量子力学知识点小结
量子力学基本概念总结
量子力学基本概念总结量子力学是一门描述微观粒子行为的物理学分支,它提供了一种理论框架,用于解释和预测原子、分子和基本粒子的现象。
以下是一些量子力学的基本概念的总结。
1. 波粒二象性(Wave-particle duality)量子力学中的一个重要概念是波粒二象性,即微观粒子既可以表现出粒子特性也可以表现出波动特性。
例如,电子可以像波一样传播,但也可以被当作是粒子来计算。
2. 不确定性原理(Heisenberg's Uncertainty Principle)不确定性原理是由波粒二象性导致的。
它表明在粒子的位置和动量之间存在一种固有的不确定性。
换句话说,我们无法同时准确知道一个粒子的位置和动量,只能知道它们之间的不确定性。
3. 玻尔模型(Bohr model)玻尔模型是描述原子结构的经典模型之一。
它基于量子力学中能级的概念,认为电子围绕着原子核在不同的能级轨道上运动。
这个模型解释了原子光谱、电离能和跃迁等现象。
4. 波函数(Wave function)波函数是量子力学中用来描述粒子状态的数学函数。
它包含了所有关于粒子位置、动量和能量等信息。
根据波函数,我们可以计算出粒子的一些物理性质。
5. 测量与观测(Measurement and Observation)量子力学强调测量和观测对系统产生影响。
在测量时,波函数将塌缩到某个确定的状态,并给出对应的测量结果。
这种波函数塌缩导致了一系列奇特的现象,如量子纠缠和量子隐形。
6. 量子纠缠(Quantum Entanglement)量子纠缠是量子力学中的一个非常奇特的现象。
当两个或更多粒子处于纠缠状态时,它们的态无法独立地描述,而必须考虑整个系统的态。
当一个粒子的状态发生改变时,纠缠粒子的状态也会瞬间发生变化,即使它们之间的距离很远。
7. 施特恩-盖拉赫实验(Stern-Gerlach Experiment)施特恩-盖拉赫实验是证明电子具有自旋的经典实验之一。
量子力学的知识点
量子力学的知识点量子力学是一门研究微观世界的物理学分支,它描述了微观粒子的行为和相互作用。
本文将介绍一些量子力学的基本概念和知识点。
1. 波粒二象性:量子力学中最基本的概念之一是波粒二象性。
根据波粒二象性,微观粒子既可以表现出波动性,也可以表现出粒子性。
例如,电子和光子既可以像粒子一样被探测到,也可以像波一样干涉和衍射。
2. 不确定性原理:不确定性原理是量子力学的核心原理之一,由海森堡提出。
它指出,在某一时刻,无法同时准确测量一个粒子的位置和动量。
换句话说,粒子的位置和动量不能同时被完全确定。
3. 波函数和量子态:波函数是量子力学中描述微观粒子的数学工具。
它可以用来计算粒子的概率分布和状态。
量子态则是描述粒子的完整信息,包括波函数和其他相关信息。
4. 叠加态和量子叠加:叠加态是指一个粒子处于多个可能状态的叠加状态。
量子叠加是指粒子在没有被观测之前,可以同时处于多个可能状态,直到被观测时才会坍缩到其中一个确定的状态。
5. 纠缠态和量子纠缠:纠缠态是指多个粒子之间存在相互关联的状态。
量子纠缠是指两个或多个粒子之间的状态相互依赖,无论它们之间有多远的距离。
6. 测量和量子测量:量子测量是指对一个量子系统进行观测,以获取它的某个性质的数值。
量子测量会导致波函数坍缩,从而确定粒子的状态。
7. 哥本哈根解释:哥本哈根解释是量子力学最广泛接受的解释之一,由波尔和海森堡等人提出。
它强调了观察者在量子系统中的重要性,认为观测会导致波函数坍缩,从而决定粒子的状态。
8. 量子力学的应用:量子力学在现代科学和技术中有广泛的应用。
例如,量子力学在原子物理学、核物理学、凝聚态物理学和量子计算等领域发挥着重要作用。
总结起来,量子力学是一门研究微观世界的物理学分支,它涉及到波粒二象性、不确定性原理、波函数和量子态、叠加态和量子叠加、纠缠态和量子纠缠、测量和量子测量、哥本哈根解释以及量子力学的应用等知识点。
通过深入了解这些知识点,我们可以更好地理解微观世界的奥秘,并应用于相关领域的研究和技术发展中。
量子力学知识总结
量子力学基础知识总结一.微观粒子的运动特征1.黑体辐射和能量量子化黑体:一种能全部吸收照射到它上面的各种波长辐射的物体普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。
2.光电效应与光子学说爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。
其提出了光子学说,圆满解释了光电效应。
光子学说内容:①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子光子能量ε=hν/c②光子质量m=hν/c2③光子动量p=mc=hν/c= h/λ④光的强度取决于单位体积内光子的数目,即光子密度。
光电效应: hν=W+EK =hν+21mv2,W为脱出功,Ek为光电子的动能。
3.实物微粒的波粒二象性德布罗意提出实物微粒也具有波性:E=hν p=h/λ德布罗意波长:λ=h/p=h/(mv)4. 测不准原理:∆x∆x p≥h∆y∆py ≥h∆z∆py≥h∆tE≥h二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数ψ(x,y,z)称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
量子力学知识点总结
v
2mx
1.05 1034 2 9.1 1031 1010
0.6106 m/s
按经典力学计算
v2 m
r
k
e2 r2
v
ke2 mr
9109 (1.6 1019 )2 9.11031 0.5 1010
2.2106m/s
速度与其不确定度 同数量级。可见,对原 子内的电子,谈论其速 度没有意义,描述其运 动必须抛弃轨道概念, 代之以电子云图象。
Eˆ i 哈密顿算符 t
pˆ x
i
Hˆ
x
2
xˆ x 2 U
定态薛定谔方程(一维)
条件:U=U(x,y,z)
不随时间变化。
2 2m
2m 2Ψ x2 U( x)Ψ
i Ψ t
一般薛定谔方程(三维) 2 2 U i
2m
5. (1) 用 4 个量子数描述原子中电子的量子态,这 4 个 量子数各称做什么,它们取值范围怎样?
(2) 4 个量子数取值的不同组合表示不同的量子态, 当 n = 2 时,包括几个量子态?
(3) 写出磷 (P) 的电子排布,并求每个电子的轨道角 动量。
答:(1) 4 个量子数包括: ➢ 主量子数 n, n = 1, 2, 3,… ➢ 角量子数 l, l = 0, 1, 2,…, n-1 ➢ 轨道磁量子数 ml, ml = 0, 1, …, l ➢ 自旋磁量子数 ms, ms = 1/2
处单位体积元中发现一个粒子的概率,称为概率密度。
因此波函数 y 又叫概率幅。
六、不确定关系
位置动量不确定关系: xpx / 2 能量时间不确定关系: Et / 2
量子力学基础 知识点
量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
量子力学知识点小结
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。
⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。
量子力学知识点小结
量子力学知识总结认真、努力、坚持、反思、总结…量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。
关于量子力学的知识点总结
关于量子力学的知识点总结量子力学是现代物理学的一个重要分支,研究微观世界的行为规律。
它涉及到很多的知识点,下面将对其中的一些重要知识点进行总结。
1. 波粒二象性:量子力学中的基本粒子既可以表现出粒子的性质,又可以表现出波动的性质。
例如,电子、光子等粒子既可以像粒子一样具有位置和动量,又可以像波动一样具有频率和波长。
2. 不确定性原理:由于波粒二象性的存在,无法同时准确测量粒子的位置和动量,因为测量其中一个属性会对另一个属性造成不确定性。
这是因为波粒二象性使得微观粒子的位置和动量不能同时具有确定值。
3. 波函数:在量子力学中,波函数描述了一个量子系统的状态,其平方表示在不同位置寻找粒子的概率。
波函数形式为ψ(x),其中x代表位置。
4. 叠加原理:当两个或多个波函数重叠时,它们可以相互叠加形成新的波函数。
这种叠加可以导致干涉现象,即波的相位相加或相减,形成波纹增强或波纹消除的现象。
5. 薛定谔方程:薛定谔方程是描述量子系统随时间演化的基本方程。
它能够确定系统的波函数随时间的变化,并给出粒子的能量以及其他物理量。
6. 量子态与态矢量:量子力学描述粒子的态称为量子态,用态矢量表示。
一个粒子的量子态是一个复数的线性组合,它确定了粒子在不同物理量上的测量结果的概率。
7. 纠缠:当两个或多个粒子通过量子力学的相互作用使得它们的量子态互相关联时,就产生了纠缠现象。
纠缠态的特点是不能将其视为单个粒子的状态,而必须将其作为整个系统的态来描述。
8. 可观测量与算符:在量子力学中,物理量的观测结果用可观测量表示。
每个可观测量都有对应的算符,通过作用于波函数求得其期望值。
例如,位置可观测量对应位置算符,动量可观测量对应动量算符。
9. 自旋:自旋是粒子特有的内禀角动量,与其自身特性相关。
自旋可能采取离散值,如电子的自旋即为1/2。
10. 荷质比:荷质比是粒子带电性质与其质量的比值。
根据量子力学理论,荷质比具有量子化的性质。
大学物理-量子力学小结
1、 黑体辐射,普朗克的能量子假说黑体:能完全吸收各种波长电磁波而无反射的物体普朗克的能量子假说辐射物质中具有带电的线性谐振子,谐振子可能具有的能量不是连续的,只能取一些离散的值。
E 0 = h ν E = nh ν2、爱因斯坦的光子理论解释光电效应•光量子 具有“整体性” •光强 正比于nh ν •光电流 正比于n •红限 →光子能量→光电效应 •截止电压 →电子最大动能 • 逸出功 材料决定E 0 = h ν212h m A ν=+v表明:“光子”概念正确;守恒定律适用于微观3、光的性质光具有波粒二象性传播时,“波动性” λ,ν与物质相互作用而转移能量时,“粒子性” E ,p光子的基本属性1) 能量 νh E =2) 质量 3) 动量 4) 光子不带电4、康普顿散射光子 E 0 = h ν能量守恒,动量守恒2mc E =2h m c ν⇒=λc h=p mc =λh =传递给反冲电子的能量等于光子损失的能量k 0E h h νν=-5、德布罗意波 微观粒子的波动性德布罗意假设 :实物粒子具有波粒二象性德布罗意公式h p λ= Eh ν= mvhp h ==λ h mc h E 2==ν6、 不确定关系用电子衍射说明不确定关系电子经过缝时的位置不确定x a ∆=电子经过缝后,x 方向动量不确定sin x p p p a λφ∆==hp λ= x hp a ∆=h p x x =∆∆考虑衍射次级有 h p x x ≥∆∆7、实物粒子的不确定关系对于微观粒子不能同时用确定的位置和确定的动量来描述量子力学精确计算:2x x p ∆∆⋅≥h2η≥∆⋅∆y p y 2η≥∆⋅∆z p z 8、物质波函数,及其统计诠释波函数 的解释——波恩(1926)统计解释:当测量用ψ 描写的状态下的粒子位置时,它在一点(x, y, z )附近的 d V 体积元中被发现的概率与 ψ *ψ d V 成正比Ψ 本身无意义|Ψ|2 代表粒子在某处单位体积中出现的概率——概率密度波函数的标准条件:单值、有限、连续还满足:归一化条件:*1ΨΨdV ∞=⎰ 9、薛定谔方程一维自由粒子波函数 (自由:势能函数U =0)()0(,)x i p x E t Ψx t Ψe -=h若粒子在势能为U 的势场中运动 E =E k +U含时薛定谔方程 (一维运动粒子)∂∂-+==∂∂222ΨΨU(x,t )Ψi E Ψ2m x t h h粒子的波函数 -=i Et Ψ(x,t )(x ) eψh定态薛定谔方程 (势场,一维运动粒子):波函数的空间部分方程亦常写作求解定态波函数典型步骤(一维无限深方势阱):• 1. 势能函数代入定态薛定谔方程,并讨论阱外• 2. 阱内,方程整理为如下形式,直接写出其通解• 3. 利用单值、有限、连续、归一化条件,确定通解中的三个参数,得到波函数• 4. 添加时间项,写出完整波函数(1) 一维无限深势阱中的粒子[]()()1,2nx kx k naπϕπ=+==概率密度2()nP xϕ=(2) 一维势垒隧道效应在势垒区域,粒子波函数不为零,表明粒子可以到达、甚至穿越势能高于其动能的势垒。
量子力学知识点
量子力学知识点量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子等的行为。
量子力学的核心概念包括波函数、量子态、不确定性原理、量子纠缠等。
以下是量子力学的一些主要知识点总结:1. 波函数:量子力学中,一个粒子的状态由波函数描述,波函数是一个复数函数,其模的平方给出了粒子在某个位置被发现的概率密度。
2. 薛定谔方程:这是量子力学中描述粒子波函数随时间演化的基本方程。
薛定谔方程是量子力学的核心,它是一个偏微分方程,能够预测粒子的行为。
3. 量子态:量子系统的状态可以由波函数表示,这些状态是离散的,并且遵循一定的量子数规则。
4. 量子叠加原理:量子系统可以同时处于多个可能的状态,这些状态的叠加构成了系统的总状态。
5. 不确定性原理:由海森堡提出,指出无法同时精确测量粒子的位置和动量。
这是量子力学与经典力学的一个根本区别。
6. 量子纠缠:两个或多个粒子可以处于一种特殊的相关状态,即使它们相隔很远,一个粒子的状态改变也会立即影响到另一个粒子的状态。
7. 量子隧道效应:粒子有可能穿过一个经典力学中不可能穿越的势垒,这是量子力学中的一个非直观现象。
8. 波粒二象性:量子力学中的粒子既表现出波动性也表现出粒子性,这种性质由德布罗意提出。
9. 量子力学的诠释:包括哥本哈根诠释、多世界诠释等,不同的诠释试图解释量子力学中观察到的现象。
10. 量子计算:利用量子力学原理进行信息处理的技术,量子计算机能够执行某些特定类型的计算任务,速度远超传统计算机。
11. 量子纠缠与量子通信:量子纠缠是量子通信的基础,可以实现安全的信息传输。
12. 量子退相干:量子系统与环境相互作用,导致量子态的相干性丧失,是量子系统向经典系统过渡的过程。
13. 量子场论:将量子力学与相对论结合起来,描述粒子的产生和湮灭过程。
14. 量子信息:研究量子系统在信息处理中的应用,包括量子密码学、量子通信等。
15. 量子测量:量子力学中的测量问题涉及到波函数的坍缩,即测量过程会导致量子态的不确定性减少。
量子力学知识的总结归纳
量子力学知识的总结归纳量子力学是20世纪初由诺贝尔物理学家波尔、玻恩、海森堡等人发展起来的一门基础物理学理论。
它描述了微观世界中的粒子行为,涉及到微观粒子的波粒二象性、不确定性原理以及量子态叠加等概念。
本文将对量子力学的重要知识进行总结归纳,帮助读者更好地理解量子力学的基本原理。
一、波粒二象性在经典物理学中,我们将物质看作是粒子,具有确定的位置和动量。
然而,通过许多实验观察发现,微观粒子如电子、光子等却同时表现出粒子和波的性质。
这就是波粒二象性的基本概念。
根据德布罗意的物质波假设,每个物质粒子都与波动现象相对应。
粒子的波长和动量之间存在关系,称为德布罗意关系:λ = h / p其中,λ表示波长,h表示普朗克常数,p表示动量。
二、量子力学的基本原理1.波函数和薛定谔方程在量子力学中,用波函数(Ψ)来描述粒子的状态。
波函数的平方(|Ψ|^2)给出了在空间中找到粒子的概率。
薛定谔方程是描述波函数随时间演化的方程。
它是一个偏微分方程,其解决了波函数随时间的变化,从而可以预测粒子的行为。
2.不确定性原理由海森堡提出的不确定性原理是量子力学的重要概念之一。
它表明,无法同时准确地确定粒子的位置和动量。
不确定性原理可以用数学形式表示为:Δx * Δp >= h / 2π其中,Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。
3.量子态叠加和测量在量子力学中,粒子的状态可以叠加为多个态的线性组合。
这种叠加被称为叠加原理。
当我们对粒子进行观测时,测量结果只能是某个确定态,而不是叠加态。
测量之后,粒子的波函数将塌缩到某个确定态,概率由波函数的平方给出。
三、量子力学的应用量子力学不仅仅是一门理论学科,它也有着广泛的应用。
以下是量子力学的一些重要应用领域。
1.原子物理学量子力学解释了原子结构、电子轨道和元素周期表等现象。
它的应用使我们能够理解和探索原子和分子之间的相互作用,进而推动材料科学和化学的发展。
量子力学知识点小结
量子力学知识总结认真、努力、坚持、反思、总结…量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。
量子力学知识点总结
1、光子的能量和动量是:E=ℎ v=ћw、p=ℎvn/c=ℎn/λ=ћk2、量子现象:由以上两个公式可以看出,在宏观现象中,h和其他物理量相比较可以略去,因而辐射的能量可以连续变化,因此凡是h在其中起重要作用的现象都可以称为量子现象。
3、量子化条件:在量子理论中,角动量必须是h的整数倍4、量子化条件的推广:∮pdq=(n+1/2)ℎ, n是0和正整数,称为量子数。
5、德布罗意公式:E=ℎv=ћw、p=ℎ/λn=ћk6、波函数的统计解释:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的概率成比例。
dw(x,y,z,t)= C∣Φ(x,y,z,t)∣²dτ7、态叠加原理:对于一般的情况,如果Ψ1和Ψ2是体系的可能状态,那么它们的线性叠加Ψ=c1Ψ1+c2Ψ2(c1,c2是复数),也是这个体系的一个可能状态,这就是量子力学中的态叠加原理。
态叠加原理还有一个含义:当粒子处于态Ψ1和态Ψ2的线性叠加态Ψ时,粒子时既处在态Ψ1又处在态Ψ2.注意:态叠加原理指的是波函数(概率幅)的线性叠加,而不是概率的叠加8、波函数的标准条件:有限性、连续性、导致可测量的单值性9、什么是定态定态:体系处于Ψ(r,t)=ψ(r)e~-iEt/ћ所描写的状态时,能量具有确定性,这种状态称为定态。
Ψ(r,t)=ψ(r)e~-iEt/ћ称为定态波函数10、定态薛定谔方程:−ћ²/2m▽²ψ+U(r)ψ=Eψ11、本征值方程:ĤΨ=EΨ,E称为算符Ĥ的本征值,Ψ称为算符Ĥ属于本征值E的本征函数12、薛定谔波动方程的一般解可以写为这些定态波函数的线性叠加:13、束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态14、隧道效应:粒子在能量E小于势垒高度时仍能贯穿势垒的现象15、厄米算符:量子力学中表示力学量的算符都是厄米算符。
算符F̂满足下列等式:∫ψ∗F̂φdx=∫(F̂ψ)∗φdx16、力学量与算符的关系的一个基本假设:量子力学中,表示力学量的算符都是厄米算符,它们的本征函数组成完全系当体系处于波函数ψ(x)所描写的状态时,测量力学F所得的数值,必定是算符F^的本征值之一,测得λn的概率是|Cn∣²17、对易与不对易的关系:如果两个算符F̂和Ĝ,有一组共同本征函数φn而且φn组成完全系,则算符F̂和Ĝ对易。
研究生量子力学知识点归纳总结
研究生量子力学知识点归纳总结量子力学是现代物理学的基石之一,其研究对象为微观世界中的微粒。
作为研究生学子,掌握量子力学的关键知识点对于进一步深入研究和应用具有重要意义。
本文将对研究生量子力学的知识点进行归纳总结,以便学子们能够更好地理解和运用量子力学的基本概念和理论。
一、波粒二象性1. 波动性与粒子性的基本概念波粒二象性是指微观粒子既表现出波动性又表现出粒子性的特点。
波动性体现为粒子的波函数,而粒子性则表现为粒子的位置和动量等可测量的物理量。
2. 德布罗意假设德布罗意假设指出,所有物质粒子,无论是宏观还是微观,都具有波动性。
其核心思想是将物质粒子的动量与波长相联系,可以通过波动性来解释一系列的实验现象。
二、量子力学的数学基础1. 薛定谔方程薛定谔方程是量子力学的核心方程,描述了物质粒子的波函数随时间的变化规律。
薛定谔方程是一个协调波动性与粒子性的方程,体现了波函数在空间中的传播和演化。
2. 波函数与概率解释波函数是描述微观粒子状态的数学函数,含有物质的波动性信息。
通过波函数的模的平方,可以得到微观粒子在空间中出现的概率密度分布。
三、量子力学的基本原理1. 粒子的定态与态矢量量子力学中,粒子的波函数可以表示为多个定态的叠加,每个定态都对应着一个特定的能量。
态矢量是描述粒子状态的数学工具,用于表示粒子处于某一定态下的状态信息。
2. 不确定性原理不确定性原理是量子力学的基本原理之一,指出了测量一个粒子的位置和动量的不确定度之间的关系。
简而言之,通过测量粒子的位置,其动量的确定性将降低,而通过测量动量,其位置的确定性将降低。
四、量子力学的应用1. 简谐振子简谐振子是量子力学中的一个重要模型,可以用于描述原子中的电子、光子的运动状态等。
其基态和激发态能级之间的能量差与频率有关,为量子力学应用提供了基础。
2. 粒子的相互作用量子力学可以描述粒子之间的相互作用,并具备解释分子结构、原子核稳定性等问题的能力。
它通过研究波函数的变化,揭示了微观粒子的交互规律。
完整版)量子力学总结
完整版)量子力学总结量子力学基础(概念)量子力学是一种描述微观粒子在微观尺度下运动的力学,使用不连续物理量来描述微观粒子。
量子的英文解释为“afixed amount”(一份份、不连续),因此量子力学的特征就是不连续性。
量子力学描述的对象是微观粒子,而微观特征量则以原子中电子的特征量为例。
这包括精细结构常数、原子的电子能级、原子尺寸等。
例如,原子的电子能级大约在数10eV数量级。
同时,原子尺寸可以用玻尔半径来估算,一般原子的半径为1Å。
角动量是量子力学中的基本概念之一,它可以用来描述微观粒子的运动。
在量子力学中,有多种现象和假设被用来解释微观粒子的行为,如光电效应、康普顿效应、波尔理论和XXX假设。
XXX假设认为任何物体的运动都伴随着波动,因此物体若以大小为P的动量运动时,则伴随有波长为λ的波动。
德布罗意波关系则是用来描述物质波的关系,其中λ为波长,h为普朗克常数,P为动量。
波粒二象性是量子力学中的一个重要概念。
电子衍射实验是证实电子波动性的重要实验之一,由XXX和革末于1926年进行。
他们观察到了电子在镍单晶表面的衍射现象,并求出电子的波长为0.167nm。
根据上式,发现光子出现的概率与光波的电场强度的平方成正比,这是XXX在1907年对光辐射的量子统计解释。
同样地,电子也会产生类似的干涉条纹,几率大的地方会出现更多的电子形成明条波,而几率小的地方出现的电子较少,形成暗条纹。
玻恩将||2解释为给定时间,在一定空间间隔内发生一个粒子的几率,他指出“对应空间的一个状态,就有一个由伴随这状态的德布罗意波确定的几率”,这也是他获得1954年诺贝尔物理奖的原因。
根据态迭加原理,非征态可以表示成本征态的迭加,其中|Cn|2代表总的几率,也就是态中本征态n的相对强度(成分),即态部分地处于n的相对几率。
在态中力学量F的取值n的几率可以表示为|Cn|2,这就是对波函数的普遍物理诠释。
如果是归一化的,即积分结果为1,则|Cn|2的总和为1,代表总的几率。
生僻知识点总结
生僻知识点总结量子力学是20世纪最重要的科学理论之一,在物理学、化学、材料科学和信息技术等领域取得了巨大的成就。
本文将对量子力学的基本概念、发展历程以及应用进行系统的总结。
一、量子力学的基本概念1. 波粒二象性20世纪早期,科学家们发现了微粒在一些实验中表现出波动性质,而在另一些实验中表现出粒子性质。
经典力学无法解释这种现象,因此量子力学提出了波粒二象性概念,即微粒既可以表现为粒子,也可以表现为波动。
2. 不确定性原理根据量子力学的不确定性原理,无法准确测定微观粒子的位置和动量。
即使在完美的实验条件下,我们也无法同时准确测定一个粒子的位置和动量,这是量子世界的固有特性。
3. 波函数在量子力学中,波函数是描述微观粒子状态的数学工具。
波函数的平方代表了粒子出现在某一位置的概率,而波函数本身则包含了粒子的全部信息。
波函数的演化遵循薛定谔方程,描述了粒子在外势场中的运动规律。
4. 波粒对应量子力学中,波动方程和粒子方程之间存在着对应关系,即波动方程描述了粒子的波动性质,而粒子方程描述了粒子的运动规律。
薛定谔方程就是典型的波动方程,描述了微观粒子的波动性质;而德布罗意方程则是粒子方程,描述了波粒二象性中粒子的动力学特性。
二、量子力学的发展历程1. 量子力学的萌芽量子力学的开始可以追溯到19世纪末的黑体辐射问题。
玻尔基于普朗克的量子假设对黑体辐射的能量分布进行了解释,提出了能级分立的概念,为量子力学的诞生奠定了基础。
2. 波恩和海森堡的矩阵力学1925年,波恩和海森堡分别提出了矩阵力学和矩阵力学的基本原理。
他们认为运动的粒子是不能同时具有确定的位置和动量的,而是以一种非常规的方式运动。
这两种力学的理论形式不同,但给出的结果是等价的,进一步推动了量子力学的发展。
3. 薛定谔的波动力学1926年,薛定谔提出了波动力学,这被认为是现代量子力学的基石。
他通过薛定谔方程描述了微观粒子的波动性质,成功解释了原子的能级结构和光谱现象,为量子力学的发展奠定了坚实的理论基础。
量子现象物理知识点总结
量子现象物理知识点总结一、量子力学量子力学是描述微观粒子行为的理论框架,它的基本原理包括以下几点:1. 波粒二象性量子力学认为微观粒子既具有波动性又具有粒子性。
因此,在描述微观粒子时,需要使用波函数来描述其波动性,并且要考虑其在空间中的分布和运动。
2. 不确定性原理不确定性原理是量子力学的重要概念之一,由海森堡提出。
它指出,无法精确测量一个粒子的位置和动量,即使是在理论上也是不可能的。
这是量子力学与经典力学的一个根本区别。
3. 粒子波函数在量子力学中,波函数是描述微观粒子的基本工具,在时间和空间上演化,根据薛定谔方程的演化规律。
4. 量子力学的数学形式量子力学的数学形式为线性代数,包括波函数、算符、态函数等数学工具。
通过波函数的演化,可以描述微观粒子的运动和相互作用。
以上是一些量子力学的基本原理,这些原理在量子力学的发展史上起到了至关重要的作用,成为量子力学的基础。
接下来将介绍一些量子物理中的重要现象。
二、量子纠缠量子纠缠是量子物理的一个重要现象,它是量子力学的基本原理之一,也是量子通讯和量子计算的基础。
量子纠缠是指两个或多个微观粒子之间存在一种特殊的、非经典的关联关系,即使它们之间相隔很远,也能够保持这种关联。
这种关联包括两方面的内容:1. 纠缠态当两个或多个微观粒子之间发生纠缠时,它们的波函数将无法分解为各个粒子的波函数的乘积。
纠缠态的存在意味着,对一个微观粒子的测量将会立刻影响到另一个粒子的状态,即使它们之间相隔很远,也是如此。
这种现象是经典物理所无法解释的。
2. 贝尔不等式贝尔不等式是描述量子纠缠的一种重要方法,它通过实验结果来判定两个微观粒子是否发生了纠缠。
在纠缠态下,实验结果将违背贝尔不等式,从而表明两个微观粒子之间存在着特殊的非经典关联。
量子纠缠不仅在理论上有重要意义,还有着广泛的实际应用,包括量子通讯、量子密码学和量子计算等领域。
例如,利用量子纠缠态可以实现量子密钥分发,从而保证通讯的安全性。
量子力学知识点总结
量子力学知识点总结量子力学是20世纪初建立的一种物理学理论,它描述了微观世界中粒子的行为,对于理解原子和分子的结构和性质至关重要。
量子力学的提出不仅改变了我们对自然规律的认识,更为科技的发展和应用带来了深远的影响。
本文将对量子力学的基本概念、发展历程、重要实验和应用进行总结。
1. 基本概念量子力学的建立是对经典物理学的一次革命性挑战。
在经典物理学中,粒子被认为是具有确定位置和动量的点状物质,在运动过程中遵循牛顿的经典力学定律。
然而,20世纪初的实验结果却显示了微观世界中粒子的行为与经典物理学的预期有所不同。
最典型的例子是黑体辐射实验和光电效应实验,它们无法用经典物理学的理论解释。
为了解决这些实验结果的困扰,物理学家们提出了一系列新的概念和理论。
其中最重要的是惠尔的波粒二象性。
根据波粒二象性,微观粒子既可以表现为粒子,又可以表现为波,具有双重性质。
这一概念的提出为理解微观世界的行为提供了新的思路。
另一个重要概念是量子化。
根据量子化理论,微观粒子的能量和动量是量子化的,即只能取一系列特定的值,而不能连续取值。
这一概念的提出进一步解释了一些实验结果,如光谱线的离散性。
2. 发展历程量子力学的发展历程可以分为几个阶段。
最早的是波动力学的提出,它是基于波动方程来描述微观粒子的行为。
波动力学最早应用于原子结构的研究,成功地解释了氢原子的光谱线。
另一个重要的发展是矩阵力学的建立,矩阵力学是基于算符代数而不是波函数的形式,它提供了一种不同的描述微观粒子行为的视角。
最终,波动力学和矩阵力学被统一为量子力学,由狄拉克和薛定谔等人提出了薛定谔方程,成为现代量子力学的基础。
3. 重要实验量子力学的建立离不开一系列重要的实验。
其中最具代表性的实验之一是双缝实验。
在双缝实验中,粒子通过两个狭缝后在屏幕上形成干涉条纹,类似于光的干涉现象。
这一实验结果表明微观粒子也具有波动性质,支持了波粒二象性的假设。
其次是光电效应实验,它表明光子的能量具有量子化的特性,与经典物理学的预期不同。
物理量子力学知识点速记
物理量子力学知识点速记1. 波粒二象性:量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。
实验观测到的粒子行为有时像粒子,有时又像波动。
2. 波函数:波函数是量子力学中对一个系统状态的数学描述。
波函数的平方代表了在不同位置上发现粒子的概率。
3. 量子叠加原理:量子力学中,一粒子可以存在于多个状态的叠加态中,直到被观测或测量时才会坍塌成确定的状态。
4. 测量:量子力学中的测量不同于经典物理的测量。
测量会导致系统的状态坍塌成一个确定的值,而不是连续的测量结果。
5. 不确定性原理:由于测量会造成波函数坍塌,量子力学中存在不确定性原理,即无法同时精确测量粒子的位置和动量。
6. 干涉:量子力学中,波函数可以产生干涉现象,即波函数叠加导致的波峰和波谷的相遇。
著名的双缝干涉实验就是典型的例子。
7. 纠缠:两个或多个粒子之间可以产生纠缠态,即它们的状态是相互关联的,一方的状态改变会立即影响到其他粒子的状态,无论它们之间有多远的距离。
8. 原子:原子是物质的基本构建单位,由核和绕核运动的电子组成。
量子力学成功解释了原子的结构和性质。
9. 光子:光子是光的基本单位,也是电磁波的量子。
光子的能量和频率成正比。
10. 薛定谔方程:薛定谔方程是量子力学的核心方程,描述了系统的波函数随时间的演化。
它是对经典力学中的运动方程的量子版本。
11. 哥本哈根解释:哥本哈根解释是对量子力学中测量和观测问题进行的解释。
它强调了量子世界中的概率性和不确定性。
12. 自旋:自旋是粒子的一种内在性质,类似于粒子的旋转。
自旋决定了粒子的很多性质,如磁性和角动量。
13. 跃迁:原子或分子中的电子在不同能级之间的能量差跃迁。
跃迁会伴随辐射或吸收特定频率的光。
14. 微观世界:量子力学是研究微观世界的物理学,描述了分子、原子和基本粒子的行为。
15. 康普顿散射:康普顿散射是光子与物质中自由电子碰撞后的散射现象,从而证明了光的粒子性。
16. 德布罗意波:德布罗意提出了与物质粒子相关的波动性,即波粒二象性的基础。
量子力学知识点归纳
量子力学知识点归纳
粒子性质
- 波粒二象性:微观粒子既具有波动性质又具有粒子性质。
- 粒子的量子态:用波函数描述粒子的状态。
- 粒子的叠加态:在量子力学中,粒子可以同时处于多个不同状态的叠加态。
波函数与测量
- 波函数的基本性质:波函数必须满足归一化和连续性条件。
- 算符与期望值:量子力学中的物理量用算符表示,其期望值对应其在该态下的平均值。
- 不确定性原理:海森堡不确定性原理表明,无法同时准确知道粒子的位置和动量。
Schrödinger 方程
- 定态和非定态:物理系统可以处于定态或非定态,定态由定
态方程描述,非定态由非定态方程描述。
- 离散能级和连续能谱:不同物理系统的能级结构可以是离散
的也可以是连续的。
- 波函数的时间演化:波函数随时间的演化由薛定谔方程描述。
量子力学中的操作
- 叠加和干涉:量子力学中的粒子可以叠加在一起,并在经典
中无法解释的方式上产生干涉效应。
- 量子纠缠:两个或多个粒子之间的纠缠状态是量子力学的独
特现象,纠缠态可以表现出非常特殊的相关性。
- 测量与波函数坍缩:测量一个物理量会导致波函数坍缩到一
个确定的状态,而非叠加态。
以上是量子力学知识点的一个完整归纳,展示了该领域的基本
概念和特性。
深入研究这些知识点可以更好地理解和应用量子力学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。
⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。
⎪⎪⎪⎩⎪⎪⎪⎨⎧======n k h k n h P h E λππλων2 ,2⒚光谱线:光经过一系列光学透镜及棱镜后,会在底片上留下若干条线,每个线条就是一条光谱线。
所有光谱线的总和称为光谱。
⒛线状光谱:原子光谱是由一条条断续的光谱线构成的。
21.标识线状光谱:对于确定的原子,在各种激发条件下得到的光谱总是完全一样的,也就是说,可以表征原子特征的线状光谱。
第二章⒈量子力学中,原子的轨道半径的含义。
⒉波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。
按照这种解释,描写粒子的波是几率波。
⒊波函数的特性:波函数乘上一个常数后,并不改变在空间各点找到粒子的几率,即不改变波函数所描写的状态。
⒋波函数的归一化条件 )7-1.2( 1),,,( 2⎰=ψ∞τd t z y x ⒌态叠加原理:若体系具有一系列不同的可能状态Ψ1,Ψ2,…Ψn ,则这些可能状态的任意线性组合,也一定是该体系的一个可能的状态。
也可以说,当体系处于态Ψ时,体系部分地处于态Ψ1,Ψ2,…Ψn 中。
⒍波函数的标准条件:单值性,有限性和连续性,波函数归一化。
⒎定态:微观体系处于具有确定的能量值的状态称为定态。
定态波函数:描述定态的波函数称为定态波函数。
⒐定态的性质:⑴由定态波函数给出的几率密度不随时间改变。
⑵粒子几率流密度不随时间改变。
⑶任何不显含时间变量的力学量的平均值不随时间改变。
⒑本征方程、本征值和本征波函数:在量子力学中,若一个算符作用在一个波函数上,等于一个常数乘以该波函数,则称此方程为该算符的本征方程。
常数f n 为该算符的第n 个本征值。
波函数ψn 为f n 相应的本征波函数。
⒒束缚态:在无穷远处为零的波函数所描述的状态。
基态:体系能量最低的态。
⒓宇称:在一维问题中,凡波函数ψ(x)为x 的偶函数的态称为偶(正)宇称态;凡波函数ψ(x)为x 的奇函数的态称为奇(负)宇称态。
⒔在一维空间内运动的粒子的势能为(μω2x 2)/2, ω是常数,这种粒子构成的体系称为线性谐振子。
线性谐振子的能级为:⋅⋅⋅=+=,,,, ),(321021n n E n ω ⒕透射系数:透射波几率流密度与入射波几率流密度之比。
反射系数:反射波几率流密度与入射波几率流密度之比。
⒖隧道效应:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象。
16.量子力学的波函数与经典的波场有何本质性的区别?答: 量子力学的波函数是一种概率波,没有直接可测的物理意义,它的模方表示概率,才有可测的意义;经典的波场代表一种物理场,有直接可测的物理意义。
17.什么是量子力学中的定态?它有什么特征?答:定态是一种特殊状态即能量本征态,在定态下,一切显含时间的力学量(不管是否为守恒量)的平均值和几率分布都不随时间改变,粒子在空间的几率密度和几率流密度也不随时间改变。
第三章⒈算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
⒉厄密算符的定义:如果算符F ˆ满足下列等式()ˆ ˆdx F dx F φψφψ**⎰⎰=,则称F ˆ为厄密算符。
式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。
推论:量子力学中表示力学量的算符都是厄密算符。
⒊厄密算符的性质:厄密算符的本征值必是实数。
厄密算符的属于不同本征值的两个本征函数相互正交。
⒋简并:对应于一个本征值有一个以上本征函数的情况。
简并度:对应于同一个本征值的本征函数的数目。
⒌氢原子的电离态:氢原子中的电子脱离原子的束缚,成为自由电子的状态。
电离能:电离态与基态能量之差⒍氢原子中在半径r 到r+dr 的球壳内找到电子的概率是: dr r r R dr r W nl nl 22)()(=在方向(θ,φ)附近立体角dΩ内的概率是: d ΩY d Ωw lm lm 2),(),(ϕθϕθ=⒎两函数ψ1和ψ2正交的条件是: 0τ =⎰*d 21ψψ式中积分是对变量变化的全部区域进行的,则称函数ψ1和ψ2相互正交。
⒏正交归一系:满足正交条件的归一化本征函数φk 或φl 。
⒐厄密算符本征波函数的完全性:如果φn (r)是厄密算符Fˆ的正交归一本征波函数,λn 是本征值,则任一波函数ψ(r)可以按φn (r)展开为级数的性质。
或者说φn(r)组成完全系。
⒑算符与力学量的关系:当体系处于算符Fˆ的本征态φ时,力学量F 有确定值,这个值就是算符Fˆ在φ态中的本征值。
力学量在一般的状态中没有确定的数值,而有一系列的可能值,这些可能值就是表示这个力学量的算符的本征值。
每个可能值都以确定的几率出现。
⒒算符对易关系:[]A B B A B ,Aˆˆˆˆˆˆ-≡ 。
可对易算符:如果[]0ˆˆ=B ,A,则称算符A ˆ与B ˆ是可对易的; 不对易算符:如果[]0ˆˆ≠B ,A,则称算符A ˆ与B ˆ是不对易的。
⒓两力学量同时有确定值的条件:定理1:如果两个算符G Fˆ ˆ和有一组共同本征函数φn ,而且φn 组成完全系,则算符对易。
定理2:如果两个算符G Fˆ ˆ和对易,则这两个算符有组成完全系的共同本征函数。
⒔测不准关系:当两个算符不对易时,它们不能同时有确定值,G)(F)( 2242k ≥∆⋅∆∴ ⒕量子力学中力学量运动守恒定律形式是:01=⎥⎦⎤⎢⎣⎡+∂∂=H F i t F dt F d ˆ,ˆ 量子力学中的能量守恒定律形式是:01=⎥⎦⎤⎢⎣⎡=H H i dt H d ˆ,ˆˆ ⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。
宇称算符:表示空间反演运算的算符。
宇称守恒:体系状态的宇称不随时间改变。
16.相关关系式:μννδμ i p =⎥⎦⎤⎢⎣⎡ˆ,, ),,( ,,ˆz y x L L ==⎥⎦⎤⎢⎣⎡μμ02L i L L z y x L i L L L i L L L i L L y x z x z y z y x ˆˆˆ ),,( L ˆL ˆ ˆˆ,ˆˆˆ,ˆˆˆ,ˆ =⨯==⎥⎦⎤⎢⎣⎡⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡综合写成:,,μμμ0 y i z L y i x L x i y L x i z L z i x L z i y L z y x L x z z y y x -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡,ˆ;,ˆ ,ˆ;,ˆ ,ˆ ;,ˆ ),,( ,ˆ,μμμ0 y z x y x z x y z x z y z x y z y x p i p L p i p L p i p L p i p L p i p L p i p L z y x p L ˆˆ,ˆ;ˆˆ,ˆ ˆˆ,ˆ;ˆˆ,ˆˆˆ,ˆ ;ˆˆ,ˆ ),,( ,ˆˆ, -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡μμμ0 p i p L L p x f p p x f i p x f p x x f p i x f p x x x x x x x 2ˆˆˆˆ ,)(ˆˆ)(ˆ)(ˆ, ),(ˆ2)(ˆ,2=⨯+⨯⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡ 第四章⒈基底:设 e 1, e 2, e 3 为线性无关的三个向量,空间内任何向量 v 必是e 1, e 2, e 3 的线性组合,则e 1, e 2, e 3 称为空间的基底。
正交规范基底:若基底的向量互相垂直,且每一向量的长度等于1,这样的基底叫做正交规范基底。
⒉希耳伯特空间:如果把本征波函数Φm 看成类似于几何学中的一个矢量(这就是波函数有时称为态矢量或态矢的原因),则波函数的集合{φm }构成的一个线性空间。
⒊表象:量子力学中,态和力学量的具体表示方式。
第五章1.斯塔克效应:在外电场中,原子光谱产生分裂的现象。
2.分别写出非简并态的一级、二级能量修正表达式。
3.周期微扰产生跃迁的条件是:ωεεωω ±=±=k m mk 或,说明只有当外界微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收或发射的能量是mk ω ,这表明周期微扰产生的跃迁是一个共振跃迁。
4.光的吸收现象:在光的照射下,原子可能吸收光的能量由较低的能级跃迁到较高的能级的现象。
5.原子的受激辐射(跃迁)现象:在光的照射下,原子从较高的能级跃迁到较低的能级而放出光的现象。
6.原子的自发辐射(跃迁)现象:在无光照射时,处于激发态的原子跃迁到较低能级而发光的现象。