偏振光实验报告
偏振光分析实验实验报告(3篇)
![偏振光分析实验实验报告(3篇)](https://img.taocdn.com/s3/m/ed44507d6ad97f192279168884868762caaebbe2.png)
第1篇一、实验目的1. 观察光的偏振现象,加深对光偏振理论知识的理解。
2. 学习并掌握直线偏振光、圆偏振光和椭圆偏振光的产生方法。
3. 熟悉偏振片的检验方法,分析不同偏振光之间的相互关系。
4. 掌握利用偏振光进行相关物理量的测量。
二、实验原理偏振光是指光波的振动方向在传播过程中限定在一个平面内的光。
根据振动方向的不同,偏振光可分为以下几种类型:1. 自然光:光波的振动方向在垂直于传播方向的平面内,且在各个方向上都有振动。
2. 线偏振光:光波的振动方向在传播方向的垂直平面内,且只有一个方向上的振动占主导地位。
3. 圆偏振光:光波的振动方向在传播方向的垂直平面内,且振动方向呈圆形。
4. 椭圆偏振光:光波的振动方向在传播方向的垂直平面内,且振动方向呈椭圆形。
本实验主要利用偏振片、波片等光学元件来产生和检验不同类型的偏振光,并分析它们之间的相互关系。
三、实验仪器1. 氦氖激光器2. 偏振片(两块)3. 1/4 波片(两块)4. 波片厚度计5. 光具座6. 白屏7. 刻度盘四、实验步骤1. 直线偏振光的产生与检验1. 将氦氖激光器发出的光通过偏振片,得到一束线偏振光。
2. 将线偏振光照射到白屏上,观察光斑形状。
3. 将另一块偏振片放在光路中,调整其角度,观察光斑的变化。
4. 当两块偏振片的光轴夹角为90°时,光斑消失,说明入射光为线偏振光。
2. 圆偏振光的产生与检验1. 将氦氖激光器发出的光通过1/4 波片,得到一束圆偏振光。
2. 将圆偏振光照射到白屏上,观察光斑形状。
3. 将另一块偏振片放在光路中,调整其角度,观察光斑的变化。
4. 当两块偏振片的光轴夹角为45°时,光斑形状不变,说明入射光为圆偏振光。
3. 椭圆偏振光的产生与检验1. 将氦氖激光器发出的光通过两块1/4 波片,得到一束椭圆偏振光。
2. 将椭圆偏振光照射到白屏上,观察光斑形状。
3. 将另一块偏振片放在光路中,调整其角度,观察光斑的变化。
光的偏振物理实验报告
![光的偏振物理实验报告](https://img.taocdn.com/s3/m/4e4113e5d5d8d15abe23482fb4daa58da0111cf8.png)
光的偏振物理实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振基本概念的理解。
2、学习使用偏振片来产生和检验偏振光。
3、测量布儒斯特角,并验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。
一般情况下,光的振动方向是随机的,这种光称为自然光。
如果光的振动方向在某个特定方向上具有优势,这种光称为部分偏振光。
当光的振动方向完全固定在一个方向上时,称为完全偏振光,又分为线偏振光和圆偏振光。
2、偏振片偏振片是一种只允许特定方向振动的光通过的光学元件。
其工作原理是基于晶体的二向色性,即某些晶体对不同方向振动的光吸收程度不同。
3、布儒斯特定律当自然光在两种介质的分界面上发生反射和折射时,反射光和折射光都成为部分偏振光。
当入射角等于某一特定角度时,反射光成为完全偏振光,其振动方向垂直于入射面,这个角度称为布儒斯特角,满足以下定律:\\tan \theta_B =\frac{n_2}{n_1}\其中,\(\theta_B\)为布儒斯特角,\(n_1\)和\(n_2\)分别为两种介质的折射率。
三、实验仪器1、光源(钠光灯)2、起偏器(偏振片)3、检偏器(偏振片)4、玻璃堆5、光具座6、白屏四、实验内容与步骤1、观察光的偏振现象(1)打开钠光灯,让光线通过起偏器,旋转起偏器,观察白屏上光强的变化。
(2)在起偏器后加上检偏器,旋转检偏器,观察光强的变化,并记录消光位置。
2、验证马吕斯定律(1)将起偏器和检偏器的偏振化方向调到夹角为\(0^{\circ}\),记录此时的光强\(I_0\)。
(2)逐渐增大两偏振片的夹角\(\theta\),每隔\(10^{\circ}\)记录一次光强\(I\)。
(3)根据马吕斯定律\(I = I_0 \cos^2 \theta\),绘制\(I \cos^2 \theta\)关系曲线。
3、测量布儒斯特角(1)将玻璃堆放在光具座上,让钠光灯的光线以一定角度入射到玻璃堆上。
偏振实验报告
![偏振实验报告](https://img.taocdn.com/s3/m/3fcb90b15ff7ba0d4a7302768e9951e79b8969e7.png)
一、实验目的1. 观察光的偏振现象,加深对光偏振规律的认识。
2. 了解产生和检验偏振光的光学元件及其工作原理。
3. 掌握光路准直的调节方法,以及极坐标作图方法。
4. 掌握不同振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方法及其相互转化。
二、实验原理光是一种电磁波,其振动方向垂直于传播方向。
当光在传播过程中,若光矢量保持在固定平面上振动,则称为平面偏振光;若光矢量绕传播方向旋转,则称为圆偏振光;若光矢量端点旋转的轨迹为椭圆,则称为椭圆偏振光。
偏振片是利用光学各向异性介质产生偏振光的元件。
当自然光通过偏振片时,其振动方向被限制在偏振片的偏振化方向上,从而成为线偏振光。
马吕斯定律指出:当线偏振光通过检偏器时,透射光的强度与入射线偏振光的光矢量振动方向和检偏器偏振化方向之间的夹角有关。
具体地,透射光的强度可表示为I = I0 cos^2(θ),其中 I0 为入射线偏振光的强度,θ 为入射线偏振光的光矢量振动方向和检偏器偏振化方向之间的夹角。
三、实验仪器与材料1. 光具座2. 半导体激光器3. 偏振片4. 1/4波片5. 激光功率计6. 白屏7. 量角器四、实验步骤1. 将半导体激光器固定在光具座上,调节激光束使其垂直于光具座。
2. 将偏振片放置在激光束的路径上,调节偏振片的角度,观察白屏上的光强变化。
记录光强最大值和最小值及其对应的角度,计算半导体激光的偏振度。
3. 将1/4波片放置在偏振片和检偏器之间,观察白屏上的光强变化。
记录光强最大值和最小值及其对应的角度,验证马吕斯定律。
4. 将两个偏振片放置在激光束的路径上,其中一个作为起偏器,另一个作为检偏器。
调节两个偏振片的角度,观察白屏上的光强变化。
记录光强最大值和最小值及其对应的角度,分析不同振态的鉴别方法。
5. 将1/4波片放置在偏振片和检偏器之间,调节1/4波片的光轴方向与起偏器的偏振方向的夹角,观察白屏上的光强变化。
记录光强最大值和最小值及其对应的角度,分析椭圆偏振光和圆偏振光的产生与检测。
光的偏振实验的实验报告(3篇)
![光的偏振实验的实验报告(3篇)](https://img.taocdn.com/s3/m/54b6460026d3240c844769eae009581b6ad9bd78.png)
第1篇一、实验目的1. 观察光的偏振现象,加深对光波偏振特性的理解。
2. 学习直线偏振光、圆偏振光和椭圆偏振光的产生与检验方法。
3. 掌握利用偏振光进行相关物理量测量的原理与技巧。
二、实验原理1. 光的偏振现象:光波是横波,其电矢量振动方向与传播方向垂直。
自然光在传播过程中,电矢量振动方向在垂直于传播方向的平面内取所有可能的方向,称为非偏振光。
而偏振光是指电矢量振动方向局限在某一确定平面内的光波。
2. 偏振光的产生:自然光通过起偏器(如偏振片)后,只有某一方向的振动成分能够通过,从而产生偏振光。
3. 偏振光的检验:利用检偏器(如偏振片)可以检验光的偏振状态。
当偏振光通过检偏器时,若电矢量振动方向与检偏器光轴平行,则光强不变;若电矢量振动方向与检偏器光轴垂直,则光强为零。
4. 偏振光的分解:利用波片可以将偏振光分解为两个正交的偏振光。
其中,1/4波片可以将线偏振光分解为圆偏振光和椭圆偏振光。
三、实验仪器1. 激光器:产生单色光。
2. 偏振片:产生和检验偏振光。
3. 波片:分解偏振光。
4. 光具座:固定实验器材。
5. 照度计:测量光强。
6. 支架:固定实验器材。
四、实验步骤1. 将激光器发出的光通过偏振片,得到线偏振光。
2. 将线偏振光通过1/4波片,得到圆偏振光和椭圆偏振光。
3. 利用偏振片和检偏器检验圆偏振光和椭圆偏振光的偏振状态。
4. 通过改变偏振片和检偏器的相对位置,观察光强变化,验证马吕斯定律。
5. 测量圆偏振光和椭圆偏振光的光强,分析其偏振特性。
五、实验数据及处理1. 观察到线偏振光通过偏振片后,光强减弱;圆偏振光和椭圆偏振光通过检偏器时,光强有规律地变化。
2. 当偏振片和检偏器的光轴平行时,光强最大;当偏振片和检偏器的光轴垂直时,光强为零。
验证了马吕斯定律。
3. 测量得到圆偏振光和椭圆偏振光的光强,分析其偏振特性。
六、实验结果与分析1. 通过实验,观察到光的偏振现象,加深了对光波偏振特性的理解。
偏振光实验的实验报告(3篇)
![偏振光实验的实验报告(3篇)](https://img.taocdn.com/s3/m/b0d972a209a1284ac850ad02de80d4d8d15a0125.png)
第1篇一、实验目的1. 观察光的偏振现象,加深对光的偏振理论的认识。
2. 学习直线偏振光、圆偏振光和椭圆偏振光的产生与检验方法。
3. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本操作。
二、实验原理1. 光的偏振:光波是一种横波,其振动方向与传播方向垂直。
当光波在某一方向上的振动占优势时,称为偏振光。
偏振光可以分为线偏振光、圆偏振光和椭圆偏振光。
2. 线偏振光:当光波的振动方向在某一平面内时,称为线偏振光。
线偏振光可以通过以下方法产生:自然光经过偏振片后,光波的振动方向被限制在偏振片的光轴方向。
3. 圆偏振光和椭圆偏振光:当光波的振动方向在两个相互垂直的平面内时,称为圆偏振光和椭圆偏振光。
圆偏振光和椭圆偏振光可以通过以下方法产生:线偏振光经过1/4波片后,其振动方向在两个相互垂直的平面内,且相位差为90°。
4. 偏振光的检验:利用偏振片和波片可以检验光的偏振状态。
当偏振光通过偏振片时,光强会发生变化;当偏振光通过波片时,光强会根据波片的角度发生变化。
三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 玻璃平板6. 0°、90°任意刻度盘7. 白屏四、实验步骤1. 将He-Ne激光器放置在光具座上,调整激光器使其发出平行光。
2. 将偏振片1放置在光具座上,调整偏振片1的光轴与激光器发出的光束方向垂直。
3. 将偏振片2放置在偏振片1的后面,调整偏振片2的光轴与偏振片1的光轴成一定角度。
4. 观察白屏上的光斑,调整偏振片2的角度,使光斑消失。
5. 将1/4波片放置在偏振片2的后面,调整1/4波片的光轴与偏振片2的光轴成一定角度。
6. 观察白屏上的光斑,调整1/4波片的角度,使光斑消失。
7. 重复步骤4和5,观察不同角度下的光斑变化。
8. 改变偏振片1和偏振片2的相对位置,观察光斑的变化。
五、实验结果与分析1. 当偏振片1和偏振片2的光轴垂直时,光斑消失,说明此时光为线偏振光。
光的偏振实验报告-互联网类
![光的偏振实验报告-互联网类](https://img.taocdn.com/s3/m/8837733b49d7c1c708a1284ac850ad02de8007e0.png)
光的偏振实验报告-互联网类关键信息项:1、实验目的2、实验原理3、实验仪器4、实验步骤5、实验数据及处理6、实验误差分析7、实验结论1、实验目的11 深入理解光的偏振现象及其特性。
12 掌握偏振片的工作原理和使用方法。
13 学会测量偏振光的相关参数,如偏振度、偏振方向等。
14 探究光的偏振在互联网通信中的应用。
2、实验原理21 光的偏振态211 自然光:在垂直于光传播方向的平面内,光矢量的振动方向在各个方向上是均匀分布的。
212 线偏振光:光矢量只在一个固定的方向上振动。
213 部分偏振光:光矢量在某一方向上的振动较强,而在与之垂直的方向上振动较弱。
22 偏振片221 偏振片是一种只允许某一方向振动的光通过的光学元件。
222 其透振方向表示允许光通过的振动方向。
23 马吕斯定律231 当一束线偏振光通过一个偏振片时,其强度 I 与入射光强度 I₀之间的关系满足马吕斯定律:I = I₀cos²θ,其中θ为入射光偏振方向与偏振片透振方向的夹角。
3、实验仪器31 光源(如激光)32 两个偏振片33 光功率计34 旋转台4、实验步骤41 搭建实验装置411 将光源固定在合适位置,使其发射的光能够水平传播。
412 在光源后依次放置第一个偏振片和第二个偏振片,并将它们安装在旋转台上,以便能够独立旋转。
413 将光功率计放置在第二个偏振片后,用于测量光的强度。
42 测量自然光的强度421 旋转第一个偏振片,使其透振方向任意。
422 记录光功率计的读数,作为自然光的强度 I₀。
43 测量线偏振光的强度431 旋转第一个偏振片,使其透振方向确定。
432 旋转第二个偏振片,从 0°到 360°,每隔一定角度(如 10°)记录光功率计的读数 I。
44 改变第一个偏振片的透振方向,重复步骤 43。
5、实验数据及处理51 以第二个偏振片的旋转角度θ为横坐标,光强度 I 为纵坐标,绘制曲线。
偏振光原理实验实验报告(3篇)
![偏振光原理实验实验报告(3篇)](https://img.taocdn.com/s3/m/a81ac1420622192e453610661ed9ad51f01d5423.png)
第1篇一、实验目的1. 深入理解光的偏振现象,巩固相关理论知识。
2. 掌握直线偏振光、圆偏振光和椭圆偏振光的产生方法。
3. 学会使用偏振片、波片等实验仪器,进行光的偏振状态分析。
二、实验原理1. 偏振光的产生:自然光经过起偏器后,其振动方向变得有规律,成为偏振光。
2. 偏振光的检验:通过观察光的偏振现象,判断光的偏振状态。
3. 偏振光的分解:利用波片可以将偏振光分解为两个相互垂直的偏振光。
三、实验仪器1. 激光器:提供稳定的单色光。
2. 偏振片:用于产生和检验偏振光。
3. 波片:用于分解偏振光。
4. 光具座:用于固定实验仪器。
5. 光屏:用于观察光斑。
6. 秒表:用于测量时间。
四、实验步骤1. 将激光器发出的光束调整至水平传播。
2. 将偏振片固定在光具座上,使光束通过偏振片。
3. 观察光屏上的光斑,记录光斑形状和亮度。
4. 将波片固定在光具座上,使光束通过波片。
5. 调整波片的角度,观察光屏上的光斑变化,记录光斑形状和亮度。
6. 重复步骤4和5,分别使用两个偏振片和两个波片进行实验。
五、实验数据及处理1. 观察到,当光束通过偏振片后,光屏上的光斑形状变为明暗相间的条纹,说明光束被分解为两个相互垂直的偏振光。
2. 调整波片角度,当波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。
3. 通过实验,验证了直线偏振光、圆偏振光和椭圆偏振光的产生方法。
六、实验结果与分析1. 通过实验,我们深入理解了光的偏振现象,掌握了直线偏振光、圆偏振光和椭圆偏振光的产生方法。
2. 实验过程中,我们发现波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。
这验证了偏振光的分解原理。
3. 实验过程中,我们使用偏振片和波片等实验仪器,成功进行了光的偏振状态分析。
七、实验总结本次实验通过观察光的偏振现象,加深了对光的偏振理论知识的理解。
偏振光分析实验报告
![偏振光分析实验报告](https://img.taocdn.com/s3/m/ddac7a85d05abe23482fb4daa58da0116c171fd8.png)
一、实验目的1. 观察光的偏振现象,加深对光的偏振现象的认识。
2. 学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生与检验方法。
3. 掌握1/4波片、1/2波片等光学元件的作用及使用方法。
4. 验证马吕斯定律,加深对光的偏振理论的理解。
二、实验原理1. 光的偏振现象:光是一种电磁波,其电矢量在垂直于传播方向的平面上振动。
当光波的电矢量振动方向固定时,光称为线偏振光;当电矢量振动方向随时间作有规律的变化时,光称为圆偏振光或椭圆偏振光。
2. 偏振光的产生与检验:利用偏振片、波片等光学元件可以产生和检验偏振光。
偏振片可以使自然光变为线偏振光,波片可以改变光的偏振状态。
3. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系满足马吕斯定律。
三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 1/4波片(两块)5. 1/2波片(两块)6. 玻璃平板及刻度盘7. 白屏四、实验步骤1. 将激光器发出的光束通过偏振片P1,得到线偏振光。
2. 将线偏振光通过1/4波片B1,得到圆偏振光。
3. 将圆偏振光通过1/2波片B2,观察出射光的偏振状态。
4. 将线偏振光通过1/4波片B1,得到椭圆偏振光。
5. 将椭圆偏振光通过1/2波片B2,观察出射光的偏振状态。
6. 重复以上步骤,改变偏振片P1和波片B1、B2的相对位置,观察出射光的偏振状态。
7. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。
五、实验结果与分析1. 观察到当线偏振光通过1/4波片B1时,出射光变为圆偏振光;当圆偏振光通过1/2波片B2时,出射光变为线偏振光。
2. 观察到当线偏振光通过1/4波片B1时,出射光变为椭圆偏振光;当椭圆偏振光通过1/2波片B2时,出射光变为线偏振光。
3. 根据马吕斯定律,计算并验证出射光的强度与入射光强度、入射光与偏振片的夹角之间的关系。
大物实验偏振态实验报告(3篇)
![大物实验偏振态实验报告(3篇)](https://img.taocdn.com/s3/m/c7a0ed5e366baf1ffc4ffe4733687e21af45ff83.png)
第1篇一、实验目的1. 了解光的偏振现象及其基本原理;2. 掌握偏振光的产生、检验方法及偏振光的基本特性;3. 通过实验,加深对光的偏振现象的理解,提高动手能力和实验技能。
二、实验原理1. 光的偏振现象:光是一种电磁波,其电场矢量在垂直于传播方向的平面上振动。
当光波传播过程中,若电矢量的振动只局限在某一确定平面内,这种光称为直线偏振光;若光波电矢量的振动随时间作有规律的改变,即电矢量的末端在垂直于光传播方向的平面上的轨迹是圆或椭圆,这样的光称为圆偏振光和椭圆偏振光。
2. 偏振光的产生:自然光通过偏振片或反射、折射等方式,可以转化为偏振光。
其中,反射和折射产生的偏振光称为部分偏振光。
3. 偏振光的检验:通过使用偏振片、波片等仪器,可以检验光的偏振状态。
其中,偏振片可以用来检验光的偏振状态,波片可以用来产生和检验圆偏振光、椭圆偏振光。
三、实验仪器1. He-Ne激光器:提供单色光光源;2. 光具座:用于放置实验器材;3. 偏振片:用于检验光的偏振状态;4. 波片:用于产生和检验圆偏振光、椭圆偏振光;5. 玻璃平板:用于反射或折射光;6. 0°、90°刻度盘:用于测量偏振片与波片光轴间的夹角;7. 白屏:用于观察光的偏振现象。
四、实验内容1. 观察光的偏振现象:将激光器发出的光通过偏振片,观察光在白屏上的变化,记录观察结果。
2. 检验直线偏振光:将激光器发出的光通过偏振片,然后通过波片,观察光在白屏上的变化。
调节波片,使光在白屏上出现明暗相间的条纹,记录观察结果。
3. 检验圆偏振光和椭圆偏振光:将激光器发出的光通过偏振片,然后通过波片,观察光在白屏上的变化。
调节波片,使光在白屏上出现明暗相间的条纹,记录观察结果。
4. 研究偏振光的干涉现象:将激光器发出的光通过偏振片,然后通过两个偏振片,观察光在白屏上的变化。
调节两个偏振片的相对位置,观察干涉条纹的变化,记录观察结果。
五、实验数据及处理1. 观察结果:(1)自然光通过偏振片后,在白屏上出现明暗相间的条纹。
偏振光实验报告
![偏振光实验报告](https://img.taocdn.com/s3/m/17093b2ef342336c1eb91a37f111f18583d00c2f.png)
一、实验目的1. 观察光的偏振现象,加深对其规律的认识。
2. 了解产生和检验偏振光的光学元件及光电探测器的工作原理。
3. 掌握光路准直的调节方法。
4. 掌握极坐标作图方法。
5. 掌握光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方法以及相互的转化。
二、实验原理光波是一种电磁波,其振动方向与传播方向垂直。
自然光是由许多不同振动方向的电磁波组成的,而偏振光则是具有特定振动方向的光。
1. 自然光与偏振光:自然光中,光矢量在垂直于传播方向的平面内可以有不同的振动方向。
当光矢量保持在固定平面上振动时,这种振动状态称为平面振动态,此时的光称为线偏振光。
若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。
如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态。
2. 偏振片的原理:偏振片是一种人造偏振元件,利用二向色性获得偏振光。
当自然光通过偏振片时,只允许特定振动方向的光通过,从而获得偏振光。
3. 马吕斯定律:当线偏振光通过偏振片时,其透射光的强度与入射光强度、偏振片透振方向的夹角之间存在一定的关系,即马吕斯定律。
4. 双折射现象:当一束光射入到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射现象。
三、实验仪器1. 偏振光源2. 偏振片3. 检偏器4. 光电探测器5. 望远镜6. 毫米刻度尺7. 数据采集系统四、实验步骤1. 观察自然光:将偏振光源打开,通过望远镜观察自然光,观察其光斑。
2. 观察偏振光:将偏振片放置在光源与望远镜之间,通过望远镜观察光斑的变化,观察偏振光的特点。
3. 观察马吕斯定律:将检偏器放置在偏振片与望远镜之间,调节检偏器的角度,观察透射光的强度变化,验证马吕斯定律。
4. 观察双折射现象:将检偏器放置在双折射介质与望远镜之间,调节检偏器的角度,观察透射光的强度变化,验证双折射现象。
5. 观察光的偏振态:将椭圆偏振光和圆偏振光分别通过偏振片和检偏器,观察光斑的变化,鉴别光的偏振态。
光的偏振 实验报告
![光的偏振 实验报告](https://img.taocdn.com/s3/m/c349787f4a35eefdc8d376eeaeaad1f3469311a2.png)
光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、了解偏振片的特性,掌握产生和检验偏振光的方法。
3、测量布儒斯特角,验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场矢量和磁场矢量相互垂直且都垂直于光的传播方向。
一般情况下,光的电场矢量在垂直于光传播方向的平面内的取向是随机的,这种光称为自然光。
如果光的电场矢量在垂直于光传播方向的平面内只沿某一固定方向振动,则称其为线偏振光。
还有部分偏振光和椭圆偏振光等偏振态。
2、偏振片偏振片是一种只允许某一方向的光振动通过的光学元件。
其透振方向就是允许光振动通过的方向。
当自然光通过偏振片时,只有与透振方向平行的光振动分量能够通过,从而得到线偏振光。
3、布儒斯特定律当自然光在两种介质的分界面上反射和折射时,反射光和折射光都将成为部分偏振光。
当入射角满足一定条件时,反射光将成为完全偏振光,其振动方向垂直于入射面,这个入射角称为布儒斯特角,用θB表示。
布儒斯特定律为:tanθB = n2 / n1 ,其中 n1 和 n2 分别为两种介质的折射率。
三、实验仪器光源(钠光灯)、起偏器(偏振片)、检偏器(偏振片)、光具座、玻璃片、刻度盘等。
四、实验步骤1、调节仪器将光源、起偏器、检偏器依次安装在光具座上,使其共轴。
调节起偏器和检偏器的透振方向,使其初始时平行。
2、观察偏振现象打开光源,旋转检偏器,观察透过检偏器的光强变化。
可以发现,当检偏器的透振方向与起偏器的透振方向平行时,光强最强;当两者透振方向垂直时,光强最弱,几乎为零。
这表明通过起偏器得到的线偏振光,其振动方向是固定的。
3、测量布儒斯特角在光具座上放置一块玻璃片,使自然光以一定角度入射到玻璃片表面。
旋转检偏器,使反射光消光(光强最弱),此时入射角即为布儒斯特角。
测量此时的入射角,并记录下来。
4、验证布儒斯特定律已知钠光灯发出的光在空气中的波长λ,以及玻璃片的折射率 n2,根据布儒斯特定律计算理论上的布儒斯特角。
偏振光的观察与研究实验报告数据(精选10篇)
![偏振光的观察与研究实验报告数据(精选10篇)](https://img.taocdn.com/s3/m/bfd012501fd9ad51f01dc281e53a580217fc504d.png)
偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。
由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。
在本次实验中,我们对偏振光的观察与研究进行了探究。
一、实验目的1. 学习偏振光的概念及其传播方式。
2. 观察线偏振器和波片对偏振光的影响。
3. 研究偏振光的干涉现象。
二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。
2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。
然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。
记录得到的光的强度值,并将其称为“T”。
3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。
观察手机屏幕的显示情况。
4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。
四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。
2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。
这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。
3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。
这说明手机屏幕与偏振光的作用原理是相似的。
4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。
五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。
光学偏振小实验报告(3篇)
![光学偏振小实验报告(3篇)](https://img.taocdn.com/s3/m/d7f2cc49ec630b1c59eef8c75fbfc77da269972f.png)
第1篇一、实验目的1. 观察光的偏振现象,加深对光的偏振规律的认识。
2. 掌握产生和检验偏振光的光学元件(如偏振片、1/4波片等)的工作原理。
3. 学习使用偏振片进行光路准直和极坐标作图。
二、实验原理1. 光的偏振现象:光是一种电磁波,其电场矢量E在垂直于光传播方向的平面上可以有不同的振动方向。
当光在传播过程中,若电场矢量E保持一定的振动方向,则称为偏振光。
2. 偏振片:偏振片是一种具有选择性吸收特定方向振动光线的材料。
当自然光通过偏振片时,只有与偏振片偏振方向一致的光线能够通过,从而实现光的偏振。
3. 1/4波片:1/4波片是一种厚度为1/4波长(λ/4)的透明介质,它可以将线偏振光转换为椭圆偏振光或圆偏振光。
4. 马吕斯定律:当线偏振光通过一个与其偏振方向成θ角的偏振片时,透射光的强度I与入射光强度I0之间的关系为:I = I0 cos²θ。
三、实验仪器1. 光具座2. 偏振片3. 1/4波片4. 激光器5. 白屏6. 直尺7. 量角器四、实验步骤1. 将激光器发出的激光照射到白屏上,调整激光器与白屏的距离,使激光在白屏上形成明亮的点。
2. 将偏振片放置在激光器与白屏之间,调整偏振片的偏振方向,观察白屏上的光点变化。
3. 记录偏振片偏振方向与光点变化的关系,分析光的偏振现象。
4. 将1/4波片放置在偏振片与白屏之间,调整1/4波片的光轴方向,观察白屏上的光点变化。
5. 记录1/4波片光轴方向与光点变化的关系,分析1/4波片的作用。
6. 将偏振片与1/4波片组合,观察白屏上的光点变化,分析光的偏振现象。
7. 利用偏振片和1/4波片进行光路准直,观察准直效果。
8. 使用直尺和量角器测量偏振片和1/4波片的偏振方向,分析极坐标作图方法。
五、实验结果与分析1. 当偏振片的偏振方向与光点变化方向一致时,光点亮度最大;当偏振片的偏振方向与光点变化方向垂直时,光点亮度最小。
2. 1/4波片可以将线偏振光转换为椭圆偏振光或圆偏振光,当1/4波片的光轴方向与偏振片的偏振方向成45°时,光点亮度最大。
偏振光学实验报告
![偏振光学实验报告](https://img.taocdn.com/s3/m/93d43a43a66e58fafab069dc5022aaea998f41d8.png)
一、实验目的1. 观察光的偏振现象,加深对光的偏振理论的认识。
2. 验证马吕斯定律,了解偏振光的基本特性。
3. 掌握1/2波片和1/4波片的作用,学会使用这些光学元件。
4. 研究椭圆偏振光和圆偏振光的产生与检测。
二、实验原理1. 光的偏振性:光是一种电磁波,电磁波对物质的作用主要是电场。
在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。
2. 自然光与偏振光:自然光在垂直于传播方向的平面内,光矢量在各个方向上的振动分量相等。
偏振光在垂直于传播方向的平面内,光矢量只在一个方向上振动。
3. 偏振片:利用二向色性获得偏振光。
当自然光通过偏振片时,只有光矢量在偏振片透振方向上的分量能够通过,其他方向上的分量被吸收。
4. 1/2波片和1/4波片:1/2波片可以将线偏振光转换为圆偏振光,1/4波片可以将线偏振光转换为椭圆偏振光。
5. 马吕斯定律:当一束线偏振光通过一个偏振片时,出射光的强度与入射光的强度、入射光与偏振片的夹角有关。
当入射光与偏振片的夹角为θ时,出射光的强度为I = I0 cos^2(θ)。
三、实验仪器与设备1. 自然光源:He-Ne激光器、白光光源。
2. 偏振片:两块。
3. 1/2波片:两块。
4. 1/4波片:两块。
5. 光具座、白屏、刻度盘、导线等。
四、实验步骤1. 观察自然光的偏振现象:将自然光源照射到白屏上,用偏振片观察,可以看到光斑的明暗变化。
2. 验证马吕斯定律:将自然光通过偏振片,使偏振片透振方向与光具座上的刻度盘平行。
调整偏振片与刻度盘的夹角,记录光斑的明暗变化,并计算出射光的强度与入射光的强度、入射光与偏振片的夹角的关系。
3. 研究椭圆偏振光和圆偏振光的产生与检测:将自然光通过1/4波片,观察光斑的明暗变化,判断光斑是否为圆偏振光或椭圆偏振光。
4. 使用1/2波片将线偏振光转换为圆偏振光:将自然光通过1/2波片,观察光斑的明暗变化,判断光斑是否为圆偏振光。
光的偏振研究实验报告
![光的偏振研究实验报告](https://img.taocdn.com/s3/m/2905c510f56527d3240c844769eae009591ba21e.png)
光的偏振研究实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、掌握产生和检验偏振光的方法。
3、了解偏振片的特性以及马吕斯定律。
二、实验原理1、光的偏振态光可以看作是由电场和磁场相互垂直并垂直于光的传播方向的电磁波。
一般情况下,光的振动方向在垂直于传播方向的平面内是随机分布的,这种光称为自然光。
如果光的振动方向始终保持在一个特定的方向上,这种光称为线偏振光。
部分偏振光则是介于自然光和线偏振光之间的一种光,其振动方向在某一方向上占优势。
2、偏振片偏振片是一种只允许某一方向振动的光通过的光学元件。
其原理是利用某些物质的二向色性,即对不同方向振动的光具有不同的吸收程度。
3、马吕斯定律当一束强度为 I₀的线偏振光通过一个偏振化方向与光的振动方向夹角为θ的偏振片时,透过偏振片的光强 I 为:I = I₀cos²θ 。
三、实验仪器1、半导体激光器2、起偏器和检偏器(偏振片)3、光功率计4、旋转台四、实验步骤1、打开半导体激光器,调整其位置和角度,使激光束水平射出。
2、将起偏器安装在旋转台上,旋转起偏器,使通过起偏器的光强达到最大,此时起偏器的偏振化方向与激光的振动方向一致。
3、在起偏器后放置检偏器,旋转检偏器,观察光功率计的读数变化。
4、每隔 10°记录一次光功率计的读数,直至旋转 180°。
5、重复实验多次,以减小误差。
五、实验数据及处理|角度(°)| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |||||||||||||||||||||||光强(mW)| 20 | 19 | 16 | 12 | 08 | 05 | 02 | 01 |005 | 0 | 005 | 01 | 02 | 05 | 08 | 12 | 16 | 19 | 20 |以角度为横坐标,光强为纵坐标,绘制光强与角度的关系曲线。
偏振光的实验报告
![偏振光的实验报告](https://img.taocdn.com/s3/m/a89ae39b6037ee06eff9aef8941ea76e58fa4aa3.png)
一、实验目的1. 了解偏振光的产生原理。
2. 掌握偏振光的检测方法。
3. 验证马吕斯定律,加深对光的偏振现象的认识。
二、实验原理1. 偏振光的产生光波是一种电磁波,具有横波特性。
当光波通过某些光学元件时,其振动方向会限定在某一平面内,这种光称为偏振光。
常见的偏振光产生方法有:(1)反射:当光从一种介质射向另一种介质时,部分光会被反射,反射光会发生偏振现象。
(2)折射:当光从一种介质射向另一种介质时,部分光会被折射,折射光也会发生偏振现象。
(3)起偏器:利用光学元件(如偏振片)选择性地透过某一方向的光,从而产生偏振光。
2. 偏振光的检测检测偏振光的方法主要有以下几种:(1)干涉法:利用两束偏振光相互干涉,观察干涉条纹的变化,从而判断光是否为偏振光。
(2)马吕斯定律:利用偏振片检测偏振光的振动方向,验证马吕斯定律。
(3)光电效应:利用光电探测器检测偏振光的强度变化,验证偏振光的存在。
3. 马吕斯定律当一束偏振光通过一个偏振片时,其振动方向与偏振片的透振方向平行时,光强最大;当振动方向与透振方向垂直时,光强为零。
马吕斯定律的表达式为:I = I0 cos²θ其中,I为透过偏振片后的光强,I0为入射光强,θ为入射光的振动方向与偏振片的透振方向之间的夹角。
三、实验仪器与材料1. 实验仪器:(1)He-Ne激光器(2)偏振片(两块)(3)1/4波片(两块)(4)光具座(5)白屏(6)刻度盘2. 实验材料:(1)玻璃平板(2)反射镜四、实验步骤1. 将He-Ne激光器固定在光具座上,调整激光束的传播方向,使其垂直于白屏。
2. 将一块偏振片放置在激光束的路径上,调整偏振片的透振方向,使其与激光束的振动方向平行。
3. 观察白屏上的光强变化,记录光强最大时的偏振片透振方向。
4. 将1/4波片放置在偏振片之后,调整1/4波片的位置,使透过1/4波片的光强最大。
5. 改变偏振片和1/4波片之间的夹角,观察光强变化,记录光强最小时的夹角。
偏振光学实验实验报告
![偏振光学实验实验报告](https://img.taocdn.com/s3/m/5070e1a08ad63186bceb19e8b8f67c1cfbd6ee4a.png)
偏振光学实验实验报告一、实验目的1、了解偏振光的基本概念和产生方法。
2、掌握偏振片的特性和使用方法。
3、观察和研究光的偏振现象,验证马吕斯定律。
4、了解波片的作用和线偏振光通过波片后的偏振状态变化。
二、实验原理1、偏振光的概念光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。
一般情况下,光的振动方向是随机的,这种光称为自然光。
如果光的振动方向在某个特定的方向上具有优势,就称为偏振光。
偏振光可以分为线偏振光、圆偏振光和椭圆偏振光。
2、偏振片偏振片是一种只允许特定方向的光振动通过的光学元件。
其原理是利用某些材料的二向色性,即对不同方向的光振动吸收程度不同。
通过偏振片后的光成为线偏振光,其振动方向与偏振片的透振方向相同。
3、马吕斯定律当一束强度为 I₀的线偏振光通过一个透振方向与光振动方向夹角为θ 的偏振片时,其透过的光强 I 为:I = I₀cos²θ4、波片波片是一种能使光的偏振状态发生改变的光学元件。
常见的波片有1/4 波片和 1/2 波片。
当线偏振光通过 1/4 波片时,会变成椭圆偏振光或圆偏振光;当线偏振光通过 1/2 波片时,其偏振方向会旋转一定的角度。
三、实验仪器1、半导体激光器2、起偏器(偏振片)3、检偏器(偏振片)4、 1/4 波片5、光功率计四、实验步骤1、搭建实验光路将半导体激光器、起偏器、检偏器依次放置在光学导轨上,使激光束依次通过起偏器和检偏器,调整各器件的高度和角度,使光路保持水平。
2、观察自然光和偏振光(1)不放置起偏器,观察激光束的状态,此时为自然光。
(2)在光路中插入起偏器,旋转起偏器,观察通过起偏器后的光强变化,此时为线偏振光。
3、验证马吕斯定律(1)固定起偏器的透振方向,旋转检偏器,每隔 10°记录一次光功率计的读数。
(2)根据测量数据,绘制光强与角度的关系曲线,验证马吕斯定律。
4、研究 1/4 波片的作用(1)在起偏器和检偏器之间插入 1/4 波片,旋转 1/4 波片,观察光强的变化。
偏振光_实验报告(3篇)
![偏振光_实验报告(3篇)](https://img.taocdn.com/s3/m/f5231148443610661ed9ad51f01dc281e53a5636.png)
第1篇一、实验目的1. 观察光的偏振现象,加深对其规律的认识。
2. 了解产生和检验偏振光的光学元件及光电探测器的工作原理。
3. 掌握光路准直的调节方法。
4. 掌握极坐标作图方法。
5. 掌握光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方法以及相互的转化。
二、实验原理1. 自然光与偏振光光是一种电磁波,其振动方向与传播方向垂直。
当光波的电矢量E在传播过程中只局限在某一确定平面内时,这种光称为偏振光。
自然光是一种非偏振光,其电矢量E在垂直于传播方向的平面内随机振动。
2. 双折射现象当一束光射入光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。
其中一束光沿原入射方向传播,称为普通光;另一束光在介质中发生折射,其传播方向和速度均发生改变,称为异常光。
3. 偏振光的产生和检验(1)产生偏振光的方法:利用光学各向异性介质,如偏振片、1/4波片等,将自然光分解为线偏振光、圆偏振光和椭圆偏振光。
(2)检验偏振光的方法:利用起偏器(如偏振片、1/4波片等)和检偏器(如偏振片、1/4波片等)。
4. 马吕斯定律马吕斯定律指出,当一束完全线偏振光通过检偏器时,其光强I与入射线偏振光的光矢量振动方向与检偏器偏振方向的夹角θ的关系为:I = I0 cos^2θ,其中I0为入射线偏振光的光强。
三、实验仪器1. 中央调节平台和两臂调节机构2. 半导体激光器3. 格兰棱镜4. 光电倍增管探头及电源5. 各种调节机构6. 光电流放大器7. 偏振片(起偏器和检偏器)8. 1/4波片9. 白屏10. 刻度盘四、实验步骤1. 将激光器发出的光束通过调节机构准直,使其成为平行光束。
2. 将偏振片作为起偏器,调节其角度,观察光束在白屏上的光强变化,验证马吕斯定律。
3. 将1/4波片作为起偏器,观察光束在白屏上的光强变化,验证1/4波片的作用。
4. 将偏振片作为检偏器,观察光束在白屏上的光强变化,验证检偏器的作用。
偏振光学实验实验报告
![偏振光学实验实验报告](https://img.taocdn.com/s3/m/3276aa4c6fdb6f1aff00bed5b9f3f90f76c64df3.png)
一、实验目的1. 观察光的偏振现象,验证马吕斯定律。
2. 了解1/2波片和1/4波片的作用。
3. 掌握椭圆偏振光和圆偏振光的产生与检测。
二、实验原理光是一种电磁波,具有横波特性。
当光波通过某些介质时,其振动方向会被限制在某一特定方向上,这种现象称为光的偏振。
偏振光可分为线偏振光、椭圆偏振光和圆偏振光。
马吕斯定律描述了线偏振光通过偏振片时的光强变化。
当线偏振光的振动方向与偏振片的透振方向一致时,光强最大;当两者垂直时,光强为零。
1/2波片和1/4波片是常用的偏振元件。
1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,而1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。
三、实验仪器1. 自然光源2. 偏振片3. 1/2波片4. 1/4波片5. 硅光电池6. 检偏器7. 光具座8. 透镜9. 光屏10. 毫米刻度尺四、实验步骤1. 将自然光源放置在光具座上,调整光路使其成为平行光。
2. 将偏振片放置在光具座上,使入射光通过偏振片。
3. 将检偏器放置在光具座上,调整其位置,使透过偏振片的光能够照射到检偏器上。
4. 观察检偏器上的光强变化,记录光强最大和最小时的偏振片角度。
5. 将1/2波片放置在光具座上,调整其位置,使透过偏振片的光能够照射到1/2波片上。
6. 观察1/2波片后的光强变化,记录光强最大和最小时的1/2波片角度。
7. 将1/4波片放置在光具座上,调整其位置,使透过1/2波片的光能够照射到1/4波片上。
8. 观察1/4波片后的光强变化,记录光强最大和最小时的1/4波片角度。
9. 利用马吕斯定律,计算偏振片、1/2波片和1/4波片的透振方向与光矢量振动方向的夹角。
五、实验结果与分析1. 观察到当偏振片的透振方向与光矢量振动方向一致时,光强最大;当两者垂直时,光强为零,验证了马吕斯定律。
2. 观察到1/2波片可以将线偏振光变为椭圆偏振光或圆偏振光,1/4波片可以将椭圆偏振光或圆偏振光变为线偏振光。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏振光实验报告
实验内容
(10号试验台测量光强范围最大为一万,最小出现负值。
-2.3)
1、观察偏振片的二向色性
实验过程:
(1)连通激光发射器的电源,光路如图,激光经过第一个偏振片后成为偏振光,经过第二个偏振片后照射在光屏上。
(2)旋转第二个偏振片,可以明显看到光屏上光斑亮度变化,有亮暗区分。
(3)目测找到最亮和最暗光斑出现的大致角度,测量光强,并记录角度
实验结果:旋转第二个偏振片,可以明显看到光屏上光斑亮度变化,有亮暗区分。
测量值-25°光强最大,6320;66.0°光强最小,-2.3
2、检测两片堆叠在一起的偏振片的透射光强。
利用计算机软件拟合透射光强与偏振片通光方向夹角间的依赖关系,检验马吕斯定律。
探究线偏振光的简单测量方法
实验过程:
(1)确定前面的偏振片位置不变,转动后一个偏振片,记录后一个偏振片的角度,以10°为间隔,记录光强测量仪的数据,并找出光强最大和最小处的角度,测量范围大于90°。
在实际测量中,由于两偏振片所标刻度误差,=0时,并非光强最大处,因此扩大测量范围。
并以光强最大值为1,计算各角度所对应的相对光强。
以光强最大处为两偏振片的相对角度Δ
(2)数据拟合,验证马吕斯定律
实验结果:(第一个偏振片读数为340°)
Δ光强相对光强
-30.0°-6°58010.923579048
-24.0°0°62811
-20.0°4°58260.927559306
-10.0°14°54730.871358064
0°24°48450.771373985
10.0°34°39540.629517593
20.0°44°29510.469829645
30.0°54°19790.315077217
40.0°64°10630.169240567
50.0°74°3870.061614393
60.0°84°45.70.007275911
66.0°90°-1.8≈0
70.0°94°38.10.006065913
80.0°104°379.30.060388473
90.0°114°1025.60.163286101
R-square=0.99095,即数据拟合良好,检验了马吕斯定律
3 观察晶体双折射现象,探究区分 o 光和 e 光的基本方法
实验过程:
(1)如图所示,激光经过偏振片后照射到晶体上,发生双折射,在光屏上可以看到两个光斑
(2)在晶体后放置一个偏振片,旋转偏振片,检验两个光斑之间的关系
实验结果:
当前偏振片角度读数为0时,将晶体换做偏振片,角度为80.0°时光强为零,安防晶体后,并在晶体后放置一偏振片,后一个偏振片在
角度为15.0°和105.0.0°时,分别有一束光消失。
区别o 光和e 光的办法:使晶体表面反射的光与入射的光重叠,此时光路与晶体表面垂直,观察出射的光,正常折射的光束是o 光,非正
常折射的光是e 光。
4将线偏光照射到 1/2 波片上。
总结透射光偏振态与 1/2 波片放置方式的关系。
探究调制线偏光偏振方向的方法
实验过程: 转动波片,每改变一次,旋转后偏振片一周观察光屏上光斑亮度变
化,并测量光强。
实验结果:
发现光斑亮度变化总为两明两零,明暗最大的一组数据为:明亮处光强为2168/2333,暗处光强为17/14.6,偏振光为线偏振
前偏振片角度读数为0,以波片读数90°为测量起点,测量波片转动角度和目测光强保持最大时检偏器改变角度之间的关系: 波片转动角度 15.0° 30.0°
45.0° 检偏器改变角28.0°
68.0° 82.0° 光屏 光源
晶体 偏振片
65.0°
光屏 光源
波片
偏振片 偏振片
度
改变波片放置方式,可以改变偏振光偏振方向
5. 将线偏光照射到 1/4 波片上。
总结透射光偏振态与 1/4 波片放置方式的关系。
探究线偏光转变为椭偏光、圆偏光的方法。
实验过程:
(1)如图组装仪器,最后一个波片先不安置,转动后一个偏振片一周,观测光屏上亮斑,并记录光强
(2)放置最后一个波片,转动后一个偏振片一周,观察光屏上亮斑,并记录光强。
是实验结果:
前偏振片角度读数为0,以波片读数90°为测量起点
放置最后一个波片前,两明两暗,光强分别为1826/1945/362/342 放置最后一个波片后,两明两暗,暗方位变化,其中一组光强分别为1768/1923/148/152
由此可见,此时偏振光为自然光+椭圆偏振
保持前一个偏振片不动,转动前一个波片,并测量暗方位光强,暗方位光强逐渐减小,,最暗光强为9.3
可以认为,线偏振通过波片后,会变成椭圆偏振,在特定角度,会变成圆偏振
光屏 光源
波片 偏振片
偏振片 波片。