麦克斯韦方程组
麦克斯韦方程组解释

麦克斯韦方程组解释
麦克斯韦方程组是电磁学的基本方程组,描述了电磁场的运动规律和相互作用。
这个方程组由四个方程组成,包括:
1. 电场线方程:高斯定理,即电场中的垂直于电荷分布方向的电场线密度必须相等。
2. 磁场线方程:法拉第电磁感应定律,即当一个闭合电路的一部分与一个磁体相互作用时,磁体周围会出现磁场。
3. 光速方程:洛伦兹变换,即光速在任何参考系中保持不变。
4. 散度方程:麦克斯韦方程,描述了电场和磁场的散度和动量张量之间的关系。
这些方程描述了电磁场的运动规律和相互作用,包括电场、磁场、光速和动量这四个维度的相互作用。
这些方程在很多领域都有广泛应用,如无线通信、光学、电磁场计算等。
麦克斯韦方程组

一.麦克斯韦方程组的积分形式
磁场
静电场 电 场 感生
电场
一般 电场
高斯定理
SBdS0
环路定理
Hdl
L
S(j D t )dS
SD (1)dSS内 q0V dV
D(2)dS0 S
D D (1 )D (2)
SDdSVdV
E(1)dl 0 L
E(2)dl
B dS
L
t
E E (1 )E (B 2)
解:1) E72 si0 1n50 t ,
D7200 si1n5 0t
jD d d D t 7 2 15 0 00 c1 o50 s t (A m -2)
2)作如图r=0.01m的环路,
由安培环路定理:
L HdlSjDdS
r
L jD
H2rjD r2 Hj2 D r3.6 0150 0co 15 s0 t
变化电场和极化 电荷的微观运动
无焦耳热, 在导体、电介质、真空 中均存在
共同点
都能激发磁场
P334 问题:比较导体、介质中 j0 ,数jD量级
三. 安培环路定理的推广
1. 全电流 I全I0ID
对任何电路,全电流总是连续的
D
(j )dS0
S1S2
t
I S1
S 2
S
L
2 1K
2. 推广的安培环路定理
大家好
1
§ 11.3 位移电流
对称性
随时间变化的磁场 感生电场(涡旋电场) 随时间变化的电场 磁场
麦克斯韦提出又一重要假设:位移电流
一.问题的提出
稳恒磁场的安培环路定理:
Hdl L
I0
(L内)
麦克斯韦方程组八种

麦克斯韦方程组八种麦克斯韦方程组是描述电磁场的物理定律,由詹姆斯·克拉克·麦克斯韦在19世纪提出。
它包括八个方程,分别是电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律、安培环路定律以及四个麦克斯韦方程。
第一个麦克斯韦方程是电场的高斯定律。
它表明电场线从正电荷流出,经过负电荷后重新进入正电荷。
就像洪水的水流从高处流向低处,电场力对电荷产生的影响也是类似的。
这个方程告诉我们,电场线的描述类似于水流的路径。
第二个麦克斯韦方程是磁场的高斯定律。
与电场类似,磁场线也存在着从南极出来,从北极重新进入的过程。
这一方程告诉我们,磁场线的描述也类似于电场线。
它们都是由正负极之间的相互作用所产生的。
第三个麦克斯韦方程是法拉第电磁感应定律。
根据这个定律,磁场的变化将产生感应电流。
我们可以将这个定律与发电机相联系。
当磁场线通过线圈时,线圈内将产生电流。
这个方程是电磁场与电流之间的关系,极大地推动了电磁学的发展。
第四个麦克斯韦方程是安培环路定律。
它描述了沿闭合回路的电流产生的磁场,类似于法拉第电磁感应定律的反过程。
这个方程告诉我们,电流通过线圈时会产生磁场。
而这个磁场又会影响周围的物体。
这个定律在电磁学和电路设计中非常重要。
除了这四个基本的麦克斯韦方程外,还有四个补充方程。
第五个麦克斯韦方程是电场的环路定律。
它描述了电场沿闭合回路的等效电动势。
这个方程帮助我们理解电场在电路中的行为。
第六个麦克斯韦方程是磁场的环路定律。
它类似于电场的环路定律,描述了磁场沿闭合回路的等效电动势。
这个方程帮助我们理解磁场在电路中的行为。
第七个麦克斯韦方程是电磁场的连续性方程。
它描述了电场和磁场的变化对电磁波传播的影响。
这个方程对于研究电磁波的传播特性非常重要。
第八个麦克斯韦方程是电磁波的速度方程。
它描述了电磁波在空间中传播的速度。
这个方程给出了电磁波的传播速度与电磁场的性质之间的关系。
总结来说,麦克斯韦方程组是描述电磁场的重要定律,它包括了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律、安培环路定律以及四个补充方程。
世界第一公式:麦克斯韦方程组

世界第一公式:麦克斯韦方程组麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
在英国科学期刊《物理世界》发起的“最伟大公式”中,麦克斯韦方程组力压勾股定理,质能转换公式,名列第一。
这里,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。
1力、能、场、势经典物理研究的一个重要对象就是力force。
比如牛顿力学的核心就是F=ma这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。
但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。
很多时候,从能量的角度出发反而问题会变得简单很多。
能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。
分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。
在电磁学里,我们通过力定义出了场field的概念。
我们注意到洛仑兹力总有着F=q(E+v×B)的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。
那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。
也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。
麦克斯韦方程组

麦克斯韦方程组维基百科,自由的百科全书麦克斯韦方程组(Maxwell's equations)是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组偏微分方程,描述电场、磁场与电荷密度、电流密度之间的关系。
它含有的四个方程分别为:电荷是如何产生电场的高斯定理;论述了磁单极子的不存在的高斯磁定律;电流和变化的电场是怎样产生磁场的麦克斯韦-安培定律,以及变化的磁场是如何产生电场的法拉第电磁感应定律。
从麦克斯韦方程组,可以推论出光波是电磁波。
麦克斯韦方程组和洛伦兹力方程共同形成了经典电磁学的完整组合。
1865年,麦克斯韦建立了最初形式的方程,由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
当代使用的数学表达式是由奥利弗·赫维赛德和约西亚·吉布斯于1884年使用矢量分析的形式重新表达的。
概论麦克斯韦方程组乃是由四个方程共同组成的。
它们分别为▪高斯定律描述电场是怎样由电荷生成的。
更详细地说,通过任意闭合表面的电通量与这闭合表面内的电荷之间的关系。
▪高斯磁定律表明,通过任意闭合表面的磁通量等于零,或者,磁场是一个螺线矢量场。
换句话说,类比于电荷的磁荷,又称为磁单极子,实际并不存在于宇宙。
▪法拉第电磁感应定律描述含时磁场怎样生成电场。
许多发电机的运作原理是法拉第电磁感应定律里的电磁感应效应:机械地旋转一块条形磁铁来生成一个含时磁场,紧接着生成一个电场于附近的导线。
▪麦克斯韦-安培定律阐明,磁场可以用两种方法生成:一种是靠电流(原本的安培定律),另一种是靠含时电场(麦克斯韦修正项目)。
这个定律意味着一个含时磁场可以生成含时电场,而含时电场又可以生成含时磁场。
这样,理论上允许电磁波的存在,传播于空间。
▪一般表述在这段落里,所有方程都采用国际单位制。
若改采其它单位制,经典力学的方程形式不会改变;但是,麦克斯韦方程组的形式会稍微改变,大致形式仍旧相同,只有不同的常数会出现于方程的某些位置。
麦克斯韦方程组

麦克斯韦方程组麦克斯韦方程组是描述电磁场的四个基本方程,由苏格兰物理学家詹姆斯·克拉克·麦克斯韦在19世纪提出。
这四个方程求解了电磁场的本质,对于描述电磁波的传播以及电磁现象的研究起着重要的作用。
麦克斯韦方程组的第一个方程是高斯定律,它描述了电荷对电场产生的影响。
它的数学表达式为:∮E·dA = ε0∫ρdV其中,∮E·dA表示电场在截面A上的面积分,ε0为真空中的介电常数,ρ为电场中的电荷密度。
第二个方程是法拉第电磁感应定律,它描述了磁场通过闭合回路所产生的感应电场。
数学上可以表示为:∮B·dl = μ0(I + ε0d(∫E·dA)/dt)其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度,d(∫E·dA)/dt表示时间的变化率。
第三个方程是安培定律,它描述了环路中通过的电流对磁场产生的影响。
数学上可以表示为:∮B·dl = μ0I其中,∮B·dl表示磁场在环路l上的线积分,μ0为真空中的磁导率,I为环路中的电流强度。
最后一个方程是法拉第电磁感应定律的推广形式,也被称为麦克斯韦-安培定律。
它描述了变化的电场对磁场产生的影响,以及变化的磁场对电场产生的影响。
数学上可以表示为:∮E·dl = - d(∫B·dA)/dt其中,∮E·dl表示电场在环路l上的线积分,∮B·dA表示磁场通过闭合曲面的通量,d(∫B·dA)/dt表示时间的变化率。
麦克斯韦方程组是电磁学的基础,它描述了电荷和电流对电磁场产生的影响,以及电场和磁场对电荷和电流产生的影响。
通过这四个方程,我们可以推导出电磁波的存在和传播,解释电磁感应现象,研究电磁场的性质。
麦克斯韦方程组的研究也对电磁学的发展做出了巨大的贡献。
麦克斯韦方程组的理论和实验研究为电磁学的发展奠定了基础。
请简要叙述麦克斯韦方程组

请简要叙述麦克斯韦方程组
麦克斯韦方程组是电磁学的基本方程组,由英国物理学家詹姆斯·克拉克·麦克斯韦在19世纪提出。
这个方程组描述了电磁场的行为,包括电场和磁场。
方程组的第一部分是电场线方程,它描述了电场的分布,即电荷在空间中运动的方向和速度。
该方程为:
$$
abla^2mathbf{E} = mu_0 frac{partial}{partial
t}mathbf{E}$$
其中,$mathbf{E}$ 是电场强度,$mu_0$ 是真空介电常
数,$frac{partial}{partial t}$ 是时间的变化率。
方程组的第二部分是磁场线方程,它描述了磁场的分布,即电流在空间中运动的方向和速度。
该方程为:
$$
abla^2mathbf{B} = -frac{1}{mu_0}frac{partial}{partial t}left(mu_0 frac{partial}{partial t}mathbf{B}
ight)$$
其中,$mathbf{B}$ 是磁场强度,$frac{partial}{partial
t}$ 是时间的变化率。
麦克斯韦方程组描述了电磁场的行为,包括电场和磁场的分布和相互作用。
这个方程组在电磁学、光学、电动力学等领域都有广泛应用。
麦克斯韦方程组

㈠麦克斯韦方程组描述无源情况下,变化电场与变化磁场之间关系的两个方程分别是t B E ∂-∂=⨯∇/t D H ∂∂=⨯∇/ (4-3-1)如果交变电磁场是时谐场,即电矢量和磁矢量可以写成如下形式:jwt r E t r E )(),(=jwt r H t r H )(),(= (4-3-2)则(4-3-1)式在无源,无损耗和各向同性的非磁介质的情况下可以写成H j E ωμ-=⨯∇E j H ωε=⨯∇ (4-3-3)式中,ε和μ分别是介质的介电常数及磁导率。
20n εε=;n 是介质的折射率;磁导率0μμ≈。
在平面波导中,存在着沿z 方向的一个行波,而在xy 平面内,由于宽度(y 方向)远大于厚度(x 方向),平板波导的光只在一个方向上(x 方向)受到限制,波导的几何结构及折射率沿y 方向是不变的。
因此,相应的光场的电矢量和磁矢量不沿y 方向变化。
上面的),(t r E 和),(t r H 可以分别写成)(),(),(z t j y x E t r E βω-=)(),(),(z t j y x H t r H βω-= (4-3-4)式中β是沿z 方向的传播常数。
将(4-3-4)式的E 与H 代入(4-3-3)式中,并展开运算,注意到0/=∂∂y ,就可以得到电磁场中各分量之间的关系x y H E ωμβ-=y z x H j x E E j ωμβ=∂∂+/z y H j x E ωμ-=∂∂/x y E H ωεβ=z y E j x H ωε=∂∂/ (4-3-5)y z x E j x H H j ωεβ-=∂∂+/以上6个方程,包含了两组独立的方程组,一组含有y E ,x H ,z H ,另一组含有y H ,x E ,z E 。
第一组因为电场只有横向分量,所以称为TE 波,第二组则是磁场只含有横向分量,所以称为TM 波。
根据这些分量的相互关系,只要知道部分分量就可以将其他分量求出。
麦克斯韦方程组

Idl
dF
Idl
dF
F l dF l Idl B
B
B
例 求 如图不规则的平 面载流导线在均匀磁场中所受 的力,已知 B 和 I . 解 取一段电流元 Idl
y
dF
Idl
B
I dF Idl B o dFx dF sin BIdl sin dFy dF cos BIdl cos
0 di 0dr di dq dr , dB 2 2 a b 2r 4r 0 a b 0 ln B dB dr 4 a 4r a
(2)磁矩 m ,dq旋转 产生的磁矩
1 dm r di r 2 dr 2 a b 1 1 2 (a b) 3 a 3 m dm r dr 6 2 a (3)若 a >> b, 求 Bo 及 m 。 若 a>>b , AB 可看成点电荷i 2 q 2 b 1 2 0i 0b 2 a b. B0 , m a i 2 2a 4a
利用安培环路定理求无限长均匀密绕载流直螺线管 的磁场
例 5 有一无限长圆柱形导体和一无限长薄圆筒形导
体,都通有沿轴向均匀分布的电流,它们的磁导率都 为 0, 外半径都为R。今取长为 l,宽为 2R的矩形平面 ABCD 和 A`B`C`D`, AD及A`D` 正好在圆柱的轴线上。 问通过ABCD的磁通量大小是多少?通过A`B`C`D的磁 通量是多少?
(x R )2 2
Idl
r
B
dB
p *
o
R
I
B
dB
麦克斯韦方程组

在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必 再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律 是较为方便的。 注记 采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同 的常数会出现在方程内部不同位置。 国际单位制是最常使用的单位制,整个工程学领域都采用这种单位制,大多数化学家也都使 用这种单位制,大学物理教科书几乎都采用这种单位制。其它常用的单位制有高斯单位制、 洛伦兹-赫维赛德单位制(Lorentz-Heavisideunits)和普朗克单位制。由厘米-克-秒制衍生 的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。洛伦兹-赫维 赛德单位制也是衍生于厘米-克-秒制,主要用于粒子物理学;普朗克单位制是一种自然单位 制,其单位都是根据自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非 常有用的工具,能够给出很大的启示。在本页里,除非特别说明,所有方程都采用国际单位 制。 这里展示出麦克斯韦方程组的两种等价表述。第一种表述如下:
注意: (1)在不同的惯性参照系中,麦克斯韦方程组有同样的形式。 (2)应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在均匀各向同 性介质中,电磁场量与介质特性量有下列关系:
在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用 t=0时场量的初值条件, 原则上可以求出任一时刻空间任一点的电磁场,即 E(x,y,z,t)和 B(x,y,z,t)。
1855年至 1865年,麦克斯韦在全面地审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的 基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 方程组成 麦克斯韦方程组乃是由四个方程共同组成的:[1] 高斯定律:该定律描述电场与空间中电荷分布的关系。电场线开始于正电荷,终止于负电荷。 计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。 更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。 高斯磁定律:该定律表明,磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初 始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场 线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个 无源场。 法拉第感应定律:该定律描述时变磁场怎样感应出电场。电磁感应是制造许多发电机的理论 基础。例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭 合电路因而感应出电流。 麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的 安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。 在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变 磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。 麦克斯韦电磁场理论的要点可以归结为: ①几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传 递的,不论中间区域是真空还是实体物质。 ②电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。 ③导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全 电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。 ④磁通量既无始点又无终点,即不存在磁荷。 ⑤光波也是电磁波。 麦克斯韦方程组有两种表达方式。 1.积分形式的麦克斯韦方程组是描述电磁场在某一体积或某一面积内的数学模型。表达式 为:
麦克斯韦方程组数学表达式

麦克斯韦方程组数学表达式麦克斯韦方程组是描述电磁场的基本方程,它由四个方程组成,分别为高斯定律、法拉第电磁感应定律、安培环路定理和法拉第电磁感应定律的积分形式。
这四个方程的数学表达式如下:1. 高斯定律(电场电荷密度定理):$$ablacdotmathbf{E}=frac{rho}{epsilon_0}$$其中,$ablacdotmathbf{E}$表示电场的散度,$rho$表示电荷密度,$epsilon_0$为真空介电常数。
2. 法拉第电磁感应定律(电动势定理):$$oint_Cmathbf{E}cdotdmathbf{l}=-frac{d}{dt}int_Smathbf{B}cdot dmathbf{A}$$ 其中,$C$表示一条封闭路径,$mathbf{E}$表示电场强度,$mathbf{B}$表示磁场强度,$S$表示该路径所围成的面积。
3. 安培环路定理(磁场电流密度定理):$$ablatimesmathbf{B}=mu_0mathbf{J}+mu_0epsilon_0frac{partialm athbf{E}}{partial t}$$其中,$ablatimesmathbf{B}$表示磁场的旋度,$mathbf{J}$表示电流密度,$mu_0$为真空磁导率,$epsilon_0$为真空介电常数。
4. 法拉第电磁感应定律的积分形式(法拉第电磁感应定律的通量定理):$$oint_Smathbf{E}cdotdmathbf{A}=-frac{d}{dt}int_Vmathbf{B}cdot dmathbf{V}$$ 其中,$S$表示一个封闭曲面,$mathbf{E}$表示电场强度,$mathbf{B}$表示磁场强度,$V$表示该曲面所围成的体积。
麦克斯韦方程组

D ex Em cos(t kz)
以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H 和 D
代入式
ex ey ez
H x
y
z
ex
H y z
ex
k 2 Em
sin(t kz)
Hx Hy Hz
D t
ex
Dx t
ex Em sin(t kz)
由H DtFra bibliotekk 2 2
H
e H
e
CU m 2 r
cos t
9
例 2.6.2 在无源(J 0、 0) 的电介质( 0) 中,若已知电 场强度矢量 E exE0 cos(t kz) V/m,式中的E0为振幅、ω为角频
率、k为相位常数。试确定k与ω 之间所满足的关系,并求出与
相应E的其它场矢量。 解:E 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利
H
E
J
D
t
B
t
B D
0
麦克斯韦第一方程,表明传导电 流和变化的电场都能产生磁场
麦克斯韦第二方程,表 明变化的磁场产生电场
麦克斯韦第三方程表明磁场是 无源场,磁力线总是闭合曲线
麦克斯韦第四方程, 表明电荷产生电场
2.6.3 媒质的本构关系 各向同性线性媒质的本构关系为
缓变场
B 0 t
电磁场 (EM)
准静电场 (EQS)
D 0 t
准静磁场 (MQS)
静电场 (ES)
静态场
0 t
恒定电场 (SS)
静磁场 (MS)
7
例 2.6.1 正弦交流电压源 u Um 连sin接到t 平行板电容器的两个极
板上,如图所示。(1) 证明电容器两极板间的位移电流与连接导线 中的传导电流相等;(2)求导线附近距离连接导线为r 处的磁场强度。
麦克斯韦方程组推导

麦克斯韦方程组推导
麦克斯韦方程组是由六十年代提出的常微分方程组,可以描述电荷密度和电场的定向关系。
并可以解决 Maxwell 公式来解决电磁学问题,由于其具有最强的抽象表达能力,因此它成为研究电磁学的重要工具。
Maxwell 方程组包括四个微分方程:
(1)偏微分方程:∇·E=ρ/ε
(2)磁场方程:∇·B=0
(3)电磁感应定律:∇xE=−dB/dt
(4)电磁波方程:∇xB=μ·J+ε·ε0·dE/dt
其中,ρ代表电荷密度,ε代表真空电导率,B表示磁场,J表示电流密度,ε0 代表真空介电常数,μ 表示磁导率,dt 表示时间微分。
麦克斯韦方程组表明,电荷密度和电磁场之间存在相互依存关系,即当一方改变时,另一方也会受到影响,它们之间的相互联系由第一个和第三个方程来描述,第二个方程描述了磁场的定向关系,而第四个方程是由电磁感应定律和电磁波方程构成的。
麦克斯韦方程组

§11.3 麦克斯韦方程组主要内容:一与变化电场相联系的磁场二麦克斯韦方程组三电磁波麦克斯韦在分析电磁感应现象后,提出了“涡旋电场”的概念,总结出变化磁场激发电场所遵循的规律。
从对称性考虑,变化的电场会不会激发磁场呢?在分析传导电流激发磁场所遵循的安培环路定理后,他又提出“位移电流”假说,对安培环路定理进行了修改和扩充,总结出变化电场激发磁场所遵循的规律,并在此基础上用一组方程概括了电磁场的全部规律。
C安培环路定理:=⋅⎰Ll d H=∑ii I ⎰⎰⋅SSd j 安培环路定律的局限性11.3.1与变化电场相联系的磁场LS 1S 2S 1:以L 为边界的任意曲面:S 2:以L 为边界的任意曲面:⎰=⋅1S CC I S d j⎰=⋅2S C0S d j? 位移电流麦克斯韦大胆假设:思路: 非稳态→q 变化→电场E.D 变化变化的电场也产生磁场!?=q 传导电流S q dSσ=⋅⎰⎰2D σ=d dq I dt=S q D dS=⋅⎰⎰22S =⎰⎰S D dSdt⋅=⎰⎰2——非稳恒情况下,安培环路定理不成立2P 12r Lσ+σ-Ep 12 r 2归纳麦克斯韦方程组的积分形式:⎰⎰⎰⎰⎰=⋅V0SVd 1S d E ρε 0S d B S=⋅⎰⎰S d tBt d d l d E SL⋅∂∂-=-=⋅⎰⎰⎰Φ]S d tDS d j [l d B SSC 0L⋅∂∂+⋅=⋅⎰⎰⎰⎰⎰μ通量11.3.2 麦克斯韦方程组麦克斯韦方程组积分形式和微分形式dVS d D V0S⎰⎰=⋅ρS d t D S d J l d H SS 0L⋅+⋅=⋅⎰⎰⎰∂∂S d t B l d E SL ⋅-=⋅⎰⎰∂∂0S d B S=⋅⎰积分形式一有限区域∇∇∇⨯∇微分形式位移电流与涡旋电场的假设导致麦克斯韦提出电磁波的预言,20年后赫兹用实验证实了电磁波的存在.电磁波的能流密度--玻印廷矢量:HE S ⨯=E xH可确定传播方向u11.3 电磁波简述一基本性质1. 电磁波是横波2. E与H同步变化(同相位)二电磁波波谱无线电波和微波:用于远洋长距离通讯。
麦克斯韦方程组

6. 局限性 (1)是在承认电荷连续分布基础上建立的宏观
经典理论,未和物质微观结构联系起来 . 1895年: 汤姆生发现电子 . 20 世纪初: 洛仑兹建立电磁现象微观理论
经典电子论
量子电磁理论
(2)不完全对称 ? 不存在磁单极 .
思考:如果存在磁单极,麦克斯韦方程如何修正 ?
=
∫V
ρdV
环路定理
∫r
H
L
⋅
d
r l
r
= ∫S ( j +
∂
r D
∂t
)
⋅
d
r S
∫r
E
(1)
⋅
r dl
=
0
L
∫ ∫ r
E
(2)
⋅
r dl
=
−
∂Br
⋅
r dS
L
∂t
∫ ∫ r
E
=
r E⋅
r E
(1)
+
r dl = −
r E
(2)
r
∂B
⋅
r dS
L
S ∂t
麦克斯韦方程组
积分形式
∫SDr
r ⋅ dS
=
dF r
m
Fm =
q =
vv
×
v B
v Idl
×
v
dFm
v B
v M
=
v Pm
×
v B
第12章
1. 感应电动势的计算
ε = − dψ m
dt
= − N dφm
dt
ε动 = ∫
(vv
麦克斯韦方程组五个公式和含义

麦克斯韦方程组及其含义麦克斯韦方程组是电磁学中的基本方程组,它描述了电磁场的运动规律和电磁辐射现象。
麦克斯韦方程组包含了五个基本公式,分别是麦克斯韦方程的四个方程和库仑定律。
1. 麦克斯韦方程的四个方程1.1. 麦克斯韦第一定律(电荷守恒定律)[ = ]麦克斯韦第一定律描述了电场()的散度和电荷密度()之间的关系。
它表明,电场的散度等于单位体积内的电荷密度与真空介电常数(_0)的比值。
1.2. 麦克斯韦第二定律(电磁感应定律)[ = 0]麦克斯韦第二定律说明了磁感应强度()的散度为零。
这意味着在没有磁荷存在的情况下,磁感应线不会产生起始或终止于某个点的情况。
1.3. 麦克斯韦第三定律(安培定律)[ = -]麦克斯韦第三定律指出了电场()的旋度与磁感应强度的时间导数之间的关系。
它表明,电场的旋度等于磁场随时间变化的负导数。
1.4. 麦克斯韦第四定律(法拉第电磁感应定律)[ = _0 + _0_0 ]麦克斯韦第四定律描述了磁感应强度()的旋度和电流密度()以及电场的时间导数之间的关系。
它表示,磁感应强度的旋度等于电流密度和电场随时间变化的贡献之和。
2. 库仑定律库仑定律描述了电荷之间的相互作用,是电磁学的基本定律之一。
[F = ]其中,(F)表示电荷之间的力,(q_1)和(q_2)分别表示两个电荷的电荷量,(r)表示两个电荷之间的距离,(_0)为真空介电常数。
库仑定律表明两个电荷之间的力与它们的电荷量成正比,与它们之间的距离的平方成反比。
这个定律是电磁场力学的基础,它解释了电磁相互作用现象。
总结麦克斯韦方程组是电磁学中非常重要的方程组,它描述了电磁场的运动规律和电磁辐射现象。
其中麦克斯韦方程的四个方程描述了电场和磁场的分布和变化规律,库仑定律则描述了电荷之间的相互作用。
通过这些方程,我们可以深入理解电磁场的本质以及电磁现象的产生和变化过程。
麦克斯韦方程组

㈠麦克斯韦方程组描述无源情况下,变化电场与变化磁场之间关系的两个方程分别是t B E ∂-∂=⨯∇/t D H ∂∂=⨯∇/ (4-3-1)如果交变电磁场是时谐场,即电矢量和磁矢量可以写成如下形式:jwt r E t r E )(),(=jwt r H t r H )(),(= (4-3-2)则(4-3-1)式在无源,无损耗和各向同性的非磁介质的情况下可以写成H j E ωμ-=⨯∇E j H ωε=⨯∇ (4-3-3)式中,ε和μ分别是介质的介电常数及磁导率。
20n εε=;n 是介质的折射率;磁导率0μμ≈。
在平面波导中,存在着沿z 方向的一个行波,而在xy 平面内,由于宽度(y 方向)远大于厚度(x 方向),平板波导的光只在一个方向上(x 方向)受到限制,波导的几何结构及折射率沿y 方向是不变的。
因此,相应的光场的电矢量和磁矢量不沿y 方向变化。
上面的),(t r E 和),(t r H 可以分别写成)(),(),(z t j y x E t r E βω-=)(),(),(z t j y x H t r H βω-= (4-3-4)式中β是沿z 方向的传播常数。
将(4-3-4)式的E 与H 代入(4-3-3)式中,并展开运算,注意到0/=∂∂y ,就可以得到电磁场中各分量之间的关系x y H E ωμβ-=y z x H j x E E j ωμβ=∂∂+/z y H j x E ωμ-=∂∂/x y E H ωεβ=z y E j x H ωε=∂∂/ (4-3-5)yz x E j x H H j ωεβ-=∂∂+/以上6个方程,包含了两组独立的方程组,一组含有y E ,x H ,z H ,另一组含有y H ,x E ,z E 。
第一组因为电场只有横向分量,所以称为TE 波,第二组则是磁场只含有横向分量,所以称为TM 波。
根据这些分量的相互关系,只要知道部分分量就可以将其他分量求出。
麦克斯韦方程

麦克斯韦方程麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·克拉克·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。
它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。
从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。
麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。
从这些基础方程的相关理论,发展出现代的电力科技与电子科技。
麦克斯韦在1865年提出的最初形式的方程组由20个等式和20个变量组成。
他在1873年尝试用四元数来表达,但未成功。
现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。
麦克斯韦方程组乃是由四个方程共同组成的:.高斯定律:该定律描述电场与空间中电荷分布的关系。
电场线开始于正电荷,终止于负电荷(或无穷远)。
计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。
更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。
..高斯磁定律:该定律表明,磁单极子实际上并不存在。
所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。
磁场线会形成循环或延伸至无穷远。
换句话说,进入任何区域的磁场线,必需从那区域离开。
以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个无源场。
..法拉第感应定律:该定律描述时变磁场怎样感应出电场。
电磁感应是制造许多发电机的理论基础。
例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。
..麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。
麦克斯韦的四个方程

麦克斯韦的四个方程
麦克斯韦的四个方程,也被称为麦克斯韦方程组,是电磁学的基础,
它们描述了电荷、电场、磁场、电流和电磁波之间的关系。
这四个方
程的发现是麦克斯韦在19世纪中叶的一项伟大成就,被广泛运用于电子技术和通信领域,是电磁学的基础公式。
麦克斯韦的四个方程分别是“高斯定律”、“安培定律”、“法拉第
电磁感应定律”和“电磁场的非齐次波动方程”。
高斯定律描述了电
场起源和分布,它告诉我们电场是由电荷产生的,并且与电荷的数量
和分布有关。
安培定律描述了磁场的起源和分布,它告诉我们磁场是
由电流产生的,并且与电流的数量和分布有关。
法拉第电磁感应定律
描述了电磁感应的过程,它告诉我们磁场的变化会引起电场的变化,
并且能够产生电磁感应现象。
电磁场的非齐次波动方程描述了电磁波
的传播方式和特性,它告诉我们电磁波是由电场和磁场相互作用产生的,并且在空间中以波动的形式传播。
麦克斯韦的四个方程在电磁学中起着非常重要的作用,它们不仅能够
被用来解释电磁现象,还能够指引工程师们设计电子设备和电信系统。
例如,在通信领域,它们被用来设计更加高效的无线电波天线、创建
更加精确的卫星导航系统和改善无线电信号传输技术,为人们的通信
提供更加便利的方式。
总之,麦克斯韦的四个方程是电磁学中的基础公式,它们描述了电磁波的起源和传播,被广泛应用于通信领域和电子技术中。
我们在日常生活中所使用的通信技术和设备,都离不开麦克斯韦的四个方程。
因此,深入理解和掌握这些方程对于我们的生活和工作成为十分重要的一环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D=εE
B=μH
对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。 麦克斯韦方程组复数形式:
▽·������ = −������������������(9) ������ =εE(10) B =μH(11) ������ = ������������ +������′(12)
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数, 在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面 采用复数形式的电磁场定律是较为方便的。 麦克斯韦方程组的意义: (一)经典场论是 19 世纪后期麦克斯韦在总结电磁学三大实验定律并把它与力学 模型进行类比的基础上创立起来的。 但麦克斯韦的主要功绩恰恰使他能够跳出经 典力学框架的束缚:在物理上以"场"而不是以"力"作为基本的研究对象,在数学 上引入了有别于经典数学的矢量偏微分运算符。 这两条是发现电磁波方程的基础。 这就是说, 实际上麦克斯韦的工作已经冲破经典物理学和经典数学的框架,只是 由于当时的历史条件, 人们仍然只能从牛顿的经典数学和力学的框架去理解电磁 场理论。 (二) 我们从麦克斯韦方程组的产生,形式,内容和它的历史过程中可以看到: 第一,物理对象是在更深的层次上发展成为新的公理表达方式而被人类所掌握, 所以科学的进步不会是在既定的前提下演进的, 一种新的具有认识意义的公理体 系的建立才是科学理论进步的标志。第二,物理对象与对它的表达方式虽然是不 同的东西,但如果不依靠合适的表达方法就无法认识到这个对象的“存在” 。第 三, 我们正在建立的理论将决定到我们在何种层次的意义上使我们的对象成为物 理事实,,这正是现代最前沿的物理学所给我们带来的困惑。 (三) 麦克斯韦方程组揭示了电场与磁场相互转化中产生的对称性优美, 这种优美 以现代数学形式得到充分的表达。但是,我们一方面应当承认,恰当的数学形式 才能充分展示经验方法中看不到的整体性(电磁对称性);另一方面,我们也不应 当忘记,这种对称性的优美是以数学形式反映出来的电磁场的统一本质。因此, 我们应当认识到应在数学的表达方式中"发现"或"看出" 了这种对称性, 而不是从 物理数学公式中直接推演出这种本质。
������ ������Βιβλιοθήκη (������ +
������������ ������������
������������ ������������
) ������������(1)
������������(2) (3)
������ ·������������= 0 ������ ·������������= q(4)
方程(1)称为全电流方程,提出位移电流的概念,揭示出变化的电场可以 在空间激发磁场, 并通过全电流的概念的引入,得到了一般形式下的安培环路定 力和在真空或介质中的表示形式,即,任何随时间而变化的电场,都是和磁场联 系在一起的。 方程(2)称为电磁感应定律,麦克斯韦提出涡旋电场的概念,揭示出磁场 可以激发空间电场,并通过法拉第电磁感应定律得出二者关系,即:任何随时间 变化的磁场,都是与涡旋电场联系在一起的。 通过方程(1)方程(2)可知变化的电场和变化的磁场彼此不是孤立的,他 们永远密切的联系在一起,并相互激发,组成一个统一的电磁场的整体。 方程(3)称为磁通连续性原理,磁场可以由传导电流激发,也可以由变化 电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭 曲面的通量无贡献。 方程(4)称为高斯定理,在一般情况下,电场可以是库仑电场也可以是变 化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭 曲面的通量无贡献。 在电磁场的实际应用中, 经常要知道空间逐点的电磁场量和电荷、电流之间 的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。 从麦克斯韦方程组中可以看出,在电荷及电流均不存在的无源区中,时变的 电磁场是有旋无散的,电场线和磁场线相互铰链,自行闭合,从而在空间中形成 电磁波,此外,有方程(2)和方程(2)还可以看出,时变电场的方向与时变磁 场的方向处处相互垂直。 麦克斯韦方程组微分形式:
▽× ������ = ������ + ▽× ������ = −
������������ ������������ ������������
(5)
������������
(6)
▽·B = 0(7) ▽ ·D = ������(8)
在不同的惯性参照系中,麦克斯韦方程有同样的形式。同时,在应用麦克斯 韦方程组解决实际问题, 还要考虑介质对电磁场的影响。 例如在各向同性介质中, 电磁场量与介质特性量有下列关系:
麦克斯韦方程组
麦克斯韦方程组, 是英国物理学家麦克斯韦在 19 世纪建立的一组描述电场、 磁场与电荷密度、电流密度之间关系的偏微分方程。 麦克斯韦方程组的积分形式为:
������ ������ ������ ������
������ ·������������= ������ ·������������ = -