过机床的精度检测、工件的加工精度检测等手段,可以识别并量化几何误差。 同时,借助先进的测量设备和检测技术,如激光干涉仪、球杆仪等,可以实现对 几何误差的高精度检测与识别。
02
CATALOGUE
未来发展趋势与挑战
发展趋势
随着制造技术的不断发展,对数控机床的精 度要求越来越高。未来,数控机床几何误差 补偿方法将更加注重实时性、自适应性和智 能化。同时,随着深度学习、大数据等技术 的发展,基于数据驱动的误差建模和补偿方 法将成为重要研究方向。
面临的挑战
在实际应用中,数控机床的误差往往受到多 种因素的影响,如温度、湿度、磨损等。如 何建立更加精确的误差模型,以及如何设计 更加有效的误差测量方法和补偿策略,将是 未来面临的主要挑战。
来源
几何误差主要来源于机床的制造误差、装配误差、磨损误差以及热变形等因素 。
几何误差对机床加工精度的影响
影响加工精度
几何误差会导致刀具与工件之 间的相对位置发生偏差,直接
影响工件的加工精度。
影响表面质量
几何误差可能引起刀具在加工过程 中的振动,从而影响工件的表面质 量。
影响生产效率
为了弥补几何误差带来的加工精度 损失,可能需要增加加工时间、调 整切削参数等,从而降低生产效率 。
实施效果
基于混合补偿法的机床精度提升 方案实施后,机床的加工精度得 到显著提高,满足了高精度零件 的加工需求。
案例三:先进补偿策略在高精度机床中的应用
问题描述
高精度机床对加工精度要求极高,传统的几何误差补偿方法难以满足其要求。

数控加工中的误差及补偿方法

数控加工中的误差及补偿方法

数控加工中的误差及补偿方法摘要:数控机床是制造价值创造的基础,是基础制造能力的核心。

数控机床的水平在一定程度上反映了制造水平。

高精度的误差补偿是先进数控机床的主要发展方向。

如何提高数控机床的精度:一是在应用良好的温度和振动控制的同时减小误差,消除或减少设计和制造过程中可能产生误差的原因,提高数控机床的机械精度和动态性能,控制机床内外环境的措施、气流湍流等方法来减少误差原因的影响。

二是通过软件工程和人为制造错误消除数控机床故障的纠错方法。

相对而言,数控机床精度的提高会遇到很多困难,其中包括改进空间的限制、高昂的成本、不断改变的加工条件、机器故障等。

因此要想提高数控机床的精度,需要进一步研究数控机床的误差补偿技术。

关键词:数控加工;误差;补偿方法引言近年来,随着经济的迅速发展,我国已步入信息技术时代,自动化机械设备数量日益增多,对工业发展和人们日常生活的影响程度不断提升。

数控机床是数字控制下机床的简称,是一种带有程序控制系统的自动化机床,能够有效地解决和处理复杂、精密、多样化、小批量零部件的加工,代表着现代机床控制技术的发展趋势和方向,属于典型的机电一体化产品。

在实际加工过程中,数控机床受诸多因素的影响,会出现加工误差,影响其工作质量,导致其加工的产品出现误差,影响生产企业的经济效益和未来的发展。

1数控机床误差分类1.1操刀问题企业对相关产品实施加工与制造中,想要确保加工与制造的质量与效率,就需选择好操刀路线与换刀方法,特别是大规模生产与制造中,若操刀的线路缺乏合理性、操刀的位置不够准确,就会导致换刀的时间延长,影响到生产的效率提高。

鉴于此,在操作中,需确保操作的熟练度,做好操刀线路的控制,对刀具与换刀的顺序进行合理选择,以确保机械加工的效率,并实现企业的生产效益提升。

1.2设备运行产生的误差①传统轴反转误差。

数控机床在运转的过程中,坐标轴移动或静止都会使机床驱动轴经过加速或者是减速的流程,在此过程中受设备运行的惯性作用以及驱动加、减速度的影响,容易产生加工误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控机床几何误差及补偿方法摘要:对数控机床几何误差产生的原因作了比较详细的分析,将系统误差的补偿方法进行了归纳,并在此基础上阐述了各类误差补偿方法的应用场合,为进一步实现机床精度的软升级打下基础。

关键词:数控机床;几何误差;误差补偿Research on Geometric Errors and Its Compensation of CNC Mac hine ToolKE Ming-li, LIANG Yong-hui, LIU Huan-lao(Guangdong Ocean University, Zhanjiang, Guangdong 524088 , China)Abstract: Analyzed the reason why the geometric error occurs to CNC machine tool. The compensating methods of system er ror were induced in this paper. And the applicative occasion for all kinds of errors compensating method was elaborated.A foundation was built up for the CNC machine tool precis ion to further realize soft promotion.Key words: CNC machine tool; Geometric error; Error compensat ion前言提高机床精度有两种方法。

一种是通过提高零件设计、制造和装配的水平来消除可能的误差源,称为误差防止法(error prevention)。

该方法一方面主要受到加工母机精度的制约,另一方面零件质量的提高导致加工成本膨胀,致使该方法的使用受到一定限制。

另一种叫误差补偿法(error compensation),通常通过修改机床的加工指令,对机床进行误差补偿,达到理想的运动轨迹,实现机床精度的软升级。

研究表明,几何误差和由温度引起的误差约占机床总体误差的70%,其中几何误差相对稳定,易于进行误差补偿。

对数控机床几何误差的补偿,可以提高整个机械工业的加工水平,对促进科学技术进步,提高我国国防能力,继而极大增强我国的综合国力都具有重大意义。

1几何误差产生的原因普遍认为数控机床的几何误差由以下几方面原因引起:1.1 机床的原始制造误差是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。

1.2 机床的控制系统误差包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。

1.3 热变形误差由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。

1.4切削负荷造成工艺系统变形所导致的误差包括机床、刀具、工件和夹具变形所导致的误差。

这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。

1.5 机床的振动误差在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。

导致加工工件的表面质量恶化和几何形状误差。

1.6 检测系统的测试误差包括以下几个方面:(1)由于测量传感器的制造误差及其在机床上的安装误差引起的测量传感器反馈系统本身的误差;(2)由于机床零件和机构误差以及在使用中的变形导致测量传感器出现的误差。

1.7 外界干扰误差由于环境和运行工况的变化所引起的随机误差。

1.8 其它误差如编程和操作错误带来的误差。

上面的误差可按照误差的特点和性质,归为两大类:即系统误差和随机误差。

数控机床的系统误差是机床本身固有的误差,具有可重复性。

数控机床的几何误差是其主要组成部分,也具有可重复性。

利用该特性,可对其进行“离线测量”,可采用“离线检测——开环补偿”的技术来加以修正和补偿,使其减小,达到机床精度强化的目的。

随机误差具有随机性,必须采用“在线检测——闭环补偿”的方法来消除随机误差对机床加工精度的影响,该方法对测量仪器、测量环境要求严格,难于推广。

2几何误差补偿技术针对误差的不同类型,实施误差补偿可分为两大类。

随机误差补偿要求“在线测量”,把误差检测装置直接安装在机床上,在机床工作的同时,实时地测出相应位置的误差值,用此误差值实时的对加工指令进行修正。

随机误差补偿对机床的误差性质没有要求,能够同时对机床的随机误差和系统误差进行补偿。

但需要一整套完整的高精度测量装置和其它相关的设备,成本太高,经济效益不好。

文献[4] 进行了温度的在线测量和补偿,未能达到实际应用。

系统误差补偿是用相应的仪器预先对机床进行检测,即通过“离线测量”得到机床工作空间指令位置的误差值,把它们作为机床坐标的函数。

机床工作时,根据加工点的坐标,调出相应的误差值以进行修正。

要求机床的稳定性要好,保证机床误差的确定性,以便于修正,经补偿后的机床精度取决于机床的重复性和环境条件变化。

数控机床在正常情况下,重复精度远高于其空间综合误差,故系统误差的补偿可有效的提高机床的精度,甚至可以提高机床的精度等级。

迄今为止,国内外对系统误差的补偿方法有很多,可分为以下几种方法:2.1单项误差合成补偿法这种补偿方法是以误差合成公式为理论依据,首先通过直接测量法测得机床的各项单项原始误差值,由误差合成公式计算补偿点的误差分量,从而实现对机床的误差补偿。

对三坐标测量机进行位置误差测量的当属Leete, 运用三角几何关系,推导出了机床各坐标轴误差的表示方法,没有考虑转角的影响。

较早进行误差补偿的应是Hocken教授,针对型号Moore 5-Z(1)的三坐标测量机,在16小时内,测量了工作空间内大量的点的误差,在此过程中考虑了温度的影响,并用最小二乘法对误差模型参数进行了辨识。

由于机床运动的位置信号直接从激光干涉仪获得,考虑了角度和直线度误差的影响,获得比较满意的结果。

1985年G. Zhang成功的对三坐标测量机进行了误差补偿。

测量了工作台平面度误差,除在工作台边缘数值稍大,其它不超过1μm,验证了刚体假设的可靠性。

使用激光干涉仪和水平仪测量得的21项误差,通过线性坐标变换进行误差合成,并实施了误差补偿。

X-Y平面上测量试验表明,补偿前,在所有测量点中误差值大于20μm的点占20%,在补偿后,不超过20%的点的误差大于2μm,证明精度提高了近10倍。

除了坐标测量机的误差补偿以外,数控机床误差补偿的研究也取得了一定的成果。

在1977年Schultschik教授运用矢量图的方法,分析了机床各部件误差及其对几何精度的影响,奠定了机床几何误差进一步研究的基础。

Ferreira和其合作者也对该方法进行了研究,得出了机床几何误差的通用模型,对单项误差合成补偿法作出了贡献。

J.Ni et al更进一步将该方法运用于在线的误差补偿,获得了比较理想的结果。

Chen et al建立了32项误差模型,其中多余的11项是有关温度和机床原点误差参数,对卧式加工中[1][2] [3] 下一页心的补偿试验表明,精度提高10倍。

Eung-Suk Lea et al几乎使用了同G. Zhang一样的测量方法,对三坐标Bridge port铣床21项误差进行了测量,运用误差合成法得出了误差模型,补偿后的结果分别用激光干涉仪和Renishaw的DBB系统进行了检验,证明机床精度得以提升。

2.2误差直接补偿法这种方法要求精确地测出机床空间矢量误差,补偿精度要求越高,测量精度和测量的点数就要求越多,但要详尽地知道测量空间任意点的误差是不可能的,利用插值的方法求得补偿点的误差分量,进行误差修正,该种方法要求建立和补偿时一致的绝对测量坐标系。

1981年,Dufour和Groppetti在不同的载荷和温度条件下,对机床工作空间点的误差进行了测量,构成误差矢量矩阵,获得机床误差信息。

将该误差矩阵存入计算机进行误差补偿。

类似的研究主要有A.C.Okafor et al,通过测量机床工作空间内,标准参考件上多个点的相对误差,以第一个为基准点,然后换算成绝对坐标误差,通过插值的方法进行误差补偿,结果表明精度提高了2~4倍。

Hooman则运用三维线性(LVTDS)测量装置,得到机床空间27个点的误差(分辨率0.25μm,重复精度1μm),进行了类似的工作。

进一步考虑到温度的影响,每间隔1.2小时测量一次,共测量8次,对误差补偿结果进行了有关温度系数的修。

这种方法的不足之处是测量工作量大,存储数据多。

目前,还没有完全合适的仪器,也限制了该方法的进一步运用和发展。

2.3相对误差分解、合成补偿法大多数误差测量方法只是得到了相对的综合误差,据此可以从中分解得到机床的单项误差。

进一步利用误差合成的办法,对机床误差补偿是可行的。

目前,国内外对这方面的研究也取得一定进展。

2000年美国Michigan大学Jun Ni教授指导的博士生Chen Guiquan做了这样的尝试,运用球杆仪(TBB)对三轴数控机床不同温度下的几何误差进行了测量,建立了快速的温度预报和误差补偿模型,进行了误差补偿。

Christopher 运用激光球杆仪(LBB),在30分钟内获得了机床的误差信息,建立了误差模型, 在9个月的时间间隔内,对误差补偿结果进行了5次评价,结果表明,通过软件误差补偿的方法可以提高机床的精度,并可保持精度在较长时间内不变。

误差合成法,要求测出机床各轴的各项原始误差,比较成熟的测量方法是激光干涉仪,测量精度高。

用双频激光干涉仪进行误差测量,需时间长,对操作人员调试水平要求高。

更主要的是对误差测量环境要求高,常用于三坐标测量机的检测,不适宜生产现场操作。

相对误差分解、合成补偿法,测量方法相对简单,一次测量可获得整个圆周的数据信息,同时可以满足机床精度的检测和机床评价。

目前也有不少的误差分解的方法,由于机床情况各异,难以找到合适的通用数学模型进行误差分解,并且对测量结果影响相同的原始误差项不能进行分解,也难以推广应用。

误差的直接补偿法,一般以标准件为对照获得空间矢量误差,进行直接补偿,少了中间环节,更接近机床的实用情况。

但获得大量的信息量需要不同的标准件,难以实现,这样补偿精度就受到限制。

在国内,许多研究机构与高校近几年也进行了机床误差补偿方面的研究。

1986北京机床研究所开展了机床热误差的补偿研究和坐标测量机的补偿研究。

1997年天津大学的李书和等进行了机床误差补偿的建模和热误差补偿的研究。

1998年天津大学的刘又午等采用多体系统建立了机床的误差模型,给出了几何误差的22线、14线、9线激光干涉仪测量方法,1999年他们还对数控机床的误差补偿进行了全面的研究,取得了可喜的成果。

相关文档
最新文档