大学物理第7章真空中的静电场答案解析

合集下载

大学物理课后答案第七章..

大学物理课后答案第七章..

第七章静电场中的导体和电介质、基本要求1•掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2•学会计算电容器的电容;3•了解介质的极化现象及其微观解释;4.了解各向同性介质中D和E的关系和区别;5.了解介质中电场的高斯定理;6.理解电场能量密度的概念。

二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。

(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。

2.电容(1)孤立导体的电容电容的物理意义是使导体电势升高单位电势所需的电量。

电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。

它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。

(2)电容器的电容V A -V Bq为构成电容器两极板上所带等量异号电荷的绝对值。

V A-V B为A、B两极间电势差。

电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。

(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。

等效电容由丄二丄•丄-进行计算。

C C i C2 C n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。

等效电容为C =G • C2• |1「C n。

(4)计算电容的一般步骤①设两极带电分别为q和-q,由电荷分布求出两极间电场分布。

B②由V A -V B = J A E d l求两极板间的电势差。

A③根据电容定义求C q一V A -V B3 •电位移矢量D人为引入的辅助物理量,定义D =;0E P,D既与E有关,又与P有关。

说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。

定义式无论对各向同性介质,还是各向异性介质都适用。

对于各向同性电介质,因为P = e;o E,所以D =0 r E = E。

第7章+静电场+习题和思考题

第7章+静电场+习题和思考题
S
1 E d S 根据高斯定理
0
q
S内
i
S
Q
q q
习题图7-1
第七章 习题解答 第七章 习题解答
C 3. 关于电场线,以下说法哪个正确。 (A)电场线上各点的电场强度大小相等; (B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点 的电场强度方向平行; (C) 匀强电场中开始处于静止的电荷,在电场力的作用下运动 的轨迹必与一条电场线重合; (D) 在无电荷的电场空间,电场线可以相交。 答 :电场线上任意点的切线方向为该点处电场强度的方向; 电场线密度表针该点处电场强度的大小;电场为有源场,任 意电场线不相交;在均匀场中,电场强度处处相等;电荷在 均匀电场中静止开始运动,其运动轨迹必沿与一条电场线运 动。
解: (1) (0,a)处点电荷在 O 点产生的电场方向从 O 点指 向 y 轴正向;(0,-a)处点电荷在 O 点产生的电场方向从 O 点 指向 y 轴负向;(2a,0)处点电荷在 O 点产生的电场方向从 O 点指向 x 轴正向。 (2)
Eao 2Q Q j j 2 2 40 a 20a 1
1 2Q Q j j 2 2 40 a 20a
y
E ao
a
2Q
Q
a
O
2Q
a 2a
x
E2ao
Q Q i i 2 2 40 ( 2a) 160a 1
第七章 习题解答 第七章 习题解答
(3)
Eo Eao Eao E2ao Q Q Q j ( j) i 2 2 2 20a 20a 160a
第七章 习题解答 第七章 习题解答 球心电势
U E dl

大学物理第7章 静电场

大学物理第7章 静电场
解:选地面为S系,宇宙飞船为 S 系,则两惯性系相对速度u 0.8c
设北京事件时空坐标为 x1 , t1 ,天津事件时空坐标为
x2 , t 2
x2 x1 120km
u x 2 c t 1 u2 c2 t
t 2 t1 0.0003s
5 t 2 t1 3.3 10 s
电场强度的叠加原理
1 qi q0 ri 3 4 π 0 ri
q2 q3
r2 q r3 0
r1
F3 F2
F1
E Ei
i
第七章 静电场
例1 电偶极子的电场强度 电偶极子的轴
r0
q讨论源自 r0 p q
(1)电偶极子轴线延长线上一点的电场强度
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
第七章 静电场

电力的叠加原理——多个点电荷或连续带电体
1. 多个点电荷之间的库仑力计算
两个点电荷之间的作用力并不因第三个点电荷的存
在而有所改变。
N 离散状态 F Fi i 1
q1
q2 q3
r2 q r3 0
r1
F3 F2
琥珀
经过摩擦才具有吸引力 吸引任何小物体
为了表明与磁性的不同,他采用琥珀的希腊字 母拼音把这种性质称为“电的” “琥珀体” electric
第一台摩擦起电机
大约在1660年 马德堡的盖利克
发现电的传导
1729年 英国的格雷
格雷还做过一个有趣的实验:把 一个小孩用几根粗丝绳水平吊起来, 用摩擦过的带电玻璃管接触小孩的胳 臂,孩子的手和身体便能吸引羽毛和 铜屑。这表明,人体也是导电体。
y

7.真空中的静电场 大学物理习题答案

7.真空中的静电场 大学物理习题答案
0
l
xd x
2

k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0

2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为

《真空中静电场》选择题解答与分析

《真空中静电场》选择题解答与分析

《真空中静电场》选择题解答与分析12 真空中的静电场 12.1电荷、场强公式1. 如图所⽰,在直⾓三⾓形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的⼤⼩为(A) 4.5?104(N ?C -1). (B) 3.25?104(N ?C -1). 答案:(B)参考解答:根据点电荷的场强⼤⼩的公式,点电荷q 1在C 点产⽣的场强⼤⼩为)C (N 108.1)(4142011-??==AC q E πε,⽅向向下.点电荷q 2在C 点产⽣的场强⼤⼩为)C (N 107.2)(4142022-??==AC q E πε,⽅向向右.C 处的总场强⼤⼩为:),C (N 1025.3142221-??=+=E E E总场强与分场强E 2的夹⾓为.69.33arctan 021==E E θ对于错误选择,给出下⾯的分析:答案(A)不对。

你将)C (N 105.410)7.28.1(14421-??=?+=+=E E E 作为解答。

错误是没有考虑场强的叠加,是⽮量的叠加,应该⽤),C (N 1025.3142221-??=+=E E E进⼊下⼀题:2. 真空中点电荷q 的静电场场强⼤⼩为2041rqE πε= 式中r 为场点离点电荷的距离.当r →0时,E →∞,这⼀推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适⽤于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适⽤.若仍⽤此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的⼤⼩和电荷分布,这样求得的E就有确定值.进⼊下⼀题: 12.2⾼斯定理1. 根据⾼斯定理的数学表达式?∑?=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合⾯内的电荷代数和为零时,闭合⾯上各点场强⼀定为零.(B) 闭合⾯内的电荷代数和为零时,闭合⾯上各点场强不⼀定处处为零.(C) 闭合⾯上各点场强均为零时,闭合⾯内⼀定处处⽆电荷.答案:(B) 参考解答:⾼斯定理的表达式:∑?==?ni i S q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲⾯的电通量等于该闭合⾯所包围的电荷电量代数和的0/1ε倍。

习题解答---大学物理第7章习题--2

习题解答---大学物理第7章习题--2
(C)带电体A与导体壳B的内表面的感应电荷在C点所产生的合电场强度为零;
(D)导体壳B的内、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其内部没有带电体)此感应电荷也是要在C点产生电场强度的。由导体的静电屏蔽现象,导体壳空腔内C点的合电场强度为零,故选(B)。
(A)储能减少,但与金属板位置无关。(B)储能减少,且与金属板位置有关。
(C)储能增加,但与金属板位置无关。(D)储能增加,且与金属板位置无关。
9.两个完全相同的电容器C1和C2,串联后与电源连接,现将一各向同性均匀电介质板插入C1中,则[ D ]
(A)电容器组总电容减小。(B)C1上的电量大于C2上的电量。
7.一平行板电容器,充电后与电源保持联接,然后使两极间充满相对介电常数为εr的各向同性均匀电介质,这时两极板上的电量是原来的倍,电场强度是原来的倍;电场能量是原来的倍。r,1,r
三、计算题:
1.1.一空气球形电容器,内外半径为R1和R2,设内外球面带电量为分别+Q和-Q。
求(1)球形电容器r<R1、R1<r<R2和r>R2三个区域的电场强度的大小;
求(1)两柱面间的电场强度的大小;
(2)两内外柱面间的电势差U12;
(3)该柱形电容器的电容C;
(4)该电容存储的电场能量We;
(5)若在两柱面极板之间充满相对介电常数为r的各向同性均匀电介质,则电容值C’变为多少?
解:(1)由题给条件(b-a)≤a和L≥b,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为

大学物理课后答案解析第七章静电场中的导体及电介质

大学物理课后答案解析第七章静电场中的导体及电介质

习题77-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题7-2图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题7-3图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=7-4 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U7-4图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q 7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力00294π432322F r qq F ==ε7-6如题7-6图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持UU AB =可得以下6个方程题7-6图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 7-7 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Qr r-+=εεε 7-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题7-8图7-9 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题7-9图7-10 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题7-10图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。

大学物理AⅠ真空中的静电场习题答案及解法

大学物理AⅠ真空中的静电场习题答案及解法

《大学物理A Ⅰ》真空中的静电场习题、答案及解法一、选择题1、一“无限大”均匀带电平面A 的附近放一与它平行的“无限大”均匀带电平面B ,如图1所示。

已知A 上的电荷面密度为σ,B 上的电荷面密度为2σ,如果设向右为正方向,则两平面之间和平面B 外的电场强度分别为 (A )002εσεσ, (B )00εσεσ,(C )00232εσεσ,-(D )002εσεσ,- [ C ]参考答案: ()0002222εσεσεσ-=-=AB E ()00023222εσεσεσ=+=BE2、在边长为b 的正方形中心处放置一电荷为Q 的点电荷,则正方形顶角处的电场强度大小为 (A )204bQ πε (B )202bQ πε (C )203bQ πε (D )20bQπε [ C ]参考答案:()202220312241b Q b b QE πεπε=⎥⎥⎦⎤⎢⎢⎣⎡+=3、下面为真空中静电场的场强公式,正确的是[ D ] (A)点电荷q 的电场0204r r q Ε πε=(r 为点电荷到场点的距离,0r为电荷到场点的单位矢量)(B)“无限长”均匀带电直线(电荷线密度为λ)的电场302r Επελ=(r为带电直线到场点的垂直于直线的矢量)(C)一“无限大”均匀带电平面(电荷面密度σ)的电场0εσ=Ε (D)半径为R的均匀带电球面(电荷面密度σ)外的电场0202r r R Ε εσ=(0r为球心到场点的单位矢量)解:由电场强度的定义计算知:A 错,应为0204r r q Επε=,B 不对应为002r rEπελ=,C 应为σ σ2A B图12εσ=E D 对,完整表达应为⎪⎩⎪⎨⎧〉≤=R r r r R Rr E 02020εσ 0202022002044141r rR r r R r r q E εσσππεπε===4、如图2所示,曲线表示球对称或轴对称静电场的场强大小随径向距离r 变化的关系,请指出该曲线可描述下列哪种关系(E 为电场强度的大小)(A )半径为R 的无限长均匀带电圆柱体电场的r E ~关系 (B )半径为R 的无限长均匀带电圆柱面电场的r E ~关系 (C )半径为R 的均匀带电球面电场的r E ~关系 (D )半径为R 的均匀带正电球体电场的r E ~关系 [ C ] 参考答案:柱形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r rR Rr r r E 02000202ερερ柱形带电面 ⎪⎩⎪⎨⎧≥〈=R r r r R R r E 000εσ球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r Q R r E 020410πε球形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r r Q Rr r R r Q E 02003041041πεπε5、如图3所示,曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下列哪方面内容(E 为电场强度的大小,U 为电势)。

大学物理课后习题答案 真空中的静电场

大学物理课后习题答案 真空中的静电场

第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。

根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。

其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。

3、[D]1、粒子作曲线运动的条件必须存在向心力。

2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。

3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。

4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。

E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。

∑=0q 并不能说明E有任何特定的性质。

8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。

《大学物理》练习题及详细解答-—真空中的静电场

《大学物理》练习题及详细解答-—真空中的静电场
当 时, ,所以
、 两点间的电势差为
17.细长圆柱形电容器由同轴的内、外圆柱面构成,其半径分别为 和 ,两圆柱面间为真空。电容器充电后内、外两圆柱面之间的电势差为 。求:
(1)内圆柱面上单位长度所带的电量 ;
(2)在离轴线距离 处的电场强度大小。
解:(1)电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为 ,底面圆半径为 ,应用高斯定理求解。
解:(1)均匀带电的细圆环在 点处产生的场强大小为(参见教材中均匀带电圆环轴线上的场强公式)
,方向沿 向右
粒子所受的电场力的大小
,方向沿 向右
(2)在细圆环上取 , 在 点产生的电势为
点的电势为
由动能定理得,
(2)电荷在顶点时,将立方体延伸为边长 的立方体,使 处于边长 的立方体中心,则通过边长 的正方形各面的电通量
对于边长 的正方形,如果它不包含 所在的顶点,则 ,如果它包含 所在顶点,则 。
9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为 和 ,试求空间各处场强。
解:如图所示,电荷面密度为 的平面产生的场强大小为
,方向沿 轴负方向
利用几何关系, , 统一积分变量,得
因为所有的细圆环在在 点产生的场强方向均沿为 轴负方向,所以球心处电场强度的大小为
方向沿 轴负方向。
7.一“无限大”平面,中部有一半径为 的圆孔,设平面上均匀带电,电荷面密度为 ,如图所示。试求通过小孔中心 并与平面垂直的直线上各点的场强。
解:应用补偿法和场强叠加原理求解。
当 时, , ,所以
(2)当 时, ,所以
当 时, ,所以
负号表示场强方向沿径向指向球心。
12. 一厚度为 的无限大的带电平板,平板内均匀带电,其体电荷密度为 ,求板内外的场强。

大学物理考试习题分析与解答

大学物理考试习题分析与解答

第七章静电场7-1关于电场强度与电势的关系,描述正确的是[ ]。

(A) 电场强度大的地方电势一定高;(B) 沿着电场线的方向电势一定降低;(C) 均匀电场中电势处处相等;(D) 电场强度为零的地方电势也为零。

分析与解电场强度与电势是描述静电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零;电场强度等于负电势梯度;静电场是保守场,电场线的方向就是电势降低的方向。

正确答案为(B)。

7-2半径为R的均匀带电球面的静电场中各点的电场强度的大小E与距球心的距离r之间的关系曲线为[ ]。

7-3、下分析与解根据静电场的高斯定理可以求得均匀带电球面的电场强度分布为。

正确答案为(B)。

7-3下列说法正确的是[ ]。

(A)带正电的物体电势一定是正的(B)电场强度为零的地方电势一定为零(C)等势面与电场线处处正交(D)等势面上的电场强度处处相等分析与解正电荷在电场中所受的电场力的方向与电场线的切线方向相同,电荷在等势面上移动电荷时,电场力不做功,说明电场力与位移方向垂直。

正确答案为(C)。

7-4真空中一均匀带电量为Q的球壳,将试验正电荷q从球壳外的R处移至无限远处时,电场力的功为[ ]。

(A)(B)(C)(D)分析与解静电场力是保守力,电场力做的功等电势能增量的负值,也可以表示成这一过程的电势差与移动电量的乘积,由习题7-2可知电场强度分布,由电势定义式可得球壳与无限远处的电势差。

正确答案为(D)。

7-5 关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。

(A)如果高斯面上电场强度处处为零,则高斯面内必无电荷;(B)如果高斯面内有净电荷,则穿过高斯面的电场强度通量必不为零;(C)高斯面上各点的电场强度仅由面内的电荷产生;(D)如果穿过高斯面的电通量为零,则高斯面上电场强度处处为零分析与解静电场的高斯定理表明,高斯面上的电场强度是由面内外电荷共同产生,而高斯面的电通量只由面内电荷决定。

大学物理简明教程(第2版)(赵近芳)习题答案,习题7 静电场

大学物理简明教程(第2版)(赵近芳)习题答案,习题7 静电场

习题77-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题7-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题7-1图 题7-2图题7-2图7-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题7--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题7-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =7-3 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说2204q f d πε=,又有人说,因为f =qE ,0q E Sε=,所以20q f Sε=试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.7-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题7-4图所示题7-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题7-4图所示 由于对称性⎰=lQxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向7-5 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题7-5(a)图所示.题7-5(3)图题7-5(a)图 题7-5(b)图 题7-5 (c)图7-6 均匀带电球壳内半径6 cm ,外半径10 cm ,电荷体密度为53210C m -⨯.试求距球心5cm,8 cm 及12 cm 的各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4ρ=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.7-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E7-8 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ和-σ,试求空间各处电场强度。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。

(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。

(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。

(B )通过S 面的电通量不变,P 点的电场强度变化。

(C )通过S 面的电通量改变,P 点的电场强度不变。

(D )通过S 面的电通量改变,P 点的电场强度变化。

6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。

大学物理-真空中的静电场习题课和答案解析

大学物理-真空中的静电场习题课和答案解析
真空中的静电场习 题 课
基本要求
1、掌握静电场的电场强度和电势的概念以及电场 强度和电势的叠加原理。
2、掌握静电场强度和电势的积分关系,了解场强 与电势的微分关系,能计算一些简单问题中的 场强和电势。
3、理解静电场的规律:高斯定理和环路定理。掌 握用高斯定理计算场强的条件和方法,并能熟 练应用。
1、基本概念: ① 电场强度矢量
圆环上的电荷分布对环心对称,它在环心处的场强为零。
E
E1
Q
16 0 R2
方向竖直向下。
1、在静电场中,下列说法正确的是:
A)带正电荷的导体,其电势一定是正值。 B)等势面上各点的场强一定相等。
√ C)场强为零处,电势也一定为零。 D)场强相等处,电势梯度矢量一定相等。
四、证明题(10分)
有一带电球壳,内、外半径分别为a 和b ,电荷体密度 ρ = A / r ,
解:先计算细绳上的电荷对中心产生的场强。
3R
选细绳的顶端为坐标原点O。X轴向下为正。
在x 处取一电荷元 dq dx Qdx / 3R
R
它在环心处的场强为:
R/2
dq
Qdx
dE1
4 0 (4R
x)2
12 0R(4R
x)2
整个细绳上的电荷在O点处的场强为:
3R
Qdx
Q
E1 0 12 0R(4R x)2 16 0R2
P
P0
E
d
l
P
微分关系E U
③ 电通量
de E d S
e SE d S
④ 电势能
零点
Wa q0 a E d l q0U a
⑤ 电势差 U U ab U a U b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

对称分析E y =0。

θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。

7-4 如图线电荷密度为λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。

解:在λ2的带电线上任取一dq ,λ1的带电线是无限长,它在dq 处产生的电场强度由高斯定理容易得到为,xE 012πελ=两线间的相互作用力为⎰⎰==x dx dF F 0212πελλ⎰=la x dx 0212πελλ,ln 2021ala +πελλ如图,方向沿x 轴正向。

7-5 两个点电荷所带电荷之和为Q ,问它们各带电荷多少时,相互作用力最大? 解:设其中一个电荷的带电量是q ,另一个即为Q -q ,若它们间的距离为r ,它们间的相互作用力为204)(r q Q q F πε-=相互作用力最大的条件为04220=-=r qQ dq dF πελ1 习题7-4图由上式可得:Q=2q ,q=Q/27-6 一半径为R 的半球壳,均匀带有电荷,电荷面密度为σ,求球心处电场强度的大小。

解:将半球壳细割为诸多细环带,其上带电量为θθπσθπσd R rRd dq sin 222==dq 在o 点产生的电场据(7-10)式为304R ydqdE πε=,θcos R y =θθπεθπσπd RR dE E cos 4sin 200303⎰⎰== )(sin sin 200θθεσπd ⎰=20202sin 2πθεσ=4εσ=。

如图,方向沿y 轴负向。

7-7 设匀强电场的电场强度E 与半径为R 的半球面对称轴平行,计算通过此半球面电场强度的通量。

解:如图,设作一圆平面S 1盖住半球面S 2, 成为闭合曲面高斯,对此高斯曲面电通量为0, 即021=⋅+⋅=⋅⎰⎰⎰S S SS d E S d E S d E ρρρρρρ2211R E S d E S d E S S S π-=⋅-=⋅=ψ⎰⎰ρρρρ习题7-6图E习题7-7图7-8 求半径为R ,带电量为q 的空心球面的电场强度分布。

解: 由于电荷分布具有球对称性,因而它所产生的电场分布也具有球对称性,与带电球面同心的球面上各点的场强E 的大小相等,方向沿径向。

在带电球内部与外部区域分别作与带电球面同心的高斯球面S 1与S 2。

对S 1与S 2,应用高斯定理,即先计算场强的通量,然后得出场强的分布,分别为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )24d 2επψqr E S ==⋅=⎰S Err ˆ204q πε=外E (r>R) 7-9 如图所示,厚度为d 的“无限大”均匀带电平板,体电荷密度为ρ,求板内外的电场分布。

解:带电平板均匀带电,在厚度为d/2的平分街面上电场强度为零,取坐标原点在此街面上,建立如图坐标。

对底面积为A ,高度分别为x <d/2和x >d/2的高斯曲面应用高斯定理,有1d ερψAxEA S ==⋅=⎰S E 得 )2( 01dx i x E <=ρρερ r习题7-18图习题7-9图2d 2ερψd A EA S ==⋅=⎰S E)2( 202d x i d E >ρρερ=7-10 一半径为R 的无限长带电圆柱,其体电荷密度为)(0R r r ≤=ρρ,ρ0为常数。

求场强分布。

解: 据高斯定理有⎰⎰==⋅VSdV rl E S d E ρεπ012ρρR r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk202επ=rl E π23230r lk επn e kr E ρρ023ε=→R r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ=rl E π23230R lk επn e rkR E ρρ033ε=→7-11 带电为q 、半径为R 1的导体球,其外同心地放一金属球壳,球壳内、外半径为R 2、R 3。

(1)球壳的电荷及电势分布;(2)把外球接地后再绝缘,求外球壳的电荷及球壳内外电势分布; (3)再把内球接地,求内球的电荷及外球壳的电势。

习题7-10图r解:(1)静电平衡,球壳内表面带-q ,外表面带q 电荷。

据(7-23)式的结论得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(4213202R r R R R r qV ≤≤+-=πε ),(432303R r R R q V ≤≤=πε).(4304R r rq V ≥=πε (2)),)(11(412101R r R R q U ≤-=πε );)(11(421202R r R R r qV ≤≤-=πε),(0323R r R V ≤≤=).(034R r V >>= (3)再把内球接地,内球的电荷及外球壳的电荷重新分布设静电平衡,内球带q /,球壳内表面带-q /,外表面带q /-q 。

),)((41132101R r R q q R q R q V ≤-'+'-'=πε 得:21313221R R R R R R qR R q +-='=-'=3034R qq V πε)(4)(213132021R R R R R R q R R +--πε)(32R r R ≤≤q习题7-11图7-12 一均匀、半径为R 的带电球体中,存在一个球形空腔,空腔的半径r(2r<R),试证明球形空腔中任意点的电场强度为匀强电场,其方向沿带电球体球心O 指向球形空腔球心O /。

证明:利用补缺法,此空腔可视为同电荷密度的一个完整的半径为R 的大球和一个半径为r 与大球电荷密度异号完整的小球组成,两球在腔内任意点P 产生的电场分别据〔例7-7〕结果为03ερ11r E =, 03ερ22r E -= E =E 1+E 2=3ερ1r 03ερ2r - o o '=3ερ上式是恒矢量,得证。

7-13 一均匀带电的平面圆环,内、外半径分别为R 1、R 2,且电荷面密度为σ。

一质子被加速器加速后,自圆环轴线上的P 点沿轴线射向圆心O 。

若质子到达O 点时的速度恰好为零,试求质子位于P 点时的动能E K 。

(已知质子的带电量为e ,忽略重力的影响,OP=L )解:圆环中心的电势为⎰=210042R R r rdr V πεπσ )(2120R R -=εσ习题7-12图习题7-13图圆环轴线上p 点的电势为⎰+=2122042R R P Lr rdrV πεπσ)(22221222022021L R L R L r R R +-+=+=εσεσ质子到达O 点时的速度恰好为零有k P E E E +=0p k E E E -=→0 p k eV eV E -=0=210()2e R R σε=-02e σε-210(2e R R σε=- 7-14 有一半径为R 的带电球面,带电量为Q ,球面外沿直径方向上放置一均匀带电细线,线电荷密度为λ,长度为L (L>R ),细线近端离球心的距离为L 。

设球和细线上的电荷分布固定,试求细线在电场中的电势能。

解:在带电细线中任取一长度为dr 的线元,其上所带的电荷元为dq=λdr ,据(7-23)式带电球面在电荷元处产生的电势为rQ V 04πε=电荷元的电势能为: rdrQ dW 04πελ=细线在带电球面的电场中的电势能为: ===⎰⎰LLr dr Q dW W 204πελ2ln 40πελQr习题7-14图*7-15 半径为R 的均匀带电圆盘,带电量为Q 。

过盘心垂直于盘面的轴线上一点P 到盘心的距离为L 。

试求P 点的电势并利用电场强度与电势的梯度关系求电场强度。

解:P 到盘心的距离为L ,p 点的电势为⎰+=RP Lr rdrV 022042πεπσ)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上任意点的电势为⎰+=Rxr rdrx V 022042)(πεπσ)(22222200220x x R R Q x r R -+=+=πεεσ利用电场强度与电势的梯度关系得:i x R xR Q i dx dV x E ρρρ)1(2)(22220+-=-=πεP 到盘心的距离为L ,p 点的电场强度为:i L R LR Q L E ρρ)1(2)(22220+-=πε7-16 两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2。

相关文档
最新文档