工程数学I(离线作业)
《工程数学(本)》形成性考核作业1-4参考答案(1)
国家开放大学《工程数学(本)》形成性考核作业 1-4 参考答案15501-1.n阶行列式中元素的代数余子式与余子式之间的关系是(A).a.b.c.d.正确答案是:1-2. 三阶行列式的余子式M23=(B).a.b.c.d.正确答案是:2- 1.设A为3×4 矩阵,B为4×3 矩阵,则下列运算可以进行的是(C) .a. A+Bb. B+Ac. ABd. BA'正确答案是:AB2-2. 若A为3×4 矩阵,B为2×5 矩阵,且乘积AC'B'有意义,则C为 (B) 矩阵.a. 2×4b. 5×4c. 4×2d. 4×5正确答案是:5×43-1.设,则BA-1(B) .a.b.c.d.正确答案是:3-2.设,则 (A) .a.b.c.d.正确答案是:4- 1.设A,B均为n阶可逆矩阵,则下列运算关系正确的是(C).a.b.c.d.正确答案是:4-2.设A,B均为n阶方阵,k>0且,则下列等式正确的是(A).a.b.c.d.正确答案是:5-1.下列结论正确的是(C).a. 若A,B均为n阶非零矩阵,则AB也是非零矩阵b. 若A,B均为n阶非零矩阵,则c. 对任意方阵A,A+A'是对称矩阵d. 若A,B均为n阶对称矩阵,则AB也是对称矩阵正确答案是:对任意方阵A,A+A'是对称矩阵5-2.设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是(A).a.b.c.d.正确答案是:6-1.方阵A可逆的充分必要条件是(B).a.b.c.d.正确答案是:6-2.设矩阵A可逆,则下列不成立的是(C).a.b. c. d.正确答案是:7-1.二阶矩阵(B).a.b.c.d.正确答案是:7-2.二阶矩阵(B)..... dc b a正确答案是:的秩是(D).a. 1b. 2c. 4d. 3正确答案是: 3的秩为(C).a. 2b. 4c. 3d. 5正确答案是: 39-1.设向量组为组.a.b.c. ,则(B)是极大无关8-2.向量组8-1.向量组d.正确答案是:9-2.向量组的极大线性无关组是(D).a.b.c.d.正确答案是:10-1.方程组的解为(A).a.b.c.d.正确答案是:的解为(C).10-2.用消元法得a.b.c.d.正确答案是:11-1.行列式的两行对换,其值不变.(×)11-2.两个不同阶的行列式可以相加.(×)12-1.同阶对角矩阵的乘积仍然是对角矩阵.( √ )12-2.设A是对角矩阵,则A=A'.( √ )13-1.若为对称矩阵,则a=-3.(×)13-2. 若为对称矩阵,则x=0.( √ )14-1.设,则.(×)14-2. 设,则.( √ )15-1.设A是n阶方阵,则A可逆的充要条件是r(A)=n.( √ )15-2.零矩阵是可逆矩阵.(×)16-1.设行列式,则 -6 .正确答案是: -616-2. 7 .正确答案是: 7是关于 x 的一个一次多项式,则该多项式一次项的系数是 .正确答案是: 217-2. 若行列式 ,则 a= 1 .正确答案是: 118-1.乘积矩阵 中元素 C 23= 10 .正确答案是: 1018-2. 乘积矩阵 中元素 C 21= -16 .正确答案是: -1619-1.设 A,B 均为 3 阶矩阵,且正确答案是: -7219-2. 设 A,B 均为 3 阶矩阵,且正确答案是: 920-1.矩阵的秩为 2 .正确答案是: 217-1.29 .-72 .,则 ,则20-2. 矩阵的秩为 1 .正确答案是: 12设线性方程组的两个解,则下列向量中(B)一定是的解.a.b.c.d.设线性方程组的两个解,则下列向量中 (B ) 一定是的解.a.b.c.d.设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D).a.b.c..设与分别代表非齐次线性方程组个方程组有解,则(A).a. b. c. d.以下结论正确的是(D).a. 方程个数小于未知量个数的线性方程组一定有解b. 方程个数等于未知量个数的线性方程组一定有唯一解c. 方程个数大于未知量个数的线性方程组一定有无穷多解d. 齐次线性方程组一定有解若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(D).a. 有无穷多解b. 有唯一解c. 无解d. 可能无解若 向量组线性无关,则齐次线性方程组(D).a. 有非零解b. 有无穷多解d 的系数矩阵和增广矩阵,若这2c. 无解d. 只有零解若向量组线性相关,则向量组内 (D) 可被该向量组内其余向量线性表出.a.至多有一个向量b. 任何一个向量c. 没有一个向量d. 至少有一个向量矩阵A的特征多项式,则A的特征值为(B).a.b.c.d.,,矩阵的特征值为(A).a. -1,4b. -1,2c. 1,4d. 1,-1已知可逆矩阵A的特征值为-3,5 ,则A-1的特征值为 (C) .....的特征值为 0,2,则 3A 的特征值为 (D) .a. 2,6b. 0,0c. 0,2d. 0,6 设是矩阵 A 的属于不同特征值的特征向量,则向量组秩是(D).a. 不能确定b. 1c. 2d. 3设 A ,B 为 n 阶矩阵, 既是 A 又是 B 的特征值,x 既是 A 又是 B 的特征向 量,则结论(A)成立.a. x 是 A+B 的特征向量d c b a 设矩阵 的b. 是A-B的特征值c. 是A+B的特征值d. 是AB的特征值设A,B为两个随机事件,下列事件运算关系正确的是(C).a.b.c.d.设A,B为两个随机事件,则(B)成立.a.b.c.d.若事件A,B满足,则A与B一定(B).a. 互不相容b. 不互斥c. 相互独立d. 不相互独立如果(B)成立,则事件A与B互为对立事件.a.b. 且c. A 与 互为对立事件.袋中有 5 个黑球, 3 个白球, 一次随机地摸出 4 个球, 其中恰有 3 个白球 的概率为(D).....某购物抽奖活动中,每人中奖的概率为 0.3. 则 3 个抽奖者中恰有 1 人中奖的概率为(A).a. b.c. d. 0.3非齐次线性方程组 相容的充分必要条件是 . ( √ )线性方程组 可能无解.(×)当 1 时,线性方程组 只有零解.( √ )当 1 时,线性方程组 有无穷多解.(×)d c b a d 2设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(× )设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.( √ )若向量组线性相关,则也线性相关.(×)若向量组线性无关,则也线性无关.( √ )若A矩阵可逆,则零是A的特征值.(×)特征向量必为非零向量.( √ )当 1 时,齐次线性方程组有非零解.若线性方程组有非零解,则 -1 .一个向量组中如有零向量,则此向量组一定线性相关 .向量组线性相关.向量组的秩与矩阵的秩相等.设齐次线性方程组的系数行列式,则这个方程组有非零解。
工程数学离线作业 (1)
浙江大学远程教育学院《工程数学》课程作业姓名: 杜小勇 学 号: 715100202040年级: 15秋 学习中心: 西溪直属————————————————————————————— 《复变函数与积分变换》第一章1.1计算下列各式:(2)(a-b i )3=a3-3a2bi+3a(bi)2-(bi)3=a3-3ab2+i(b3-3a2b)(3)i (i 1)(i 2)--解 i 1.2证明下列关于共轭复数的运算性质:(1)1212()z z z z ±=±(2)1212()z z z z =(3)11222()(0)zz z z z =≠ 1.4将直线方程ax+by+c=0(a 2+b 2≠0)写成复数形式.[提示:记x+i y=z.]1.5将圆周a(x 2+y 2)+bx+cy+d =0(a ≠0)写成复数形式(即用z 与z 来表示,其中z=x+iy ).1.6求下列复数的模与辐角主值:(1i1.8将下列各复数写成三角表示式:1.10解方程:z 3+1=0.1.11指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)2<|z|<3(3)4π<arg z <3π;且1<|z|<3(5)Re z 2<1(7)|arg z |<3π第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z z 2(2)f(z)=x 2+iy 22.3确定下列函数的解析区域和奇点,并求出导数:(1)211z - 2.9由下列条件求解析函数f(z)=u+i v .(1)u(x-y)(x 2+4xy+y 2)(3)u=2(x-1)y, f (0)=-i(4)u=e x (x cos y - y sin y),f (0)=02.13试解方程:(1)e zi2.14求下列各式的值:(1)cos i(3)(1-i)1+i第三章3.1计算积分120[()]d i x y ix z +-+⎰.积分路径为(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平方向向右至1+i.3.2计算积分d ||cz z z ⎰ 的值,其中C 为(1)|z|=2;(2)|z|=4. 3.6计算21d c z z z-⎰ ,其中为圆周|z|=2 3.8计算下列积分值:(1)0sin xi⎰z d z(3)0(32)d i z e z z +⎰3.10计算下列积分:(1)|2|1d 2z z e z z -=-⎰(2)2||221d 1z z z z z =-+-⎰ (4)||d (1)(1)nz r z r z =≠-⎰ 3.11计算I=d (21)(2)cz z z z +-⎰ ,其中C 是(1)|z |=1;(2)|z -2|=1;(3)|z -1|=12;(4)|z |=3.3.13计算下列积分:(2)||22sin d ()2z z z z π=-⎰(3)123cos d C C C z z z -=+⎰ ,其中C 1:|z |=2,C 2:|z |=3.第四章4.2下列级数是否收敛?是否绝对收敛?(1)11i ()2n n n∞=+∑ (2)1i !n n n ∞=∑4.4试确定下列幂级数的收敛半径:(1)11n n nz ∞-=∑(2)211(1)n n n z n ∞=+∑4.5将下列各函数展开为z 的幂级数,并指出其收敛区域:(1)311z + (3)221(1)z + (5)sin 2 z4.7求下列函数在指定点z 0处的泰勒展式:(1)21z ,z 0=1 (2)sin z ,z 0=14.8将下列各函数在指定圆环内展开为洛朗级数:(1)21(1)z z z +- ,0<|z |<1,1<|z |<+∞ (3)2225(2)(1)z z z z -+-+ ,1<|z |<2 (4)cosi 1z- ,0<|z -1|<+∞ 4.9将f(z)=2132z z -+ 在z =1处展开为洛朗级数.第五章5.3下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):(1)221(4)z z z -+ ;(2)3sin z z ;(3)1sin cos z z + ; (4)21(1)z z e - ;(5)ln(1)z z + ;(6)111z e z -- . 5.5如果f(z)与g(z)是以z 0为零点的两个不恒为零的解析函数,则00()()lim lim ()()z z z z f z f z g z g z →→'=' (或两端均为∞). [提示:将()()f zg z 写成0()()()m n z z z z ϕψ--的形式,再讨论.] 5.7求出下列函数在孤立奇点处的留数:(1)1z e z- (2)722(2)(1)z z z -+ (5)1sin z z(6)sh ch z z 5.8利用留数计算下列积分:(1)||1d sin z z z z=⎰ (2)32||2d (1)(3)z z e z z z =-+⎰(4)1||2sin d (1)z z z z z e =-⎰ 5.12求下列各积分之值:(1)20d (1)cos x a a θθ>+⎰ (3)2222d (0)()x x a x a +∞-∞>+⎰ (4)2cos d 45x x x x +∞-∞++⎰第八章 8.4求下列函数的傅氏变换:(1)1,()1,0,f t -⎧⎪=⎨⎪⎩ 10,01,t t -<<<< (2),()0,t e f t ⎧=⎨⎩ 0,0;t t ≤> (3)21,(t)0,t f ⎧-=⎨⎩||1,||1;t t ≤> 8.5求下列函数的傅氏变换,并证明所列的积分等式.(2)sin ,()0,t f t ⎧=⎨⎩ ||,||.t t ππ≤> 证明 20sin ,sin sin d 210,t t πωπωωω+∞⎧⎪=⎨-⎪⎩⎰||,||.t t ππ≤> 8.13证明下列各式:其他(1) f 1(t )* f 2(t )= f 2(t )* f 1(t )8.14设10,()1,f t ⎧=⎨⎩0,0;t t ≤> 20,()e ,t f t -⎧=⎨⎩ 0,0,t t <≥ 求f 1(t )* f 2(t ).8.15设1()F ω= F [f 1(t)], 2()F ω= F [f 2(t)],证明:F [f 1(t)·f 2(t)]=121()*()2F F ωωπ.第九章9.1求下列函数的拉氏变换:(1)3,()1,0,f t ⎧⎪=-⎨⎪⎩02,24,4;t t t ≤<≤<> (2)3,()cos ,f t t ⎧⎪=⎨⎪⎩ 0,2;2t t ππ≤<≥9.2求下列函数的拉氏变换:(1)sin 2t(4)||t9.3求下列函数的拉氏变换:(1)232t t ++(3)2(1)t t e -(5)cos t at9.4利用拉氏变换的性质,计算L [f (t )]:(1)3()sin 2t f t te t -= ;(2)30()sin 2d t t f t t e t t -=⎰9.5利用拉氏变换的性质,计算L -1[F (s )](2)1()ln1s F s s +=- (4)221()(1)F s s =- 9.6利用像函数的积分性质,计算L [f (t )]:(1)sin ()kt f t t = (2)30sin 2d t t e t t t-⎰ 9.8求下列像函数F (s )的拉氏变换:(5)42154s s ++ (7)221s e s-+ 9.11利用卷积定理证明下列等式:(1)L [0()d t f t t ⎰ ]= L [()*()f t u t ]=()F s s ; (2)L -1222sin (0).()2s t at a s a a⎡⎤=≠⎢⎥+⎣⎦《常微分方程》第一章2.验证函数1y cx c =+ (c 是常数)和y =±都是方程1y xy y '=+ 的解.4.验证函数12cos sin y c kx c kx =+ (k,c 1, c 2是常数)是方程20y k y '''+=的解.0.x y +=8.2(1)tan ,(0) 2.y y x y '=-=求下列齐次方程的解: 9.22d 2.d y xy x x y=+ 10.d (1ln ln ).d y y y x x x =+-12.d ,(1) 4.d y y y x x==13.1(1).2xy y y '-==求下列一阶线性方程或伯努利方程的解: 14.2d d y y x x x=- 15.2d 2,(0)2d x y xy x e y x -++== 17.2d 0,(0)1d 2(1)2y xy x y x x y--==- 验证下列方程为全微分方程或找出积分因子,然后求其解: 19.453(5d d )d 0x y x x y x x ++=20.2(d d )d 5d 0,(0)1x x x y x x y y y ++-==第二章求下列方程的通解或特解: 7.40y y '''-=8.20y y ''+=9.20y y y '''-+=10. 4130y y y '''++=11. 00540,|5,|8x x y y y y y ==''''-+=== 求下列方程的通解或特解: 18.y y a ''+= (a 是常数),y (0)=0,y ’(0)=0 19.5420,(0)0,(0)2x y y y e y y ''''++===- 24.22x y y y e -'''++= 26.2002d d cos 2,||2d d t t x x x t x t t ==+===- 27.22d sin ,0d x x at a t+=> 28.22d d 32sin cos d d y y x x x x+=+ 31.225cos y y x '''+=33.22cos x y y y e x -'''-+= 34.4sin 2y y x x ''+=填空题:1. 设2i z e +=,那末Re z =______①______,Im z =_______②_______。
工程数学作业1
第三章作业练习题1:设两点边值问题⎪⎩⎪⎨⎧==<<=+ε1)1( ,0)0()10( 22y y a a dx dy dx y d的精确解为ax e e a y x +---=ε-ε-)1(11/1 现以h 为步长划分区间]1,0[为100等份,用差分近似代替微分,将微分方程离散化为线性方程组,代入初始条件后,得到如下的方程组问题⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-++-++-++-h ah ahah ah y y y y h h h h h h h εεεεεεεεεεε222299321)2()2()2()2(其中1=ε,2/1=a ,100/1=h 。
(1) 分别用J 迭代法,G-S 迭代法和SOR 迭代法求解,并与精确解进行比较;(2) 如果1.0=ε,001.0=ε,再求解该问题解:输出结果为精确值 J 迭代值 GS 迭代值 sor 迭代值0.0526 0.0501 0.0500 0.05040.1006 0.0961 0.0960 0.09660.1446 0.1384 0.1382 0.13910.1848 0.1774 0.1771 0.17820.2217 0.2132 0.2129 0.21420.2556 0.2462 0.2458 0.24740.2867 0.2767 0.2763 0.27800.3153 0.3049 0.3044 0.30630.3417 0.3309 0.3305 0.33250.3661 0.3551 0.3546 0.35680.3886 0.3775 0.3770 0.37930.4094 0.3984 0.3979 0.40020.4288 0.4178 0.4173 0.41970.4467 0.4359 0.4354 0.43790.4635 0.4528 0.4523 0.45480.4791 0.4687 0.4682 0.47070.5074 0.4976 0.4970 0.4996 0.5202 0.5107 0.5102 0.5128 0.5324 0.5232 0.5227 0.5252 0.5438 0.5349 0.5344 0.5370 0.5546 0.5461 0.5456 0.5481 0.5649 0.5567 0.5562 0.5587 0.5747 0.5668 0.5663 0.5688 0.5840 0.5765 0.5760 0.5784 0.5929 0.5857 0.5853 0.5876 0.6014 0.5946 0.5941 0.5965 0.6096 0.6031 0.6027 0.6049 0.6175 0.6113 0.6109 0.6131 0.6251 0.6192 0.6188 0.6210 0.6325 0.6269 0.6265 0.6286 0.6396 0.6343 0.6339 0.6360 0.6466 0.6415 0.6411 0.6432 0.6533 0.6485 0.6482 0.6501 0.6599 0.6554 0.6550 0.6569 0.6664 0.6620 0.6617 0.6636 0.6727 0.6686 0.6683 0.6700 0.6788 0.6750 0.6747 0.6764 0.6849 0.6812 0.6810 0.6826 0.6909 0.6874 0.6871 0.6887 0.6967 0.6935 0.6932 0.6947 0.7025 0.6994 0.6992 0.7007 0.7082 0.7053 0.7051 0.7065 0.7139 0.7111 0.7109 0.7123 0.7195 0.7169 0.7167 0.7180 0.7250 0.7226 0.7224 0.7236 0.7305 0.7282 0.7280 0.7292 0.7359 0.7337 0.7336 0.7347 0.7413 0.7393 0.7391 0.7402 0.7467 0.7447 0.7446 0.7456 0.7520 0.7502 0.7500 0.7510 0.7573 0.7556 0.7554 0.7564 0.7625 0.7609 0.7608 0.7617 0.7678 0.7663 0.7662 0.7670 0.7730 0.7716 0.7715 0.7723 0.7782 0.7769 0.7768 0.7775 0.7833 0.7821 0.7820 0.7828 0.7885 0.7874 0.7873 0.7880 0.7937 0.7926 0.7925 0.7931 0.7988 0.7978 0.7977 0.79830.8090 0.8081 0.8081 0.80860.8141 0.8133 0.8132 0.81370.8192 0.8184 0.8184 0.81890.8243 0.8236 0.8235 0.82400.8293 0.8287 0.8286 0.82910.8344 0.8338 0.8337 0.83410.8395 0.8389 0.8389 0.83920.8445 0.8440 0.8440 0.84430.8496 0.8491 0.8490 0.84940.8546 0.8542 0.8541 0.85440.8596 0.8592 0.8592 0.85950.8647 0.8643 0.8643 0.86450.8697 0.8694 0.8693 0.86960.8747 0.8744 0.8744 0.87460.8798 0.8795 0.8795 0.87970.8848 0.8845 0.8845 0.88470.8898 0.8896 0.8895 0.88970.8948 0.8946 0.8946 0.89470.8999 0.8996 0.8996 0.89980.9049 0.9047 0.9047 0.90480.9099 0.9097 0.9097 0.90980.9149 0.9147 0.9147 0.91480.9199 0.9198 0.9198 0.91990.9249 0.9248 0.9248 0.92490.9299 0.9298 0.9298 0.92990.9349 0.9348 0.9348 0.93490.9399 0.9399 0.9399 0.93990.9450 0.9449 0.9449 0.94490.9500 0.9499 0.9499 0.94990.9550 0.9549 0.9549 0.95490.9600 0.9599 0.9599 0.96000.9650 0.9649 0.9649 0.96500.9700 0.9699 0.9699 0.97000.9750 0.9750 0.9750 0.97500.9800 0.9800 0.9800 0.98000.9850 0.9850 0.9850 0.98500.9900 0.9900 0.9900 0.99000.9950 0.9950 0.9950 0.9950达到相同精度J迭代的迭代次数为:4024 达到相同精度G-S迭代的迭代次数为:2000 达到相同精度sor迭代的迭代次数为:478 sor迭代最佳松弛因子:1.7000由结果可见对于此题达到相同精度迭代次数sor 迭代<G-S 迭代<J 迭代练习题2:设⎪⎪⎭⎫ ⎝⎛--=3113A ,⎪⎪⎭⎫ ⎝⎛-=31b 对于线性方程组b Ax =建立迭代法 ),2,1,0()()()1( =+-=+k b x A I x k k ωω(1)求出ω的范围使迭代法收敛,(2)求出最优*ω使迭代法的渐进收敛速度最大。
工程数学形成性考核册答案_带题目[1]
【工程数学】形成性考核册答案工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ). A. 4 B. -4 C. 6 D. -6⒉若000100002001001a a =,则a=(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8 ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A B A B +=+---111B. ()A B B A--=11C. ()A B A B +=+---111D. ()A B A B---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. A B n A B = C. k A k A = D. -=-k Ak An() ⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则A B 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 D. 若A B ,均为n 阶非零矩阵,则A B ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ). A.A ≠0 B.A ≠0 C. A *≠0 D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()A C B '=-1(D ). A. ()'---BA C 111B. '--B C A 11C. A C B ---'111() D. ()BC A---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A A B B +=++2222 B. ()A B B B A B +=+2C. ()221111A B C C B A ----= D. ()22A B C C B A '=''' (二)填空题(每小题2分,共20分)⒈21140001---= 7 . ⒉---11111111x 是关于x的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积A C B ''有意义,则C 为 5×4 矩阵. ⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且AB ==-3,则-=2A B 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 . ⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷AB +5;⑸A B ;⑹()A BC '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求A C B C +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解: 32A X B-= ∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出4阶行列式1020143602533110-- 中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证AA +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ AA +'是对称矩阵 ⒏若A 是n 阶方阵,且A AI '=,试证A =1或-1. 证明: A 是n 阶方阵,且A AI '= 12==='='I A A A A AA =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1)()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ). A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1 ⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A=秩()A -1 ⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解 ⒏若向量组ααα12,,, s线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s的秩与矩阵[]ααα12,,, s的秩 相同 . ⒎设线性方程组A X =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组A X b =有解,X 0是它的一个特解,且A X =0的基础解系为X X 12,,则A X b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x xx x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解 当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中 βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解 β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,, 解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x xx x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=Aξξλλξξξξ=====----1111)()()(A A A A A A Iξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈AB ,为两个事件,则( B )成立. A. ()A B B A +-= B. ()A B B A +-⊂ C. ()A B B A -+= D. ()A B B A -+⊂⒉如果( C )成立,则事件A 与B 互为对立事件.A. A B =∅B. A B U= C. A B =∅且A B U = D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ).A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件AB ,,命题(C )是正确的.A. 如果A B ,互不相容,则AB ,互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则AB ,对立D. 如果A B ,相容,则AB ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.2 7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b ab ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B. x f x x ab()d ⎰ C.f xx a b()d ⎰ D. f x x()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()s i n ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()s i n ,,=<<⎧⎨⎪⎩⎪020π其它 C. f x x x ()s i n ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()s i n,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. Fxx a b()d ⎰ C. fa fb ()()- D. f xx ab()d ⎰ 10.设X 为随机变量,E XD X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμB. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2. 2.已知P AP B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P A B (= 0.3 . 3.A B ,为两个事件,且BA ⊂,则P A B ()+=()A P . 4. 已知P A B P A B P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P AP B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()=0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)XY 的 协方差 . (三)解答题 1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生. 解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-== P P X P 2)1()3(-== …………P P k X P k 1)1()(--== …………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为012345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X(),(). 解:32322)()(1031==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P10.设X XX n 12,,, 是独立同分布的随机变量,已知E XD X (),()112==μσ,设X n X i i n==∑11,求E X D X (),(). 解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n 1)]()()([1)(1)1()(2122121n n n i i X D X D X D n X X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1 B. x 1+μ C. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. m a x {,,}xxx 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量n x U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为fx x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-nsx n sx λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
电大工程数学形成性考核册答案
电大工程数学形成性考核册答案工程数学作业(一)答案第2章矩阵一)单项选择题(每小题2分,共20分)1.设 $b_1=2$,则 $2a_1-3b_1a_2+2a_3-3b_3=-6$,选 D。
2.若 $a_2=1$,则 $a=\frac{1}{2}$,选 A。
3.乘积矩阵 $\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}$ 中元素 $c_{23}=10$,选 C。
4.设 $A,B$ 均为 $n$ 阶可逆矩阵,则 $(AB)^{-1}=B^{-1}A^{-1}$,选 B。
5.设 $A,B$ 均为 $n$ 阶方阵,$k>0$ 且 $k\neq1$,则 $-kA=(-k)^nA$,选 D。
6.若 $A$ 是正交矩阵,则 $A^{-1}$ 也是正交矩阵,选 A。
7.矩阵 $\begin{pmatrix}1&-2\\5&-3\end{pmatrix}$ 的伴随矩阵为 $\begin{pmatrix}5&-3\\2&-1\end{pmatrix}$,选 C。
8.方阵 $A$ 可逆的充分必要条件是 $A\neq0$,选 B。
9.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则 $(ACB')^{-1}=B^{-1}C^{-1}A^{-1}$,选 D。
10.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则$(A+B)^2=A^2+2AB+B^2$,选 A。
二)填空题(每小题2分,共20分)1.$\begin{pmatrix}1&-4\\-1&1\end{pmatrix}^{-1}=\begin{pmatrix}1&4\\1&5\end{pmatrix}$。
2.若 $-1$ 是关于 $x$ 的一个一次多项式,则该多项式一次项的系数为 $2$。
3.$\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}^T=\begin{pmatrix}1&2&-1\\-1&4&3\end{pmatrix}$。
华南理工大学网络教育学院:《工程数学》作业之01(答案)
工程数学作业之一解答作业一:线性代数一.问答题1.叙述三阶行列式的定义。
答:定义1:用23个数组成的记号111213212223313233a a a a a a a a a 表示数值: 222321232122111213323331333132a a a a a a a a a a a a a a a -+称为三阶行列式,即:111213212223313233a a a a a a a a a =222321232122111213323331333132aa a a a a a a a a a a a a a -+定义2:用2n 个数组成的记号D =1111n n nn a a a a ⎛⎫⎪⎪ ⎪⎝⎭表示数值: 2223232333111123(1)n n n n nn a a a a a a a a a a +-+2123231333121213(1)n n n n nna a a a a a a a a a +-++21222,131323,11112,1(1)n n n nn n n n a a a a a a a a a a --+--称为n 阶行列式。
2.叙述n 阶行列式的余子式和代数余子式的定义,并写出二者之间的关系。
答:定义:在n 阶行列式D 中划去ij a 所在的第i 行和第j 列的元素后,剩下的元素按原来相对位置所组成的(n -1)阶行列式,称为ij a 的余子式,记为ij M ,即ij M =111,11,111,11,11,11,1,11,11,11,1,1,1j j n i i j i j i n i i j i j i n n n j n j nna a a a a a a a a a a a a a a a -+----+-++-+++-+(1)i j ij M +-⨯称为ij a 的代数余子式,记为ij A ,即ij A =(1)i j ij M +-⨯3.叙述矩阵的秩的定义。
最新工程数学离线作业答案
⑨ * ;
⑩ 。
据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助。⑤__ ____;
2、传统文化对大学生饰品消费的影响⑥_ _;
创新是时下非常流行的一个词,确实创新能力是相当重要的特别是对我们这种经营时尚饰品的小店,更应该勇于创新。在这方面我们是很欠缺的,故我们在小店经营的时候会遇到些困难,不过我们会克服困难,努力创新,把我们的小店经营好。⑦_ _;
填空题答案
附件(二):调查问卷设计①__ __;
②__ __;
开了连锁店,最大的好处是让别人记住你。“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。“品牌效应”是商家梦寐以求的制胜法宝 。③______1____;
我们长期呆在校园里,没有工作收入一直都是靠父母生活,在资金方面会表现的比较棘手。不过,对我们的小店来说还好,因为我们不需要太多的投资。④ ;
4.5
4.7
4.8
4.9
第五章
5.3
下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):
5.5
5.7
5.8
5.12求下列各积分之值:
第八章
8.4求下列函数的傅式变换:
8.5
8.13证明下列各式:
8.14
8.15
第九章
9.1
9.2
9.3
9.49.59.6源自9.89.11《常微分方程》
2
4
6
8
9
10
12
13
14
15
17
19
20
第二章线性微分方程
4.WWW。google。com。cn。大学生政策2004年3月23日
电大工程数学形成性考核册答案
工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ). A. 4 B. -4 C. 6 D. -6⒉若000100002001001a a=,则a =(A ). A.12 B. -1 C. -12D. 1 ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325C. 5321--⎡⎣⎢⎤⎦⎥D.--⎡⎣⎢⎤⎦⎥5321 ⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈210140001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A ⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出4阶行列式1020143602533110-- 中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1. 证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量 9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分)1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+33110004110046150101244200113650041100188710482319011365123300188710482319014323133434571931213r r r r r r r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a 44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设B AX =为含n 个未知量的线性方程组该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯..4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂ C. 如果A B ,对立,则A B ,对立 D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B.xf x x ab()d ⎰C.f x x ab()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. F x x a b()d ⎰ C. f a f b ()()- D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμ C. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球. 解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率.解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率. 解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为12345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(1031==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1)]()()([1)(1)1()(2122121n n ni i X D X D X D nX X X D nX nD X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n =⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC.x 122σ D. μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B.1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 . 2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0 试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i ix x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ(1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-nx nx σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ故所求置信区间为:]7.111,3.108[],[=+-ns x ns x λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=ns x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ | T | < 2.62 ∴ 接受H 0。
工程数学作业题参考答案
《工程数学》作业题参考答案一、填空题(每小题3分,共18分)1. i =5,k = 4;2. 40;3. 2-n A;4. 2442222136x x x x x x --+;5.2-;6. 充分。
7. 1. 16;8.n 2;9. r = n , r<n ; 10. -17; 11. 11<<-t 。
二、简答题(每小题4分,12分)1. 举出任何反例皆可。
当BA AB =时,等式2222)(B AB A B A ++=+成立。
2. 一定不为零。
若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ,即方程0=x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾。
3. 不相似。
否则有可逆阵C 使C -1AC=B ,即A=B ,矛盾。
4. 分别是A B A k B A B ==-=,,(4分)。
5. 不相似(2分)。
否则,存在可逆阵C 使C-1AC=B ,即A=B ,矛盾(2分)。
6.B A +一定为正定阵因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n有所以为正定阵,从而0)(>+x B A x T ,所以B A +一定为正定阵。
三、计算题(一)(每小题8分,共32分) 1. 值为120(答案错误可适当给步骤分)。
2. 解:由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。
3.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡601424527121103121301,,,,54321TT T T T ααααα∽⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000110001011021301, 故421,,ααα 或431,,ααα为一个最大线性无关组(或其他正确答案)。
4. 解:利用分块矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=113232101,8231,2121A A O AA OA ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--31702431161,1238211211A A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣⎡=---000211000234216167000313200216110011121O A A OA5.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n nS 212dim 6. (1) 121||||2+=e f ;(2)))(41()(2是任意实数b e x b x g +-=。
西南交大《工程数学Ⅰ》1-4次离线作业
工程数学Ⅰ第1次离线作业三、主观题(共15道小题)29.求5元排列52143的逆序数。
解答:在排列52143中,排在5之后,并小于5的数有4个;排在2之后,并小于2的数有1个;排在1之后,并小于1的数有0个;排在4之后,并小于4的数有1个。
所以30.计算行列式解答:容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得31.求行列式中元素a和b的代数余子式。
解答:行列式展开方法==32.计算行列式解答:容易发现D的特点是:每列元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四列都减去第一列,第一行就出现了三个零元素,即33.设,求解答:34.,求解答:35.求矩阵X使之满足解答:36.解矩阵方程,其中解答:首先计算出,所以A是可逆矩阵。
对矩阵(A,B)作初等行变换所以所以秩(A)= 4。
37.解答:38.求向量组解答:设39.求解非齐次线性方程组解答:对增广矩阵施行初等行变换化成简单阶梯形矩阵40.设解答:若41.设,求A的特征值和特征向量。
解答:42.求一个正交矩阵P,将对称矩阵化为对角矩阵。
解答:43.已知二次型,问:满足什么条件时,二次型 f 是正定的;满足什么条件时,二次型 f 是负定的。
解答:二次型 f 的矩阵为计算 A 的各阶主子式得工程数学Ⅰ第2次离线作业三、主观题(共14道小题)30.判断(1);(2)是否是五阶行列式 D5 中的项。
解答:(1)是;(2)不是;31.设求的根。
解答:行列式特点是:每行元素之和都等于 a+b+c+x,那么,把二、三、四列同时加到第一列,并提出第一列的公因子a+b+c+x,便得到二、三、四列-a依次减去第一列的-a、-b、-c倍得32.计算四阶行列式解答:D的第一行元素的代数余子式依次为由行列式的定义计算得33.用克莱姆法则解方程组解答:34.解答:35.解答:36.用初等行变换把矩阵化为阶梯形矩阵和简单阶梯形矩阵。
西南交通大学新学期《工程数学I》在线作业一
西南交《工程数学I》在线作业一
如果矩阵A满足A^2=A,则( )
A:A=0
B:A=E
C:A=0或A=E
D:A不可逆或A-E不可逆
参考选项:D
A、B均为n阶方阵,则必有
A:det(A)det(B)=det(B)det(A)
B:det(A+B)=det(A)+det(B)
C:(A+B)的转置=A+B
D:(AB)的转置=A的转置乘以B的转置
参考选项:A
设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是
()
A:Ax=0只有零解
B:Ax=0的基础解系含r(A)个解向量
C:Ax=0的基础解系含n-r(A)个解向量
D:Ax=0没有解
参考选项:C
n阶行列式的展开式中共有()项
A:n
B:n^2
C:n!
D:n(n+1)/2
参考选项:C
设3阶实对称矩阵A的特征值分别为2,0,-3,则()
A:|A|≠0
B:A负定
C:A正定
D:|A|=0
参考选项:D
设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A:A=E
B:B=O
C:A=B
D:AB=BA
1。
工程数学I(离线作业)
工程数学I第一次作业三、主观题(共9道小题)22.参考答案:t=523.参考答案:2424.参考答案:-325.参考答案:26.参考答案:x= -4 , y= 227.参考答案:428.参考答案:相关29.参考答案:1=2= 0 ,3=230.参考答案:3二次作业三、主观题(共6道小题)13.参考答案:a=614.参考答案:4815.参考答案:-216.参考答案:或不定17.参考答案:a=b=c=118.参考答案:4第三次作业三、主观题(共6道小题)13.参考答案:令,则A的阶梯形有零行,所以向量组线性相关。
14.求解齐次方程组参考答案:对方程组的系数矩阵作初等行变换化成简单阶梯形矩阵15.已知四元线性方程组参考答案:16.设,求A的特征值和特征向量。
参考答案:17.求一个正交矩阵P,将对称矩阵化为对角矩阵。
参考答案:18.设二次型经过正交变换化为求参数a、b及所用的正交变换矩阵。
参考答案:变换前后的两个二次型的矩阵分别为第四次作业三、主观题(共7道小题)13.计算行列式参考答案:容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得14.求行列式中元素a和b的代数余子式。
参考答案:行列式展开方法==15.设,判断A是否可逆?若可逆,求出参考答案:即所以16.求矩阵X使之满足参考答案:17.用初等行变换求矩阵的逆矩阵参考答案:于是同样道理,由算式可知,若对矩阵(A,B)施行初等行变换,当把A 变为E时,B就变为18.讨论向量组,,的线性相关性。
参考答案:即19.用正交变换把二次型化为标准型。
参考答案:二次型的矩阵正交化得位化得第五次作业三、主观题(共7道小题)14.参考答案:15.参考答案:16.参考答案:17.参考答案:18.计算四阶行列式参考答案:将行列式D按第三行展开得19.求方程组的一个基础解系并求其通解。
工程数学1期末试题及参考答案
《工程数学1》综合复习题及参考答案一、填空题1.设A ,B 为三阶方阵,4=A ,5-=B ,则____________41=--T B A2.设向量组T T T k ),3,5( ,)1,3,1( ,)0,1,1(321=-==ααα线性无关,则常数k 应满足条件________________________3.若二次型()31212322213212233,,x x x tx x x x x x x f ++++=是正定二次型,则t 的 取值范围为_________________________4.随机事件B A , 相互独立,且5.0)(=A P ,8.0)(=B A P ,则______)(=AB P 5.设随机变量X 的分布函数21arctan 1)(+=x x F π(+∞<<-x ),则X 的概率密度函数_____________________)(=x f6.设随机变量X 与Y 相互独立,且)5,2(~N X 错误!未找到引用源。
,)1,0(~N Y ,则____)32(=-Y X D7. 来自正态总体2~( , 0.9)X N μ容量为9的简单随机样本,测得样本均值5=x ,则未知参数μ的置信度为0.95的置信区间为 (其中30.2)8(,96.1025.0025.0==t z )二、选择题1. 设A ,B 均为n 阶可逆矩阵,则下列运算错误的是( ) (A) ()TT T AB B A = (B) ()111AB B A ---= (C) AB A B =⋅ (D) ()()22A B A B A B +-=-2.已知21,αα分别为n 阶矩阵A 对应不同特征值21,λλ的特征向量,则( ) (A )21,αα线性相关; (B )21,αα线性无关;(C )21αα= (D )21ααk =3. 设随机变量)9,2(~N X 错误!未找到引用源。
,)(x Φ为标准正态分布函数,错误!未找到引用源。
国家开放大学工程数学(本)形成性考核作业一、二、三
工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型, 做题时对应抽题序号核对题和答案形成性考核作业11.n阶行列式中/元素/的代数余子式/与余子式/之间的关系是(/ ).1.三阶行列式/的余子式M23=(/).2.若A为3×4矩阵, B为2×5矩阵, 且乘积AC'B'有意义, 则C为( 5×4 )矩阵.2.设A为3×4矩阵, B为4×3矩阵, 则下列运算可以进行的是(AB).3.设/, 则/(/ ).3.设/, 则BA-1(/).4.设A,B均为n阶可逆矩阵, 则下列运算关系正确的是(/).4.设A,B均为n阶方阵, k>0且/, 则下列等式正确的是(/).5、下列结论正确的是(对任意方阵A, A+A'是对称矩阵).5.设A,B均为n阶方阵, 满足AB=BA, 则下列等式不成立的是(/).6.方阵A可逆的充分必要条件是(/).6.设矩阵A可逆, 则下列不成立的是(/).7、二阶矩阵/(/).7、二阶矩阵/(/).8、向量组/的秩为(3).8、向量组/的秩是(3).9、设向量组为/, 则(/)是极大无关组.9、向量组/的极大线性无关组是(/).10、用消元法得/ 的解/ 为(/).10、方程组/的解/为(/).11.行列式的两行对换, 其值不变.(错)11.两个不同阶的矩阵可以相加. (错)12.设A是对角矩阵, 则A=A'.(对)12.同阶对角矩阵的乘积仍然是对角矩阵. (对)13.若/为对称矩阵, 则a=-3. (错)13.若/为对称矩阵, 则x=0. (对)14、设/, 则/. (错)14.设/, 则/.(对)15.零矩阵是可逆矩阵. (错)15.设A是n阶方阵, 则A可逆的充要条件是r(A)=n.(对)16./ 7 .16.设行列式/, 则/ -6 .17、若行列式/, 则a= 1 .17、/是关于x的一个一次多项式, 则该多项式一次项的系数是 2 .18、乘积矩阵/中元素C23= 10 .18、乘积矩阵/中元素C21= -16 .19、设A,B均为3阶矩阵, 且/, 则/ -72 .19、设A,B均为3阶矩阵, 且/, 则/ 9 .20、矩阵/的秩为 1 .20、矩阵/的秩为 2 .形成性考核作业21.设线性方程组/的两个解//, 则下列向量中(/)一定是/的解.1.设线性方程组/的两个解/, 则下列向量中(/)一定是/的解.2.设/与/分别代表非齐次线性方程组/的系数矩阵和增广矩阵, 若这个方程组有解, 则(/).2、设/与/分别代表非齐次线性方程组/的系数矩阵和增广矩阵, 若这个方程组无解, 则(/).3.若某个非齐次线性方程组相应的齐次线性方程组只有零解, 则该线性方程组(可能无解).3.以下结论正确的是(齐次线性方程组一定有解).4、若向量组/线性相关, 则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4.若/向量组线性无关, 则齐次线性方程组/(只有零解).5.矩阵/的特征值为(-1,4).5.矩阵A的特征多项式/, 则A的特征值为(/).6.设矩阵/的特征值为0, 2, 则3A的特征值为(0,6 ).6.已知可逆矩阵A的特征值为-3,5, 则A-1的特征值为(/ ).7、设A, B为n阶矩阵, /既是A又是B的特征值, x既是A又是B的特征向量, 则结论(x是A+B的特征向量)成立.7、设/是矩阵A的属于不同特征值的特征向量, 则向量组/的秩是(3).8、设A,B为两个随机事件, 则(/)成立.8、设A,B为两个随机事件, 下列事件运算关系正确的是(/).9、如果(/且/)成立, 则事件A与B互为对立事件.9、若事件A, B满足/, 则A与B一定(不互斥).10、袋中有5个黑球, 3个白球, 一次随机地摸出4个球, 其中恰有3个白球的概率为(/).10、某购物抽奖活动中, 每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为(/).11.线性方程组/可能无解. (错)11.非齐次线性方程组/相容的充分必要条件是/. (对)12.当/1时, 线性方程组/只有零解. (对)12.当/1时, 线性方程组/有无穷多解. (错)13.设A是三阶矩阵, 且r(A)=3, 则线性方程组AX=B有唯一解. (对)13.设A是三阶矩阵, 且/, 则线性方程组AX=B有无穷多解. (错)14、若向量组/线性相关, 则/也线性相关. (错)14.若向量组/线性无关, 则/也线性无关.(对)15.特征向量必为非零向量. (对)15.若A矩阵可逆, 则零是A的特征值. (错)16、当/ 1 时, 齐次线性方程组/有非零解.16.若线性方程组/有非零解, 则/ -1 .17、向量组/线性相关 .17、一个向量组中如有零向量, 则此向量组一定线性相关 .18、设齐次线性方程组/的系数行列式/, 则这个方程组有非零解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程数学I
第一次作业
三、主观题(共9道小题)
22.
参考答案:
t=5
23.
参考答案:24
24.
参考答案:-3
25.
参考答案:
26.
参考答案:x= -4 , y= 2
27.
参考答案:4
28.
参考答案:相关
29.
参考答案:λ1=λ2= 0 ,λ3=2
30.
参考答案:3
二次作业
三、主观题(共6道小题)
13.
参考答案:
a=6
14.
参考答案:48
15.
参考答案:-2
16.
参考答案:或不定
17.
参考答案:a=b=c=1
18.
参考答案:4
第三次作业三、主观题(共6道小题)
13.
参考答案:
令
,则
A的阶梯形有零行,所以向量组线性相关。
14.
求解齐次方程组
参考答案:
对方程组的系数矩阵作初等行变换化成简单阶梯形矩阵
15.
已知四元线性方程组
参考答案:
16.
设
,求A的特征值和特征向量。
参考答案:
17.
求一个正交矩阵P,将对称矩阵
化为对角矩阵。
参考答案:
18.设二次型经过正交变换化为求
参数a、b及所用的正交变换矩阵。
参考答案:
变换前后的两个二次型的矩阵分别为
第四次作业
三、主观题(共7道小题)
13.
计算行列式
参考答案:
容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到
由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得
14.求行列式中元素a和b的代数余子式。
参考答案:
行列式展开方法=
=
15.设,判断A是否可逆?若可逆,求出参考答案:
即
所以
16.
求矩阵X使之满足
参考答案:
17.用初等行变换求矩阵的逆矩阵
参考答案:
于是
同样道理,由算式可知,若对矩阵(A,B)施行初等行变换,当把A 变为E时,B就变为
18.讨论向量组,,的线性相关性。
参考答案:
即
19.用正交变换把二次型化为标准型。
参考答案:
二次型的矩阵
正交化得
位化得
第五次作业
三、主观题(共7道小题)
14.
参考答案:
15.
参考答案:
16.
参考答案:
17.
参考答案:
18.
计算四阶行列式
参考答案:
将行列式D按第三行展开得
19.
求方程组
的一个基础解系并求其通解。
参考答案:
对方程组的系数矩阵作初等行变换化成简单阶梯形矩阵:
原方程组的一个基础解系。
20.
a、b为何值时,线性方程组
有唯一解,无解或有无穷多解?在有无穷多解时,求其通解?参考答案:。