1.2子集全集补集
1.2-子集、全集、补集讲义教学
![1.2-子集、全集、补集讲义教学](https://img.taocdn.com/s3/m/e6a63f3003d8ce2f00662364.png)
1.2 子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A”.(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A 是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a 的值为-1,2.2.真子集 (1)定义:如果A B ,并且A≠B ,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C . ③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B AA ≠B A B.④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ”“ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合评点中.2.写出集合A ={p ,q ,r ,s }的所有子集.根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉.解:集合A 的子集分为5类,即 (1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m 个,真子集有(2m -1)个,非空真子集有(2m -2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集. 求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A .(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A .4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .评点 评点根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m .若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m -1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m -2. 要点二 补集、全集[重点] 1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U .(2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U .3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个评点子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A .该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A .用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题 例2不等式组⎩⎪⎨⎪⎧2x -1>0,3x -6≤0 的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<x x ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1).C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A . 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍.6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}.(1)判断A 、B 的关系;(2)求C U B 、C U C ,并判断其关系.1212评 点根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A .若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B . 若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A .要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论.解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B .紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 (2)(1)(2)因为A B,B是A的子集,如图1-2-6(2),故a≥5.9.已知M={x|x=a2+1,a∈N*},P={y|y=b2-6b+10,b∈N},判断集合M与P之间的关系.解法一:集合P中,y=b2-6b+10=(b-3)2+1当b=4,5,6,…时,与集合M中a=1,2,3,…时的值相同,而当b=3时,y=1∈P,1 M,∴M P.解法二:对任意的x0∈M,有x0=a2 0+1=(a0+3)2-6(a0+3)+10∈P(∵a0∈N*,∴a0+3∈N),∴M P,又b=3时,y=1,∴1∈P.而1<1+ a2+1=(a0∈N*),∴1 M,从而M P.10.已知全集U,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合B.求集合B,需根据题意先求全集U,由于集合A及C用Venn图来表示所给集合,将A及C U A填入即可得U解:借助Veen图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}.∵C U B={1,4,6,8,9}∴B={2,3,5,7}.求本题中的全集,用Veen较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.E 教材问题探究1.教材第8页“思考”对于集合A、B,如果A B,同时B A,那么A=B.这是因为由A B可知,集合A的元素都是集合B的元素,又由B A知,集合B的元素也都是集合A的元素,这就是说,集合A和集合B的元素是完全相同的,因而说集合A与集合B是相等的.当A=B时,集合A中的每一个元素都在集合B中,集合B中的元素也都在集合A 中,即A B与B A同时成立.综上所述,A B与B A同时成立的等价条件是A=B.例判断下列两个集合的关系:(1)A={x |(x-1)(x+1)= 0},B={x | x2=1};(2)C={x |x=2n,n∈Z },D={x | x=2(n-1),n∈Z }.解:∵(1)A={-1,1},B={-1,1},∴A=B.评点(2)易知集合C 为偶数,∵n ∈Z ,n -1∈Z ,∴集合D 也为偶数集,∴C=D .2.教材第9页“思考”在(1)(2)(3)中除有A S ,B S 外,不难看出在S 中属于A 的所有元素均不属于B ,即x i∈S ,x i∈A ,但x iB ,在S 中属于B 的所有元素均不属于A ,即x i∈S ,xi ∈A ,但x iA ,也就是说,A 、B 两个集合没有公共元素,且它们的元素合在一起,恰好是集合S 的全部元素.探究学习1.教材第8页“?”集合{a 1,a 2,a 3,a 4}的子集有: ,{a 1},{a 2},{a 3},{a 4},{a 1,a 2},{a 2,a 3},{a 3,a 4},{a 1,a 4},{a 1,a 3},{a 2,a 4},{a 1,a 2,a 3},{a 1,a 2,a 4},{a 2,a 3,a 4},{a 1,a 3,a 4},{a1,a 2,a 3,a 4}.拓展:集合{a 1,a 2,a 3,a 4}有多少个真子集?有多少个非空真子集?由上可知,集合{a 1,a 2,a 3,a 4}有15个真子集,有14个非空真子集.一个集合含有n 个元素,则它的所有自己有2n 个,真子集有(2n -1)个(去掉集合本身),非空真子集有(2n -2)个(去掉集合本身及空集).典型例题解析例1 设A={x | ( x 2-16)( x 2+5x +4) = 0},写出集合A 的子集,并指出其中哪些是它的真子集?要确定集合A 的子集、真子集,首先必须清楚集合A 中的元素,由于集合A 中的元素是方程( x 2-16)( x 2+5x +4) = 0的根,所以要先解该方程.解:将方程( x 2-16)( x 2+5x +4) = 0变形,得( x -4)( x +1)( x +4)2=0,则可得方程的根为x =-4 或x =-1或x =4.故集合A={-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4} 写出一个集合的所有子集,首先要注意两个特殊的子集— 和自身;其次,依次按含评点有一个元素的子集,含有两个元素的子集,含有三个元素的子集等一一写处,就可避免重复和遗漏现象的发生.例2 设全集U={1,4,a 2+4a -2},A={| 3a -2 |,4},C U A={3},求实数a 的值.∵C U A={3},∴3∈U ,且3 A ,由补集的定义知A={1,4}. 解:∵C U A={3},说明3∈U ,且3 A ,∴a 2+4a -2=3,∴a =-5或a =1. ①当a =1时,| 3a -2 |=1≠3,此时A={1,4},满足题意. ②当a =-5时,| 3a -2 |=17,此时A={17,4} U ,不满足题意. ∴a 的值为1.例3 已知{1,2} M {1,2,3,4,5},则这样的集合M 有 8 .根据题目给出的条件可知,集合M 中至少含有元素1、2,至多含有元素1、2、3、4、5,故可按M 中所含元素的个数分类写出集合M ,解析:(1)当M 中含有两个元素时,M 为{1,2};(2)当M 中含有三个元素时,M 可能为{1,2,3},{1,2,4},{1,2,5}; (3)当M 中含有两个元素时,M 可能为{1,2,3,4},{1,2,3,5},{1,2,4,5}; (4)当M 中含有两个元素时,M 为{1,2,3,4,5};所有满足条件的M 为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.首先根据子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有例4 已知集合A={x |- 2 ≤ x ≤ 5},B={x | m +1≤ x ≤ 2m -1},若B A ,求实数m 的取 值范围.对B 要进行讨论,分B 为空集和非空集合两种情况.解:(1)若B ≠ ,则由B A (如图1-2-5),得 ⎩⎪⎨⎪⎧m +1≤ 2m -1,m +1≥ -2,2m -1≤ 5,解的2 ≤ m ≤ 3. (2)若B= ,则m +1>2m -1,m <2,此时B A 也成立. 由(1)和(2),得m ≤ 3,所以实数m 的取值范围是{ m | m ≤ 3}.在处理含有参数的子集问题市场借助数轴,数形结合,理清条件,使关系明朗,易于求解.例5 已知集合A={x | 1 ≤ a x ≤ 2},B={x | | x | < 1},求满足A B 的实数a 的取 值范围.对参数进行讨论,写出集合A 、B ,使其满足,求a 的值. 解:(1)当a = 0时,A= ,满足A B .(2)当a > 0时,{}21A=.B=11,A B xx x x a a ⎧⎫⊂<<-<<=⎨⎬⎩⎭又.∴11 2.21a a a⎧≥-⎪⎪∴∴≥⎨⎪≤⎪⎩ (3)当a < 0时,{}2121A= B=11 2.1 1.axx x x a a a a⎧≥-⎪⎧⎫⎪<<-<<⊆∴∴≤-⎨⎬⎨⎭⎩⎪≤⎪⎩,,又,A B.综上所述,a = 0,或a ≥2,或a ≤-2.根据子集的定义,把形如A B 的问题转化为不等式组问题,使问题得以解决.在解决 问题的过程中,应首先考虑A= 的情况.在建立不等式的过程中,借助数轴,是解决本题 重要一环,若不等式中含有参数,一般需对参数进行讨论,进而正确解出不等式.例6 已知全集S = { 1,3,x 3 + 3 x2 + 2 x },集合A = {1,| 2 x - 1 | },如果C S A ={0},那么这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由.由C S A ={0}可知0∈S ,但0 A ,所以x 3 + 3 x2 + 2 x = 0,且| 2 x - 1 | =3,从中求出x 即可.评点 评点解法一:∵S = { 1,3,x 3 + 3 x2 + 2 x },A = {1,| 2 x - 1 | },C S A ={0},∴0∈S ,但0 A ,∴32320 1.213x x x x x ++=⎧⎪=-⎨⎪-=⎩,解的 , 综上知,实数x 存在,且x =-1.由C S A ={0}可知0∈S ,但0 A ,由0∈S 可求x ,然后结合0 A 来验证是否有A S 及是否符合集合中元素的互异性,从而得出结论.解法二:∵C S A ={0},∴0∈S ,但0 A ,∴ x 3 + 3 x2 + 2 x = 0,即x (x +1)(x +3)=0,∴x =0或x =-1或x =-2.当x =0时,| 2 x - 1 | =1,A 中已有元素1,故不符合互异性,舍去; 当x =-1时,| 2 x - 1 | =3,而3∈S ,符合题意; 当x =-2时,| 2 x - 1 | =5,而5 S ,舍去.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a<x <a + 4 },若AB ,求实数a 的取值范围.注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,方法一 数形结合思想 评点例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符合B A .解:集合A={3,5},当a =0时,B= ,满足B A .∴a =0符合题意. 当a ≠0时,B≠ ,1.x a = ∵B A ,∴综上,a 的值为0或13或15 . 当B A 时,B 中含有参数,而A 是一个确定的非空集合,要特别注意B= 的情况, 考点点击:高考中对子集、真子集、补集以及集合相等的概念考察较多,但难度不大,命题多为填空题.例1 (2010·重庆高考)设,若,则实数.{}{}{}2 U U=0123.A=U 0A=12x x mx ∈+=,,,,若,,ð }{} U 0A=12 mx =,若,,ð则实数m = -3 .解析:{}{}2 U A=12A=030 30 3.x mx m ∴∴+-∴=-,,,,,是方程的根,ð例2 (2010·天津高考)设集合{}{}A=1R B=2R A Bx x a x x x b x -<∈->∈⊆,,,,若, }2R A B x >∈⊆,,若,则实数a ,b 满足 3 a b -≥ .解析:{}{}A=11B=22x a x a x x b x b -<<+>+<-,或,由A B ⊆得12a b +-≤或12a b +-≥,即3a b -≥或3a b --≤,即 3.a b -≥ 例3 (2007·北京高考)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q .(1)若a =3,求P ;(2)若Q P ,求整数a 的取值范围.方法二 分类讨论思想评点解:{}3(1)0P=13.1x x x x -<-<<+由得 {}{}(2)Q=11,02x x x x -≤=≤≤{}0P=1.Q P 2a x x a a >-<<⊆>由,得又,所以,即a 的取值范围是( 2,+ ∞). 学考相联判断两个集合之间的关系是集合中的重要题型,且是高考热点之一.下面举两例介绍几种常用的方法,帮助你开拓思想.1.对比集合的元素例1 {}{}*A =N8B =2N05,x x x x k k k ∈≤=∈<<已知,,,且那么集合A 与B 的关系为( B A ).解析:因为A={1,2,3,4,5,6,7,8},B={2,4,6,8},集合B 中的元素2,4, 6,8都是集合A 中的元素,而集合A 中的元素1,3,5,7不是集合B 中的元素,所以 B A .2.数形结合比较范围例2 已知{}{}2A=y y=26R B=475x x x x x --∈->,,,那么集合A 与B 的关系为( B A ) .解析:对于二次函数{}{}2A=y y=26R B=475x x x x x --∈->,,,,{}4(6)47A=y y 7.4y ⨯---==-∴≥最小,又{}B=3x x >,由图1-2-7知,B A . 3.利用传递性判断例3 已知集合11A B B=Z C=Z 4284k k x x k x x k ⎧⎫⎧⎫⊆=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,,那么集合A 与C 的关系为( A C ).解析:将B 、C 变形得242B=Z C=Z 88k k x x k x x k ⎧+⎫⎧+⎫=∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,可知B C .又A B C ,即A C .例4 已知集合(){}{}22A=4640B=0 6x x m x m -++=,,,若A B ,求实数m 的取值范围.解:{}{}{}{}A B B=0 6 A=A=0A=6A=0 6.⊆∴∅,,,或或或, (1)当A= 时,Δ=(4m +6)2-4×4m 2<0,解得m <- 34 .(2)当A={0}时,由根与系数的关系得20+0=46004m m +⎧⎨⎩⨯=,,此方程组无解.(3)当A={6}时,由根与系数的关系得26+6=46664m m +⎧⎨⎩⨯=,,此方程组无解.(4)当A={0,6}时,由根与系数的关系得20+6=4606=4m m +⎧⎨⎩⨯,,解得m =0.综上知实数m 的取值范围为m <-34或m =0解决子集问题时,往往易溢漏“ ”和它“本身” ,所以杂解决有关子集的问题时,一定要考虑到两个特殊的子集:“ ”和它“本身” ,并注意单独验证它们是否符合题意.。
1.2子集、全集、补集
![1.2子集、全集、补集](https://img.taocdn.com/s3/m/2a44d5e8172ded630b1cb682.png)
4、子集、真子集的一些简单性质: 、子集、真子集的一些简单性质: (1) A⊆A ) ⊆ ⊆ (2) A⊆B, B⊆C ⇒ A⊆C ) ⊆ , ⊆ (3) A ) B, B , C⇒A C
例1
(1)写出集合{a,b}的所有子集; (2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集; (4)写出∅的所有子集. 请归纳出规律来!
若对任意x∊ , 若对任意 ∊A,有x ∊B,则 A⊆B , ⊆
若A不是B的子集,则记作:A⊈B(或B ⊉A)
注:图示法表示集合间的包含关系 图示法表示集合间的包含关系
A⊆B的图形语言: ⊆ 的图形语言 的图形语言:
用平面上封闭的 曲线的内部表示 集合这个图形叫 文氏图(韦恩图)
A B
2:集合相等 :
一、子集
1、子集的概念 、 一般地,对于两个集合A 一般地,对于两个集合A和B,如果集合A中任意一 如果集合A 个元素都是B中的元素,就说集合A包含于集合B 个元素都是B中的元素,就说集合A包含于集合B, 或集合B包含集合A 或集合B包含集合A, 记作:A⊆B(或B⊇A)。 记作: 读作: 包含于B 读作:A包含于B(或B包含A) 包含A 数学语言表示形式:
个元素, 中增加一个元素, 例 2、集合 A 中有 m 个元素,若 A 中增加一个元素, 则它子集的个数将增加 个
同时满足:( ) 2 3 4 5 ;(2 a ∈ M, 则 例 3、同时满足:( 1 M ⊆ {1,,,,} ) 6 - a ∈ M 的非空集合 M 有( A.16 个 B.15 个 ) D.6 个 C.7 个
总结:元素个数与集合子集个数的关系: 总结:元素个数与集合子集个数的关系
集合 集合元素的个数 集合子集个数 0 1 1 2 3 4 … n个元素 个元素 2 4 8 16 … 2n
1.2 子集、全集、补集(练习)(解析版)
![1.2 子集、全集、补集(练习)(解析版)](https://img.taocdn.com/s3/m/6a0cced2783e0912a2162ade.png)
1.2 子集、全集、补集【基础练习】1. 已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则( )A .AB ⊆B .C B ⊆ C .D C ⊆ D .A D ⊆ 【答案】B【解析】因为菱形是平行四边形的特殊情形,所以D A ⊆,矩形与正方形是平行四边形的特殊情形,所以B A ⊆ C A ⊆,正方形是矩形,所以C B ⊆.故选B .2.集合2{|440}x x x -+=的子集个数为( )A .4B .2C .1D .0【答案】B【解析】由题意,求得{}2{|440}2x x x -+==,即可求解集合子集的个数,得到答案. 3.满足{}{}1123A ⊆⊆,,的集合A 的个数是( ) A .2B .3C .4D .8 【答案】C【解析】由条件{}1A ⊆⊆{1,2,3},根据集合的子集的概念与运算,即可求解.4.设集合{}12M x x =-≤<,{}0N x x k =-≤,若M N ,则k 的取值范围是( ) A .k 2≤ B .k ≥-1 C .1k >- D .2k ≥【答案】D【解析】由M N ⊆,则说明集合M 是集合N 的子集,即集合M 中任意元素都是集合N 中的元素,即2k ≥即可.5(多选题)已知集合(){},0,0,,M x y x y xy x y =+<>∈R ,(){},0,0,,N x y x y x y =<<∈R ,那么( ) A .M N ⊆B .M N ⊇C .M ND .M N【答案】ABC【解析】若0x <,0y <,则0x y +<,0xy >,故N M ⊆.若0x y +<,0xy >,则x 与y 同号且为负,即0x <,0y <,故M N ⊆,所以M N ,故选ABC.6.已知集合{}0,1,2A =,则集合A 的真子集共有 个.【答案】7【解析】集合含有3个元素,则子集个数为328=,真子集有7个 7.集合{|24},{|2}A x x B x x a =<<=<<,若A B ⊆,则实数a 的取值范围是________.【答案】[)4,+∞【解析】因为{|24},{|2}A x x B x x a =<<=<<,若A B ⊆,所以4a ≥,故a 的取值范围是[)4,+∞.8.若集合{2,3}A =,{1,2,3,4}B =,则满足A M B 的集合M 的个数是________.【答案】2 【解析】集合{2,3}A =,{1,2,3,4}B =,且A M B ,∴{1,2,3}M =或{2,3,4}M =,∴满足条件的集合M 的个数是2.9.已知{0,1,2,3},{0,2,4,5},,A B C A C B ==⊆⊆,写出符合条件的所有集合C .【答案】,{0},{2},{0,2}∅10.已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围.【答案】{|1}m m ≥-【解析】∵B A ⊆,∵当B =∅时,211m m -≥+,即2m ≥, 当B ≠∅时,213142m m m -≥-⎧⎪+≤⎨⎪<⎩,解得12m -≤<,综上所述,m 的取值范围是{|1}m m ≥-.【能力提升】11.设a ,b ∈R ,若集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则20202020a b +=_______.【答案】2 【解析】由{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭易知0a ≠,1a ≠ 由两个集合相等定义可知若10b a b =⎧⎨+=⎩,得1a =-,经验证,符合题意; 若01b a a b +=⎧=⎪⎨⎪⎩,由于0a ≠,则方程组无解综上可知,1a =-,1b =,故2020202020202020(1)12ab +=-+=.故答案为2 12.已知集合{}{}012a b c =,,,,,且下列三个关系:∵2a ≠;∵2b =;∵0c ≠有且只有一个正确,则10010a b c ++等于__________.【答案】201【解析】已知集合{a ,b ,c }={1,2,3},且下列三个关系:∵a ≠3;∵b =3;∵c ≠1有且只有一个正确, 若∵正确,则c =1,a =2,b =2不成立,若∵正确,则b =3,c =1,a =3不成立,若∵正确,则a =3,b =1,c =2,即有100a +10b +c =312.故答案为312.。
1.2 子集、全集、补集
![1.2 子集、全集、补集](https://img.taocdn.com/s3/m/5fdd380eba1aa8114431d90f.png)
2.全集与补集 全集与补集
设S是一个集合, A是S的一个子集(即A ⊆ S ), 由S中所有不属于A的元素组成的集合, 叫做 S中子集A的补集(或余集), 记作Cs A, 即
CS A = {x x ∈ S , 且x ∉ A}.
用图形表示为: 用图形表示为 S CSA A
例如,如果 例如 如果S={1,2,3,4,5,6}, A={1,3,5}, 那么 如果 CSA= {2,4,6}
规定:空集是任何集合的子集 规定 空集是任何集合的子集. 空集是任何集合的子集 即对于任何一个集合A 有 即对于任何一个集合 ,有 对于两个集合A与 如果集合 如果集合A的任何一个元 对于两个集合 与B,如果集合 的任何一个元 素都是集合B的元素 同时集合B的任何一个 的元素,同时集合 素都是集合 的元素 同时集合 的任何一个 的元素,就说集合 等于集合 元素都是集合 A的元素 就说集合 等于集合 的元素 就说集合A等于 B,记作 = B. 记作A 记作 (1)对于任何一个集合 , A⊆ A 对于任何一个集合A 对于任何一个集合 . 任何一个集合是它本身的子集. 即任何一个集合是它本身的子集 (2)对于集合A, B, 如果A ⊆ B,同时B ⊆ A,
如果集合S含有我们所要研究的各个集合的 如果集合 含有我们所要研究的各个集合的 全部元素,这个集合就可以看作一个全集,全集 这个集合就可以看作一个全集 全部元素 这个集合就可以看作一个全集 全集 通常用U表示 表示. 通常用 表示 例如,在实数范围内讨论问题时 可以把实数集 例如 在实数范围内讨论问题时,可以把实数集 在实数范围内讨论问题时 R看作全集 那么 有理数集 的补集 UQ是 看作全集U,那么 有理数集Q的补集 看作全集 那么,有理数集 的补集C 是 全体无理数的集合. 全体无理数的集合
数学:1.2.2(子集、全集、补集)新人教A
![数学:1.2.2(子集、全集、补集)新人教A](https://img.taocdn.com/s3/m/c325bd7f16fc700abb68fc98.png)
课 题:1.2子集 全集 补集(1)教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集(,)的概念;(3)使学生理解补集的概念;(4)使学生了解全集的意义教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}(3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或BA, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向 不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}三、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示(2) 判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A 解(1):N ⊂Z ⊂Q ⊂R(2)①正确;②错误,因为A 可能是空集③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q ,Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗?(3)是否对任意一个集合A ,都有A ⊆A ,为什么?(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 .解:(1)N ⊂Z, N ⊂Q, R ⊃Z, R ⊃Q , Φ{0}(2)∵A={x ∈R|x 2-3x-4=0}={-1,4},B={x ∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A ⊆B 正确(3)对任意一个集合A ,都有A ⊆A ,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A 、B 的关系为B A ⊆.例3 解不等式x+3<2,并把结果用集合表示出来.解:{x ∈R|x+3<2}={x ∈R|x<-1}.四、练习:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}五、子集的个数:由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(1624=)(2)集合{}n a a a ,,21Λ的所有子集的个数是多少?(n 2)结论:含n 个元素的集合{}n a a a ,,21Λ的所有子集的个数是n 2,所有真 子集的个数是n 2-1,非空真子集数为22-n六、小结:本节课学习了以下内容:1.概念:子集、集合相等、真子集2.性质:(1)空集是任何集合的子集Φ⊆A(2)空集是任何非空集合的真子集Φ A (A ≠Φ)(3)任何一个集合是它本身的子集A A ⊆(4)含n 个元素的集合的子集数为n 2;非空子集数为12-n;真子集数为12-n ;非空真子集数为22-n七、作业:1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围. (13)m -≤≤2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.({}φ或2) 八、板书设计(略)九、课后记:。
高中数学知识点精讲精析 子集.全集.补集
![高中数学知识点精讲精析 子集.全集.补集](https://img.taocdn.com/s3/m/18fa5ad8aa00b52acfc7ca50.png)
1.2 子集.全集.补集1.子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A B特别的: 2.真子集的定义:如果A B 并且,则称集合A 为集合B 的真子集.解读:(1)空集是任何集合的子集. 任何一个集合是它本身的子集.空集是任何非空集合的真子集.谈起子集,特别要注意的是空集,记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,故空集是任何非空集合的真子集.(2)元素与集合的关系是属于与不属于的关系,用符号""""∉∈表示;集合与集合之间的关系是包含,真包含,相等的关系.3.补集的定义:设A 为S 的子集,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记作:={x ∣x ∈S 且x A},如果集合S 包含我们所要研究的各个集合,就把S 称为全集.[例1].下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( )A .0个B .1个C .2个D .3个解析:空集合不含任何元素,与{0}不同,故(1)错;空集市本身的子集;(3)(4)是正确的.故选C.[例2] 已知集合且B A ,求a 的值. 解析:由已知,得:A ={-3,2}, 若BA ,则B =Φ,或{-3},或{2}.若B =Φ,即方程ax +1=0无解,得a =0. 若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = .若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = .综上所述,可知a 的值为a =0或a =,或a = .⊆B A ⊇或A AA ⊆∅⊆⊆B A ≠AC S ∉},01|{},06|{2=+==-+=ax x B x x x A 3121-3121-。
精品获奖教案 1.2子集、全集、补集(2)教案 苏教版必修1
![精品获奖教案 1.2子集、全集、补集(2)教案 苏教版必修1](https://img.taocdn.com/s3/m/30f472e6aa00b52acfc7ca58.png)
1.2 子集、全集、补集(2)教学目标:1.使学生进一步理解集合及子集的意义,了解全集、补集的概念;2.能在给定的全集及其一个子集的基础上,求该子集的补集;3.培养学生利用数学知识将日常问题数学化,培养学生观察、分析、归纳等能力.教学重点:补集的含义及求法.教学重点:补集性质的理解.教学过程:一、问题情境1. 情境.(1)复习子集的概念;(2)说出集合{1,2,3}的所有子集.2.问题.相对于集合{1,2,3}而言,集合{1}与集合{2,3}有何关系呢?二、学生活动1.分析、归纳出全集与补集的概念;2.列举生活中全集与补集的实例.三、数学建构1.补集的概念:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为S ðA (读作“A 在S 中的补集”),即S ðA ={ x |x ∈S ,且x ∉A },S ðA 可用右图表示.2.全集的含义:如果集合S 包含我们研究的各个集合,这时S 可以看作一个全集,全集通常记作U .3.常用数集的记法:自然数集N ,正整数集N*,整数集Z ,有理数集Q ,实数集R .则无理数集可表示为R ðQ .四、数学运用1.例题.例1 已知全集S =Z ,集合A ={x |x =2k ,k ∈Z},B ={ x |x =2k +1,k ∈Z},分别写出集合A ,B 的补集∁S A 和∁S B .例2 不等式组⎩⎨⎧2x -1>13x -6≤0的解集为A ,S =R ,试求A 及S ðA ,并把它们表示在数轴上. 例3 已知全集S ={1,2,3,4,5},A ={ x ∈S |x 2-5qx +4=0}.(1)若S ðA =S ,求q 的取值范围;(2)若S ðA 中有四个元素,求S ðA 和q 的值;(3)若A 中仅有两个元素,求S ðA 和q 的值.2.练习:(1)S ðA 在S 中的补集等于什么?即S ð(S ðA )= .(2)若S =Z ,A ={ x |x =2k ,k ∈Z},B ={ x |x =2k +1,k ∈Z},则S ðA = ,S ðB = .(3)S ð∅= ,S ðS = .五、回顾小结1.全集与补集的概念;2.任一集合对于全集而言,其任意子集与其补集一一对应.六、作业教材第10页习题3,4.2.2.1圆的方程(1) 教学目标:1.理解建系解决轨迹方程的求法;2.能根据已知条件求出圆的标准方程.教材分析及教材内容的定位:培养学生用坐标法研究几何问题的能力,增强学生用代数的方法解决几何问题的意识.圆的方程研究是基础,为后续研究位置关系作下铺垫.在高考考点要求中是C 级要求,是必考内容,也是高考当中的热点和重点,需要掌握基础题型,并有很好的计算能力,才能解决好本节问题,综合体现了新课标下高考的要求,是非常重要的一节内容.教学重点:根据已知条件求出圆的标准方程.教学难点:运用几何法和待定系数法求圆的标准方程.教学方法:的作用,充分体现平面解析几何的主旨,让学生形成一种意识,几何问题可以用计算来解决,而有些代数问题,又可以用图形来直观体现,让学生深刻体会数形结合思想的重要性;3.运用圆的方程解决例题,例题主要是给出相关条件求圆的标准方程,在解决这类问题时有两种思路:(1)几何法,利用平面几何知识来确定圆心和半径;(2)待定系数法,设圆的标准方程,通过已知建立方程组,解方程组.四、数学运用1.例题.例1 求圆心是C(2,-3),且经过坐标原点和圆的标准方程.例2 已知两点A(6,9)和B(6,3),求以AB为直径的圆的标准方程,并且判断点M(9,6),N(3,3),Q(5,3)是在圆上,在圆内,还是在圆外?例3 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2. 7m,高为3m的货车能不能驶入这个隧道?2.练习.求满足下列条件的圆的标准..方程:(1)经过点(0,4),(4,6),且圆心在直线x-2y-2=0上;(2)与两坐标轴都相切,且圆心在直线2x-3y+5=0上;。
高中数学 第一章 集合 1.2 子集、全集、补集互动课堂
![高中数学 第一章 集合 1.2 子集、全集、补集互动课堂](https://img.taocdn.com/s3/m/19235a6df18583d049645995.png)
1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.子集的有关性质(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1集合与集合间的关系是否能用“∈”?【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c}的子集是,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a的值为多少?【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A ,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3,∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4,∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p q p解得⎪⎩⎪⎨⎧-==.12,21q p【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用1.指出下列集合之间的关系:(1){1,2,3}______{3,2,1};(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z }.【思路解析】 本题考查几个符号的正确应用情况.【答案】 =2.设集合M ={x |x ≤0},则下列关系中正确的是( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注意两个特殊子集,即和给定集合本身.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n 个)(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素1,剩下元素组成的集合依次为,{2},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A 中元素增加的状况进行分类讨论:(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4个:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b8.已知A={0,1},B={x|x⊆A},C={x|x∈A,x∈N*},写出A、,B、,C三个集合间的关系.【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。
苏教版数学必修一新素养同步讲义:1.2 子集、全集、补集
![苏教版数学必修一新素养同步讲义:1.2 子集、全集、补集](https://img.taocdn.com/s3/m/a98525e1b307e87100f6964c.png)
1.2子集、全集、补集1.了解集合间的包含关系及全集的含义.2.理解补集的概念及含义.3.掌握求子集、补集的方法.[学生用书P4]1.子集的概念及表示自然语言如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集符号语言A⊆B或B⊇A,读作“集合A包含于集合B”或“集合B包含集合A”图形语言(Venn图)2.真子集如果A⊆B,并且A≠B,那么集合A称为集合B的真子集,记为A B或B A,读作“A真包含于B”或“B真包含A”.3.子集、真子集的性质(1)任何一个集合A是它本身的子集,即A⊆A.(2)空集是任何集合的子集,是任何非空集合的真子集.4.补集与全集(1)补集:设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作∁S A(读作“A在S中的补集”),即:∁S A={x|x∈S,且x/∈A}.(2)全集:如果集合S包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常用U表示.5.补集的有关性质(1)∁S(∁S A)=A;(2)∁S S=∅;(3)∁S∅=S;(4)A与∁S A没有公共元素,并且A与∁S A的所有元素“合”在一起,恰好是集合S的全部元素.1.判断(正确的打“√”,错误的打“×”)(1)集合{0}是空集.()(2)若A=B,则A⊆B.()(3)空集是任何集合的真子集.()(4)集合{1}有两个子集.()★★答案★★:(1)×(2)√(3)×(4)√2.已知集合M={1},N={1,2,3},则能够准确表示集合M与N之间关系的是() A.M<N B.M∈NC.N⊆M D.M N★★答案★★:D3.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=________.★★答案★★:{2,4,7}4.集合{0,1}的子集有________.★★答案★★:∅,{0},{1},{0,1}两集合的包含关系[学生用书P5]已知集合A={x|x+1<4,x∈N},且M A,求集合M.【解】因为集合A={x|x<3,x∈N}={0,1,2},又因为M A,所以集合M为:∅,{0},{1},{2},{0,1},{0,2},{1,2}.非空集合A的真子集中的元素都是A中的元素,空集一定是非空集合的真子集.1.已知{1,2}⊆A{1,2,3,4},写出所有满足条件的集合A.解:因为{1,2}⊆A,所以1∈A,2∈A.又因为A{1,2,3,4},所以集合A中还可以有3、4中的一个,即集合A可以是{1,2},{1,2,3},{1,2,4}.补集的运算[学生用书P5](1)设全集U={n|n是小于10的正整数},A={n|n是3的倍数,n∈U},求∁U A;(2)设全集U=R,集合A={x|x≥-3},B={x|-3<x≤2},求∁U A,∁U B,并求∁U A与∁B的关系.U【解】(1)因为U={1,2,3,4,5,6,7,8,9},A={3,6,9},所以∁U A={1,2,4,5,7,8}.(2)因为A={x|x≥-3},所以∁U A={x|x<-3}.又因为B={x|-3<x≤2},所以∁U B ={x |x ≤-3,或x >2}.画数轴如图: 所以,∁U A∁U B .(1)当集合中元素离散时,可借助Venn 图求解;当集合中元素连续时,可借助数轴求解. (2)解题时要注意使用补集的几个性质:∁U U =∅,∁U ∅=U ,A ∪(∁U A )=U .2.(1)已知全集为R ,集合A ={x |x <1,或x ≥5},则∁R A =________.(2)已知全集U ,集合A ={1,3,5,7},∁U A ={2,4,6},∁U B ={1,4,6},求集合B .解:(1)结合数轴可得∁R A ={x |1≤x <5}. 故填{x |1≤x <5}.(2)法一:A ={1,3,5,7},∁U A ={2,4,6}, 所以U ={1,2,3,4,5,6,7}.又∁U B ={1,4,6},所以B ={2,3,5,7}. 法二:借助Venn 图,如图所示,由图可知B ={2,3,5,7}.由集合间的关系求参数的值或范围[学生用书P6](1)已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a }(a ≥1).若AB ,求a 的取值范围.(2)已知集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的集合. 【解】 (1)若AB ,由图可知,a >2.故所求的a 的取值范围是a >2. (2)由x 2-4x +3=0,得x =1或x =3. 所以集合A ={1,3}.①当B =∅时,此时m =0,满足B ⊆A .②当B ≠∅时,则m ≠0,B ={x |mx -3=0}=⎩⎨⎧⎭⎬⎫3m .因为B ⊆A ,所以3m =1或3m =3,解之得m =3或m =1.综上可知,所求实数m的集合为{0,1,3}.由集合的包含关系求参数的方法已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B 是A的子集?若存在,求出集合A,B;若不存在,请说明理由.解:因为B是A的子集,所以B中元素必是A中的元素,若x+2=3,则x=1,符合题意.若x+2=-x3,则x3+x+2=0,所以(x+1)(x2-x+2)=0.因为x2-x+2≠0,所以x+1=0,所以x=-1,此时x+2=1,集合B中的元素不满足互异性.综上所述,存在实数x=1,使得B是A的子集,此时A={1,3,-1},B={1,3}.1.对子集概念的两点说明(1)“A⊆B”的含义:若x∈A,则能推出x∈B.(2)不能把“A⊆B”理解为“A是B中部分元素组成的集合”,因为集合A可能是空集,也可能是集合B.2.子集与真子集的区别(1)从定义上:集合A是集合B的子集包括A是B的真子集和相等两种情况,真子集是子集的特殊形式.(2)从性质上:空集是任何集合的子集,但不是任何集合的真子集;空集是任何非空集合的真子集.(3)从符号上:A⊆B指A B或A=B.A=A,A⊆A,∅⊆A都是正确的,A A,∅A 是不正确的.3.关于空集的两点说明(1)空集首先是集合,只不过空集中不含任何元素.注意∅和{∅}是有区别的,∅是不含任何元素的集合,而{∅}集合中含有一个元素∅.(2)规定空集是任何集合的子集,是任何非空集合的真子集.因此遇到诸如A ⊆B 或A B 的问题时,务必优先考虑A =∅是否满足题意. 4.理解补集应关注三点(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A 包含三层意思:①A ⊆U ;②∁U A 是一个集合,且(∁U A )⊆U ;③∁U A 是由U 中所有不属于A 的元素构成的集合.(3)若x ∈U ,则x ∈A 或x ∈(∁U A ).已知集合A ={x |x 2-1=0},B ={x |ax =1},若B A ,求实数a 的取值集合.[解] 因为A ={-1,1},B A ,所以当B =∅时,a =0;当B ≠∅时,由x =1a ∈A ,得1a =-1或1a =1,即a =-1或a =1.故a 的取值集合为{-1,0,1}.(1)错因:一是忽视B =∅,这一情况;二是未用集合表示a 的取值.(2)求解集合与集合之间的关系问题时,要明确空集是否是所讨论的集合的子集,否则容易出错.1.已知集合A ={-1,0,1},则下列关系中正确的是( ) A .A ∈A B .0A C .{0}∈AD .∅A解析:选D.“∈”用来表示元素与集合之间的关系,故A ,C 错误,“”用来表示集合与集合之间的关系,故B 错误,∅是任一集合的子集,是任一非空集合的真子集,故D 正确.2.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( ) A .1 B .-1 C .1或-1D .0,1或-1解析:选D.由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,知a =1或a =-1.3.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},则∁U A =________.解析:因为A ={1,2},所以∁U A ={3,4,5}. ★★答案★★:{3,4,5}4.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________. 解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎨⎧⎭⎬⎫x |x ≥52.结合数轴知A B .★★答案★★:AB[学生用书P79(单独成册)])[A 基础达标]1.已知集合A ={x |x 2-1=0},则下列式子表示正确的有( ) ①1∈A ;②{-1}∈A ;③∅⊆A ;④{1,-1}⊆A . A .1个 B .2个 C .3个D .4个解析:选C.A ={x |x 2-1=0}={-1,1},故①③④正确,②不正确. 2.满足{a }⊆M {a ,b ,c ,d }的集合M 共有( )A .6个B .7个C .8个D .15个解析:选B.依题意a ∈M ,且M{a ,b ,c ,d },因此M 中必含有元素a ,且可含有元素b ,c ,d 中的0个、1个或2个,即M 的个数等于集合{b ,c ,d }的真子集的个数,有23-1=7(个).3.已知全集U ={x |x ≥-3},集合A ={x |x >1},则集合A 的补集∁U A =( ) A .{x |x ≤1} B .{x |x <1} C .{x |-3≤x ≤1}D .{x |-3≤x <1}解析:选C.因为U ={x |x ≥-3},A ={x |x >1}, 如图所示:所以∁U A ={x |-3≤x ≤1}.4.设集合M ={1,2},N ={a 2},那么( ) A .若a =1,则N ⊆M B .若N ⊆M ,则a =1C .若a =1,则N ⊆M ,反之也成立D .a =1和N ⊆M 成立没有关系解析:选A.显然a =1时,集合N ={1},此时N ⊆M ;若N ⊆M ,则a 2可以是集合M中的元素1或2,此时a 可以取值1,-1,2,- 2.即若N ⊆M ,则a =1不成立.5.集合M =⎩⎨⎧⎭⎬⎫x |x =k 2+14,k ∈Z ,N =⎩⎨⎧x |x =k 4+12, }k ∈Z ,则( )A .M =NB .M NC .MND .M 与N 没有相同元素解析:选C.因为k 2+14=14(2k +1),k 4+12=14(k +2),当k ∈Z 时,2k +1是奇数,k +2是整数,又奇数都是整数,且整数不都是奇数,所以MN .选C.6.已知集合A ={x |-3≤x ≤4},B ={x |1<x <m }(m >1),且B ⊆A ,则实数m 的取值范围是________.解析:因为B ⊆A ,由图可知m ≤4,又因为m >1,所以实数m 的取值范围是1<m ≤4. ★★答案★★:1<m ≤47.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:因为∅{x |x 2-x +a =0},所以方程x 2-x +a =0有实根, 所以Δ=(-1)2-4a ≥0,a ≤14.★★答案★★:a ≤148.已知全集U =R ,A ={x |1≤x <b },∁U A ={x |x <1,或x ≥2},则实数b =________. 解析:因为∁U A ={x |x <1,或x ≥2}, 所以A ={x |1≤x <2}.所以b =2. ★★答案★★:2 9.写出满足条件∅M{0,1,2}的所有集合M .解:因为∅M{0,1,2},所以M 为{0,1,2}的非空真子集,M 中的元素个数为1或2. 当M 中只有1个元素时,可以是{0},{1},{2};当M 中含有2个元素时,可以是{0,1},{0,2},{1,2}. 所以所求集合M 为{0},{1},{2},{0,1},{0,2},{1,2}.10.已知a ∈R ,x ∈R ,A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},求:(1)使A ={2,3,4}的x 的值; (2)使2∈B ,B ⊆A 的a ,x 的值;(3)使B =C 的a ,x 的值.解:(1)由题意,知x 2-5x +9=3,解得x =2或x =3.(2)因为2∈B ,B ⊆A ,所以⎩⎪⎨⎪⎧2=x 2+ax +a ,3=x 2-5x +9. 所以⎩⎪⎨⎪⎧x =2,a =-23或⎩⎪⎨⎪⎧x =3,a =-74.(3)因为B =C ,所以⎩⎪⎨⎪⎧x 2+(a +1)x -3=3,x 2+ax +a =1.解得⎩⎪⎨⎪⎧x =-1,a =-6或⎩⎪⎨⎪⎧x =3,a =-2. [B 能力提升]1.设集合A ={x |a -1<x <a +1},B ={x |x <b -2,或x >b +2}.若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:选D.根据题意知A ⊆B ,作出如图所示的数轴,所以有b +2≤a -1或b -2≥a +1,解得a -b ≥3或a -b ≤-3,即|a -b |≥3.2.若集合A ={x |ax 2+2x +a =0}有且仅有2个子集,则实数a 的值为________. 解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.①当a =0时,方程化为2x =0,此时A ={0},符合题意. ②当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1, 所以a =±1.此时A ={-1}或A ={1},符合题意. 综上,a =0或a =±1. ★★答案★★:0或±13.已知全集U ={x |x ≤5,且x ∈N },A ={x |x 2-5x +a =0,x ∈U },求集合∁U A . 解:因为U ={0,1,2,3,4,5}, 在A 中,x ∈U ,故x=0,1,2,3,4,5分别代入x2-5x+a=0.得a=0或a=4或a=6,故有如下结果.当a=0时,A={0,5},∁U A={1,2,3,4};当a=4时,A={1,4},∁U A={0,2,3,5};当a=6时,A={2,3},∁U A={0,1,4,5};当a≠0,4,6时,A=∅,∁U A=U.4.(选做题)设全集U={3,6,m2-m-1},A={|3-2m|,6},∁U A={5},求实数m. 解:因为∁U A={5},所以5∈U但5∉A,所以m2-m-1=5,解得m=3或m=-2.当m=3时,|3-2m|=3≠5,此时U={3,5,6},A={3,6},满足∁U A={5};当m=-2时,|3-2m|=7≠5,此时U={3,5,6},A={6,7},不满足A⊆U.综上可知实数m的值为3.。
1.2子集、真子集、全集、补集
![1.2子集、真子集、全集、补集](https://img.taocdn.com/s3/m/5fa8662f6c175f0e7cd13761.png)
观 察 下 列 各,组 A与集 B之合间 有 怎 样 的 关 系 ?如 何 用 语 言 来 表 关述 系 ? 这 种
1 A 1 , 1 , B 1 , 0 , 1 , 2 ;
2 A N ,B R ;
3 A x |x 是北 ,B x |x 京 为人 中 ; 国
做一 全集个unive,r全 sa集 l 通常 U. 记作
例如 ,在实数范围内时 讨 ,R便 论可 集看 合做一U个 .
例 3不 等 32xx 16 式 00, 的 组 解 A ,U R 集 ,试 A 及 为 求
U A,并把它们分别表示在 轴数 上.
解 A x | 2 x 1 0 , 且 3 x 6 0 x | 1 / 2 x 2 ,
如果 AB,并且 AB,这时集 A称合 B 为 的真子集
prospee,t记 r 为 A B或 B A,读"作 A真包B 含 " 于 或 "B真包 A",含 如 a a,b.
例2 下列各组的三个,哪 集两 合个 中集合之间关有系 ?包
1S 2,1,1,2, A1,1,B2,2;
上述每组A中 ,B具 的有 集的 合 可关 以系 用子 集的概念 . 来表述 如果集A合 的每一个元素都B是的集元合素
(若aA,则aB),则称集A合 是集合 B的子
集 subse,t记为ABA或BA,读作"集
合A包含于集B"合 或"集合B包含集A合 ".
例,如 1,2,3N,NR,x|x为 北 京 人 x|x为 中 等 ,国 AB可 人 以 Ve图 用 nn来 表 A 示 B
根据子,集 我的 们A 定 知 A,也 义 道就,任 是说 何一个集合 子是 .对 集它 于 本 空 ,我身 集 们的 规 A,即 定 空集是任何集合的子集 .
1.2子集、全集、补集 学案(含答案)
![1.2子集、全集、补集 学案(含答案)](https://img.taocdn.com/s3/m/8358e4c5f18583d048645946.png)
1.2子集、全集、补集学案(含答案)1.2子集.全集.补集学习目标1.理解子集.真子集.全集.补集的概念.2.能用符号和Venn图.数轴表达集合间的关系.3.掌握列举有限集的所有子集的方法,给定全集,会求补集知识点一子集定义如果集合A的任意一个元素都是集合B的元素若aA,则aB,那么集合A称为集合B的子集记法AB或BA读法集合A包含于集合B或集合B包含集合A图示性质1任何一个集合是它本身的子集,即AA;2对于集合A,B,C,若AB且BC,则AC;3若AB且BA,则AB;4规定A知识点二真子集定义如果AB,并且AB,那么集合A称为集合B的真子集记法AB 或BA读法集合A真包含于集合B或集合B真包含集合A图示性质1对于集合A,B,C,若AB且BC,则AC;2对于集合A,B,若AB 且AB,则AB;3若A,则A知识点三全集.补集1全集如果集合S 包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常记作U.2补集定义文字语言设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集符号语言SAx|xS,且xA 图形语言性质1AS,SAS;2SSAA;3SS,SS题型一有限集合子集真子集的确定例11写出集合a,b,c,d的所有子集解,a,b,c,d,a,b,a,c,a,d,b,c,b,d,c,d,a,b,c,a,b,d,a,c,d,b,c,d,a,b,c,d反思感悟当元素个数为n时,有如下结论含有n个元素的集合有2n个子集;含有n个元素的集合有2n1个真子集;含有n个元素的集合有2n1个非空子集;含有n 个元素的集合有2n2个非空真子集跟踪训练11集合Ax|0x3,xN 的真子集的个数是A16B8C7D4答案C解析易知集合A0,1,2,含有3个元素,所以A的真子集的个数为2317.例12满足条件1,2,3M1,2,3,4,5,6的集合M的个数是A8B7C6D5答案C解析集合M中一定含有元素1,2,3,但同时M1,2,3且是1,2,3,4,5,6的真子集,所以集合M为1,2,3,4,1,2,3,5,1,2,3,6,1,2,3,4,5,1,2,3,4,6,1,2,3,5,6,共6个,故选C.反思感悟对于有限集A,B,C,设集合A中含有n个元素,集合B中含有m个元素n,mN*,且mn若BCA,则C的个数为2nm;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm2.跟踪训练12适合条件1A1,2,3,4,5的集合A的个数是________答案15解析这样的集合A有1,1,2,1,3,1,4,1,5,1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,1,4,5,1,2,3,4,1,2,3,5,1,2,4,5,1,3,4,5共15个题型二集合间关系的判断例2判断下列各组中集合之间的关系1Ax|x是12的约数,Bx|x是36的约数2Ax|x是平行四边形,Bx|x是菱形,Cx|x是四边形;Dx|x 是正方形3M,N.4Ax|1x4,Bx|x5解1因为若x是12的约数,则必定是36的约数,反之不成立,所以AB.2由图形的特点可画出Venn图如图所示,从而DBAC.3对于集合M,其组成元素是,分子部分表示所有的整数;而对于集合N,其组成元素是n,分子部分表示所有的奇数由真子集的概念知,NM.4由数轴易知A中元素都属于B,B中至少有一个元素如2A,故有AB.反思感悟判断集合A,B之间是否有包含关系的步骤先明确集合A,B中的元素,再分析集合A,B中的元素间的关系当集合A 中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B且B中至少有一个元素不属于集合A时,AB;当集合A中的元素都属于集合B,并且集合B中的元素都属于集合A时,有AB.跟踪训练2设集合A0,1,集合Bx|x2或x3,则A与B的关系为________答案AB或AB解析02,0B.又12,1B,又AB,AB或AB题型三补集的求法例31设Ux|x是小于9的正整数,A1,2,3,B3,4,5,6,求UA,UB.解根据题意可知,U1,2,3,4,5,6,7,8,所以UA4,5,6,7,8,UB1,2,7,82若全集UxR|2x2,AxR|2x0,则UA________.答案x|0x2解析UxR|2x2,AxR|2x0,UAx|0x2反思感悟求集合的补集,需关注两处一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图有限集.数轴数集.坐标系点集来求解跟踪训练31设集合U1,2,3,4,5,集合A1,2,则UA________.答案3,4,52已知集合UR,Ax|x2x20,则UA________.答案x|x2x203已知全集Ux,y|xR,yR,集合Ax,y|xy0,则UA________.答案x,y|xy0题型四由集合间关系求参数值或范围例4已知集合Ax|2x5,Bx|m1x2m1,若BA,求实数m的取值范围解1当B时,如图所示或解这两个不等式组,得2m3.2当B时,由m12m1,得m2.综上可得,m的取值范围是m3.引申探究1若本例条件“Ax|2x5”改为“Ax|2x5”,其他条件不变,求m的取值范围解1当B时,由m12m1,得m2.2当B时,如图所示解得即2m3,综上可得,m的取值范围是m3.2若本例条件“BA”改为“AB”,其他条件不变,求m的取值范围解当AB时,如图所示,此时B.即m不存在即不存在实数m使AB.反思感悟1利用集合的关系求参数问题利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合含参数,另一个为静集合具体的,解答时常借助数轴来建立变量间的关系,需特别注意端点问题空集是任何集合的子集,因此在解ABB的含参数的问题时,要注意讨论A和A两种情况,前者常被忽视,造成思考问题不全面2数学素养的建立通过本例尝试建立数形结合的思想意识,以及在动态变化中学会用分类讨论的思想解决问题跟踪训练4已知集合Ax|x4或x5,Bx|a1xa3,aR,若BA,则a的取值范围为________答案a|a8或a3解析利用数轴法表示BA,如图所示,则a35或a14,解得a8或a3.1对子集.真子集有关概念的理解1集合A中的任何一个元素都是集合B中的元素,即由xA,能推出xB,这是判断AB的常用方法2不能简单地把“AB”理解成“A是B中部分元素组成的集合”,因为若A时,则A中不含任何元素;若AB,则A中含有B 中的所有元素3在真子集的定义中,AB首先要满足AB,其次至少有一个xB,但xA.2集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集集合的子集.真子集个数的规律为含n个元素的集合有2n个子集,有2n1个真子集,有2n2个非空真子集写集合的子集时,空集和集合本身易漏掉3补集是相对于全集而言的,有限集求补集一般借助Venn图,连续的数集求补集常用数轴,求时注意端点取舍4在由集合间关系求参数值或范围时1由于空集是任何集合的子集,又是任何非空集合的真子集,所以在遇到“AB”或“AB且B”时,一定要注意讨论A 和A两种情况,A的情况易被忽略,应引起足够重视2在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界能否取等号,否则会导致解题结果错误正确的做法是把端点值代入原式,看是否符合题目要求.1若A1,下列关系错误的是ABAACADA 考点空集的定义.性质及运算题点空集的性质答案D2已知集合A1,0,1,则含有元素0的A的子集的个数为A2B4C6D8答案B解析根据题意,含有元素0的A的子集为0,0,1,0,1,1,0,1,共4个3设集合U1,2,3,4,5,6,M1,2,4,则UM________.答案3,5,64若Ax|xa,Bx|x6,且AB,则实数a的取值范围是________答案a|a65已知集合Ax|1x2,Bx|2a3xa2,且AB,求实数a的取值范围考点子集及其运算题点根据子集关系求参数的取值范围解1当2a3a2,即a1时,BA,符合题意2当a1时,要使AB,需满足这样的实数a不存在综上,实数a的取值范围是a|a1.。
《1.2子集、全集、补集》课时训练含答案
![《1.2子集、全集、补集》课时训练含答案](https://img.taocdn.com/s3/m/a214cb75e518964bce847c2a.png)
数学·必修1(苏教版)1.2子集、全集、补集若一个小公司的财产和职员都是某个大公司的财产和职员,那么这个小公司叫做这个大公司的子公司.同样对于一个集合A中的所有元素都是集合B的元素,那么我们如何给A、B之间建立一个确切的关系呢?基础巩固1.已知集合A={x|-1<x<2},B={x|-1<x<1},则() A.A B B.B AC.A=B D.A∩B=∅解析:直接判断集合间的关系.∵A={x⎪⎪-1<x<2},B={x⎪⎪-1<x<1},∴B A.答案:B2.设集合U={1,2,3,4,5,6},M={1,3,5},则∁U M=() A.{2,4,6} B.{1,3,5}C.{1,2,4} D.U解析:∁U M={2,4,6}.答案:A3.已知集合U=R,集合M={x |x2-4≤0},则∁U M=() A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}解析:∵M={x|x2-4≤0}={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.答案:C4.设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R},若A⊆B,则实数a、b必满足()A.|a+b|≤3 B.|a+b|≥3C.|a-b|≤3 D.|a-b|≥3解析:A={x|a-1<x<a+1},B={x|x<b-2或x>b+2},∵A⊆B,∴a+1≤b-2或a-1≥b+2,即a-b≤-3或a-b≥3,即|a-b|≥3.答案:D5.下列命题正确的序号为________.①空集无子集;②任何一个集合至少有两个子集;③空集是任何集合的真子集;④∁U(∁U A)=A.解析:空集∅只有它本身一个子集,它没有真子集,而一个集合的补集的补集是它本身.答案:④6.若全集U={x∈R|x2≤4},A={x∈R||x+1|≤1},则∁U A=________.解析:U={x|-2≤x≤2},A={x|-2≤x≤0},∴∁U A={x|0<x≤2}.答案:{x|0<x≤2}7.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B=∅和B≠∅两种情况.答案:{a|a≤1}8.已知集合A ={x |ax 2-5x +6=0},若A 中元素至少有一个,则a 的取值范围是________.解析:若a =0,则A =⎩⎨⎧⎭⎬⎫65符合要求;若a ≠0,则Δ=25-24a ≥0⇒a ≤2524. 答案:⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤2524能力提升9.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1个B .2个C .3个D .4个解析:∵A ={1,2},B ={1,2,3,4,},∴C 中必须含有1,2,即求{3,4}的子集的个数,即22=4个.答案:D10.已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是()A.1 B.-1C.1或-1 D.0,1或-1解析:P={-1,1},Q⊆P,则有Q=∅或Q={-1}或Q={1}三种情况.答案:D11.设U={0,1,2,3},A={x∈U|x2+mx=0}.若∁U A={1,2},则实数m=________.解析:∵∁U A={1,2},∴A={0,3},故m=-3.答案:-312.已知:A={1,2,3},B={1,2},定义某种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中最大的元素是________,集合A*B 的所有子集的个数为________.解析:A*B={2,3,4,5},故最大元素为5,其子集个数为24=16个.答案:516个13.设A={1,3,a},B={1,a2-a+1},若B A,则a的值为________.答案:-1或214.含有三个实数的集合可表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可表示为{a 2,a +b,0}.求a +a 2+a 3+…+a 2011+a 2019的值.解析:由题可知a ≠0,b =0,即{a,0,1}={a 2,a,0}, 所以a 2=1⇒a =±1,当a =1时,集合为{1,1,0},不合题意,应舍去; 当a =-1时,集合为{-1,0,1},符合题意. 故a =-1,∴a +a 2+a 3+…+a 2011+a 2019=0.15.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =m +16,m ∈Z ,N =x ⎪⎪⎪x =n 2-13,n ∈Z ,P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =p 2+16,p ∈Z ,试探求集合M 、N 、P 之间的关系.解析:m +16=16(6m +1),n 2-13=16(3n -2)=16[3(n -1)+1],P 2+16=16(3P +1),N =P .而6m +1=3×2m +1,∴M N =P .16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数M 的取值范围.解析:①若B =∅,则应有m +1>2m -1,即m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解析:A ={x |x 2-2x -3=0}={-1,3}, 若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a .由BA ,可知1a =-1或1a =3,即a =-1或a =13.综上可知:a 的值为0,-1,13.18.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求实数a 的取值范围.解析:因为A ={-4,0},所以分两类来解决问题: (1)当A =B 时,得B ={-4,0}.由此可得0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,故⎩⎨⎧-2(a +1)=-4,a 2-1=0.解得a =1.(2)当B A 时,则又可以分为: ①若B ≠∅时,则B ={0}或B ={-4}, Δ=4(a +1)2-4(a 2-1)=0,得a =-1;数学试卷②若B=∅时,Δ<0,解得a<-1.综上所述,实数a的取值范围是a≤-1或a=1.。
子集、全集、补集
![子集、全集、补集](https://img.taocdn.com/s3/m/98c7daddaa00b52acfc7ca26.png)
2005.9.4
看下面的例子:
S
A
A={班上所有参加铜管乐队的同学}
B={班上所有参加铜管乐队的同学}
S={全班同学}
那么S、A、B三集合的关系如何?
一、补集的定义
1、补集:一般地,设S是一个集合,A是S 的一个子集(即 A S )。由S中所有 不属于 A的元素组成的集合,叫做S中子 集A的补集(或余集),记作 C S A ,即 C S A = { x | x S , 且 x A}
; / pc蛋蛋预测
jeh49mcg 2、指事前的推测或测定。鲁迅《书信集·致夏传经》:“经历一多,便能从前因而知后果,我的预测时时有验。”夏丏尊叶 圣陶《文心》十九:“ 乐华 ,我没有旁的话向你说,我只愿你不辜负我的预测。”冯雪峰《狐狸的恶梦》:“虽然没有任何 的根据可以断定他的预测的准确,可总不停地心跳 他的后背,壹边喃喃自语道:“不怕,不怕。你是勇敢的少年郎,壹会儿娘亲就会来抱抱,亲亲你的小脸,握握你的小手,然 后壹起回家见爹爹。”小家伙似懂非懂地听着冰凝那近似儿歌的喃喃细语,虽然刚刚经过壹场惊吓,但他也知道,现在这个漂 亮姐姐的怀抱,是安全的,温暖的,就像躺在额娘的身上,正懒懒地撒娇呢。想着想着,没壹会儿小家伙就闭上了眼睛,进入 了甜甜的梦乡。随着男孩儿回到家人的怀抱,冰凝悬着的壹颗心也终于踏实了下来,两路人马各自分道扬镳。第壹卷 第五章 年府冰凝主仆壹行的目的地,是京城年府。之所以称为京城年府,那是相对于湖广总督府而言。冰凝的父亲年暇龄,时任湖广 总督,而她的二哥哥年羹尧却是在京城任职,已有五年时间。这京城年府就是年二公子在京城置的家业,虽然比起父亲的湖广 总督官邸,虽然差得相当远,但是在京城,依二公子的官职和俸禄,已经是相当不错的了。这也是二公子广结人脉的结果,能 够捡了这么大的壹个便宜。当时卖主急于要现银,才开出了壹万两银子的低价。这年二公子交友甚多,结交甚广,从壹个朋友 的亲戚的幕僚的同乡那里拐着弯地得知消息,当机立断,壹手交了现银,壹手就拿了房契。冰凝这次来到京城,是为了提前准 备明年的选秀。作为在旗的四品以上官员的女儿,这是她与生俱来的责任,更何况她的父亲还是封疆要员、朝中重臣。对于此 次选秀,年老夫妇可是寄予了厚望。谁让冰凝生得如此美貌呢,简直就是万里挑壹:肌肤白嫩,吹弹可破,鹅蛋小脸,弯眉淡 扫,美目顾盼,睫毛长卷,樱桃小口,气若幽兰。她是年总督夫妇的老来女,自然是宠得不行,娇养至极,老爷和夫人在她还 是个小娃娃的时候就下了极大的力气,精心培养。这冰凝也真是争气,琴棋书画,礼仪女红,无壹不通,无壹不精。特别是她 过目不忘的本领,连她那才学过人的二哥哥都直叹惊奇。其实,年老夫妇心中所谓的厚望,并不想借选秀的机会,让女儿进宫 当娘娘,这可是他们最最舍不得的事情。在他们的眼中,这冰凝简直就是他们的心头肉,真是含在嘴里怕化了,放在手里怕掉 了。如果进了宫,能不能当上主宫娘娘,能不能受到皇上的宠爱,全都不得而知,他们可舍不得让自己的宝贝女儿受苦。因此, 他们最理想的目标,是借这次选秀的机会,将冰凝嫁入宗室做嫡妻,也可是她壹生中最好的归宿了。于是,年老夫妇决定,提 前半年将冰凝送到京城,学习皇家礼仪;同时又在家信中仔仔细细地嘱咐了二公子,务必照顾好妹妹。其实,哪里还用年老夫 妇吩咐,这二公子可是眼看着冰凝从壹个粉团团的小娃娃出落成了壹个小美人,两个人年龄相差不算大,又是从小玩到大,亲 厚得不得了。每逢二公子犯了错,冰
1.2 子集、全集、补集
![1.2 子集、全集、补集](https://img.taocdn.com/s3/m/921628dc6f1aff00bed51e0e.png)
1.2 子集、全集、补集第一课时一、教学目标1.理解子集、真子集的概念及其符号“”“⊂”的含义.2.了解空集、全集的意义,理解补集的概念。
3.了解集合间的包含、相等关系的意义。
4.会判断两集间的“包含”“相等”或“互补”的关系,并用符号及图形(韦恩图或数轴)准确地表示出来,培养数形结合的能力.5.能写出已知集合的所有子集或真子集.培养观察与逻辑划分能力.6.通过阐明子集、全集、补集分别现实生活中“部分”“全体”“剩余”概念在数学中反映,引导学生感悟任何抽象的数学概念都来源于真实的客观世界,为他们今后确立科学的世界观奠定基础.二、教学重点、难点1.重点:子集、补集的概念与性质.解决方法:具体集合关系与抽象概念和图形表示相结合.2.难点:弄清“元素”与“子集”“从属关系”与“包含关系”的区别并正确使用相关的表示符号.三、教与学过程设计(一)设置情境师:前两节课我们已经学习了许多关于集合的知识,如:集合与元素的定义,集合中元素的特点、集合的分类、集合的表示方法等,显然这些知识仅局限于某个集合自身,从这节课起,我们将跳出某个集合的“小圈子”,把讨论的重点转到两个或几个集合的关系上来。
(二)引入新课1.子集的定义与性质我们在讨论集合中元素的无序性时,已知道{}321,,与{}123,,是同一个集合,也就是说{}{}123321,,,,=,显然两个集合之间是存在着“相等”关系的。
同学们还能举出一些集合相等的实例吗?生:{}{}938,7,6,5,4<<∈=x N x 。
{}{}Z ,14Z ,12∈±==∈+=m m y y n n x x 。
……师:如果我们引申到一般情况,即有A 、B 两个集合是相等的,同学们能否从元素的角度描述出集合B A =的含义呢?生:(举手回答)如果集合A 与B 中的元素完全相同,那么这两个集合相等。
(由教师板书)师:完全正确。
显然,当集合B A =时,用图示法表示A 、B 两集的关系的话,示意A 、B 两集的“封闭曲线”是完全重合的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反馈评价
如果集合A的每一个元素都是集合B的元素 (若a A, 则a B) , 则称集合A是集合B的 子
集 subset , 记为 A B 或 B A , 读作" 集
合A包含于集合B "或 " 集合B包含集合A".
如果 A B, 并且 A B, 这时集合 A 称为B 的 真子集 proper set , 记为 A B 或 B A , 读作" A真包含于B " 或 " B真包含A" , 如a a, b.
观察下列各组集合,A与B之间具有怎样的关 系?如何用语言来表述这种关系?
A -1,1 , B 1,0,1,2
A N, B R
B A x x为北京人, x x为中国人
1. 2 子集、全集、补集
学习目标
了解集合之间包含关系的意义. 理解子集、真子集的概念. 了解全集的意义,理解补集的概念.
自学指导
什么是子集、真子集、补集? 表示集合之间的关系的符号有哪些? 什么是全集?
自学检测
1.下列三个命题: (1)任何一个集合必有两个或两个以上的子集; C A (2)空集是任何集合的真子集;(3)空集没有子集; 其中正确的有几个? 2.(1)已知U={1,2,3,4,5},A={2,4},求 CU A . (2)已知U={2,4},A={2,4},求 CU A . 3.指出下列各组中集合A与集合B之间的关系: (1)A={0,1,2},B=Z; (2)A={1,2,3,4,6,12},B={x|x是12的正约数}. 4.写出集合 (1,2), (3,4)的所有真子集.
设A S ,由S中不属于A的所有元素组成的集合称为S的 中的补集 "),即Cs A x | x S , 且 x A . 子集A的 补集 (complementary set ), 记为Cs A (读作 " A在S
Cs A 可用右图中的阴影部分来表示 . 对于例2, 我们有B Cs A , A Cs B
S
A
如果集合S包含我们所要研究的各 个集合, 这时S可以看
全集 universal, 全集通常记作 . 做一个 U
例题分析
例1 写出集合a, b的所有子集.
例 2 下列各组的三个集合中哪两个集合之间有包含 , 关系?
1 S 2,1,1,2 , A 1,1 , B 2,2 ; 2 S R, A x | x 0, x R , B x | x 0, x R ; 3 S x | x为地球人 , A x | x为中国人, B x | x 为外国 人 .
CU A
例3 不等式组
2x 1 0 ,
3x 6 0 轴上. U 试求A及
分层训练
必做题 : 第9页1,3,4 选做题 : 第17页3 思考题: 集合 a ,a ,a , ,a
1
2
3
有多少个子集? n
作业 第10页2,3,4