机械原理ppt西北工业

合集下载

☆西北工业大学国家精品课程]-机械原理PPT课件完整版

☆西北工业大学国家精品课程]-机械原理PPT课件完整版

西北工业大学【国家精品教程】机械原理(课件完整版)目录• 第一章 绪论 • 第二章 机构的结构分析 • 第三章 平面机构的运动分析 • 第四章 平面机构的力分析 • 第五章 机械的效率及自锁 • 第六章 机械的平衡目录• 第七章 机械的运转及其速度 波动的调节• 第八章 平面连杆机构及其设计 • 第九章 凸轮机构及其设计 • 第十章 齿轮机构及其设计目录• 第十一章 齿轮系及其设计 • 第十二章 其他常用机构 • 第十三章 工业机器人机构及其设计第一章 绪 论§1-1 本课程研究的对象及内容 §1-2 学习本课程的目的 §1-3 如何进行本课程的学习返回§1-1 本课程研究的对象及内容1.研究对象机械 是机构和机器的总称。

机构是指一种用来传递与变换运动和力的可动装置。

机器是指一种执行机械运动装置,操 作 机可用来变换和传递能量、物料和信息。

实例:示 教内燃机板工件自动装卸装置六自由度工业机器人2.研究内容 有关机械的基本理论控制系统§1-2 学习本课程的目的课程性质、任务及作用 机械未来发展§1-3 如何进行本课程的学习掌握本课程的特点 注重理论联系实际 逐步建立工程观点 认真对待每个教学环节机器和机构的概念(1)机构机构 是指一种用来传递与变换运动和力的可动装置。

如常 见的机构有带传动机构、链传动机构、齿轮机构、凸轮机构、螺 旋机构等等。

这些机构一般被认为是由刚性件组成的。

而现代机构中除了 刚性件以外,还可能有弹性件和电、磁、液、气、声、光…等元 件。

故这类机构称为广义机构;而由刚性件组成的机构就称为狭 义机构。

(2)机器机器 是指一种执行机械运动装置,可用来变换和传递能量、 物料和信息。

例如: 电动机、内燃机用来变换能量;机器和机构的概念(2/3)机床用来变换物料的状态; 汽车、起重机用来传递物料; 计算机用来变换信息。

由于各种机器的主要组成部分都是各种机构。

机械原理课件第二章CH02西工大版

机械原理课件第二章CH02西工大版

3×4-(2×5+0) 2
§2-6 计算平面机构自由度时应注意的事项
F 3n (2 pl p h ) 3 5 (2 6 0) 3
F 3n (2 pl p h ) 3 3 ( 2 3 1) 2
F 3n (2 pl p h ) 3 4 (2 6 0) 0
§2-2 机构的组成
2、运动副
(1) 运动副定义
运动副:两个构件直接接触又能产生一定相对运动的活动联接。

组成机构的各构件之间必须有确定的相对运动,因此,构件的 联接既要使两个构件直接接触,又能产生一定的相对运动。
运动副元素:两构件上参与接触而构成运动副的表面(构成运动副 的点、线、面)。
转动副
移动副
?
§2-6 计算平面机构自由度时应注意的事项
1、复合铰链
2、局部自由度 3、虚约束
§2-6 计算平面机构自由度时应注意的事项
1、复合铰链


两个以上构件在同一处(同一轴上)以转动副相联接称为复合铰链。
由m个构件组成的复合铰链,共有 (m-1) 个转动副。
F 3n (2 pl p h ) 3 5 (2 7 0) 1
3、虚约束
平面机构中虚约束的几种常见情况
④ 机构中对运动传递不起独立作用的对称部分所带入的约束为虚约束。
带虚约束的定轴轮系
F = 3n-(2pl+ph) = 3×3-(2×3+2) = 1
§2-6 计算平面机构自由度时应注意的事项
3、虚约束
平面机构中虚约束的几种常见情况
⑤ 在机构运动过程中,如果两构件上某两点的距离始终保持不变,则在
活塞
曲轴 气缸体

西北工业大学机械专业机械原理课程ppt(第六章机械的平衡)

西北工业大学机械专业机械原理课程ppt(第六章机械的平衡)

§6-2 刚性转子的平衡计算
为了使转子得到平衡,在设计时就要根据转子的结构,通过
计算将转子设计成平衡的。
1.刚性转子的静平衡计算
(1)静不平衡转子
对于轴向尺寸较小的盘形转子(b/D <0.2),其质量可近似认为 分布在同一回转平面内。这时其偏心质量在转子运转时会产生惯
性力,因这种不平衡现象在转子静态时就可表现出来, 故这类转 子称为静不平衡转子。
到破坏。
机娥平衡的目的及内容(2/3)
机械平衡的目的就是设法将构件的不平衡惯性力加以平衡, 以消除或减少惯性力的不良影响。
机械的平衡是现代机械的一个重要问题。对于高速高精密机 械尤为重要;但某些机械却是利用构件产生的不平衡惯性力所引 起的振动来工作的。对于此类机械则是如何合理利用不平衡惯性 力的问题。
刚性转子的平衡计算(4/4)
例1 内燃机曲轴 例2 双凸轮轴 刚性转子动平衡的条件:各偏心质量(包括平衡质量)产生 的惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量和也 为零,即
ΣF=0,
ΣM=0
(3)动平衡计算 动平衡计算是针对结构动不平衡转子而进行平衡的计算。即
根据其结构计算确定其上需增加或除去的平衡质量,使其在设计 时获得动平衡。
例 动平衡机的工作原理
3.现场平衡
对于一些尺寸非常大或转速很高的转子,一般无法在专用动 平衡机上进行平衡。即使可以平衡,但由于装运、蠕变和工作温 度过高或电磁场的影响等原因,仍会发生微小变形而造成不平衡。 在这种情况下,一般可进行现场平衡。
现场平衡 就是通过直接测量机器中转子支架的振动,来确 定其不平衡量的大小及方位,进而确定应增加或减去的平衡质量 的大小及方位,使转子得以平衡。
1.静平衡实验 (1)实验设备

机械原理课件第二章CH02西工大版

机械原理课件第二章CH02西工大版

步骤
首先确定机构的构件数和运动副 类型,然后按照一定的比例画出 各构件之间的相对位置,最后用 线条和符号表示出各运动副的连
接关系。
意义
通过机构运动简图可以直观地了 解机构的运动特性和结构特点, 为后续的分析和设计提供基础。
03
平面连杆机构
平面连杆机构的组成与分类
组成
平面连杆机构由机架、连杆、曲 柄和摇杆等构件组成。
螺旋压力机
螺旋压力机是一种常见的螺旋机构,它由螺杆和螺母组成,通过旋 转螺杆来产生压力。
螺旋千斤顶
螺旋千斤顶是一种用于顶升重物的螺旋机构,它由螺杆和螺母组成 ,通过旋转螺杆来顶升重物。
万向联轴节机构
万向联轴节
万向联轴节是一种常见的万向联轴节机 构,它由两个叉形接头和一个十字轴组 成,可以实现两个轴之间的任意角度的 连接。
05 齿轮机构
齿轮机构的组成与分类
组成
齿轮机构主要由主动齿轮、从动齿轮和机架组成,通过齿间的相互作用传递动力和运动。
分类
根据齿轮的形状和旋转方向,齿轮机构可分为直齿、斜齿和锥齿等类型,每种类型又有多种不同的变 种。
齿轮机构的工作特性
传动效率
齿轮机构的传动效率高,能够实 现精确的传动比,且长期使用下
凸轮机构的工作特性
工作原理
凸轮机构通过凸轮的转动 或移动,使从动件产生预 期的运动规律。
运动特性
凸轮机构的运动特性取决 于凸轮的形状、从动件的 类型以及两者之间的相对 位置关系。
动力学特性
凸轮机构在传递运动和力 的过程中,会受到各种阻 力和惯性的影响,从而产 生一定的动态响应。
凸轮机构的设计与优化
设计步骤
凸轮机构的设计需要经过初步设计、 运动分析和动力学分析等步骤,以确 保机构能够实现预期的运动规律并具 有足够的稳定性。

西工大机械原理第八章ppt课件.ppt

西工大机械原理第八章ppt课件.ppt
(2)按两连架杆预定的对应位置设计四杆机构
1)已知两连架杆三对对应位置 2)已知两连架杆四对对应位置
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
平面四杆机构的设计(6/6)
(3)按给定的行程速比系数设计四杆机构 例1 曲柄摇杆机构 例2 曲柄滑块机构 例3 摆动导杆机构
多杆机构(3/3)
2)斯蒂芬森(Stephenson)型,有Ⅰ型、Ⅱ型、Ⅲ型三种。
c)
斯蒂芬森Ⅰ型
d) 斯蒂芬森Ⅱ型
(3)六杆机构的应用
e) 斯蒂芬森Ⅲ型
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
契贝谢夫四足机器人
平面四杆机构的设计(3/6)
3. 用作图法设计四杆机构
3.1 图解设计的基本原理
➢图解设计问题——作图求解各铰链中心的位置问题。
Fi
Ei
Ci
B
i
A
D
i =1、2、···、N
➢各铰链间的运动关系:
固定铰链 A、D : 圆心 活动铰链 B、C : 圆或圆弧
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2)采用将两组以上的同样机构组合使用,且使各组机构的死 点位置相互错开排列的方法。
(2)死点的应用
例1 飞机起落架收放机构 例2 折叠式桌的折叠机构
5.连杆机构的运动连续性
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

最新内科大机械原理西北工业大学第七版CH02资料课件ppt

最新内科大机械原理西北工业大学第七版CH02资料课件ppt
内科大机械原理西北工业 大学第七版CH02资料
§2-1 机构结构分析的内容及目的
主要内容及目的是: 研究机构的组成及机构运动简图的画法; 了解机构具有确定运动的条件; 研究机构的组成原理及结构分类。
§2-2 机构的组成
1.构件 任何机器都是由许多零件组合而成 活塞 的。 零件是机器中的一个独立制造单元体;
1 A
F= 6n-(5p5+4p4+3p3+2p2+p1) =6n-Σ5 ipi
B2
C
i=1
例2-5 空间四杆机构
3
解 F=6n-5p5-4p4-3p3
1
=6×3-5×2- 4×1 - 3×1 =1
A
4
D
机构自由度的计算(3/4)
(2)含公共约束的空间机构自由度的计算 公共约束是指机构中所有构件均受到的共同的约束,以m表示。 F=(6-m)n-Σ5 (i-m)pi
1.机构运动简图 例2-2 内燃机机构运动简图。
机构运动简图 根据机构的运动尺寸,按一定的比例尺定出 各运动副的位置,采用运动副及常用机构运动简图符号和构件的 表示方法,将机构运动传递情况表示出来的简化图形。
机构示意图 不严格按比例绘出的,只表示机械结构状况的 简图。
2.机构运动简图的绘制
机构运动简图(2/2)
机构的自由度 机构具有确定运动时所必须给定的独立运动 参数的数目,其数目用F表示。
结论 机构具有确定运动的条件是:机构的原动件数目应等
于机构的自由度数目F。
机构具有确定运动的条件(2/2)
结论: 机构具有确定运动的条件是:机构原动件数目应等于机构的
自由度的数目F。
如果原动件数<F, 则机构的运动将不确定; 如果原动件数>F, 则会导致机构最薄弱环节的损坏。

西北工大版机械原理课件第7章机械的运转与调速

西北工大版机械原理课件第7章机械的运转与调速
Jedω/dt=Me
积分得: ω=ω0+αt
即: α=dω/dt=Me/Je = 常数
二、Je=const,Me=Me (ω) (等效转动惯量为常数,等效力矩是速度的函数,如电机驱动的鼓风机和搅拌机等。
Me (ω)=Med(ω)- Mer(ω)
变量分离: dt=Jedω/ Me (ω)
积分得:
=Jedω/dt
若 t=t0=0, ω0=0 则:
可求得ω=ω(t),由此求得:
若 t=t0, φ0=0, 则有:
三、Je=Je (φ) ,Me=Me (φ、ω) (等效转动惯量是位置函数,力矩是位置和速度的函数)
运动方程: d(Je (φ)ω21/2 )=Me (φ、ω)dφ
为非线性方程,一般不能用解析法求解,只能用数值差分法。不作介绍。
把这种具有等效质量或等效转动惯量,其上作用有等效力或等效力矩的等效构件称为原机械系统的等效动力学模型。
对于单自由度机械系统,只要确定了一个构件的运动,其他构件的运动就随之确定,因此,通过研究等效构件的运动规律,就能确定原机械系统的运动。
等效转化的原则是:
基本概念
1、等效构件:具有与原机械系统等效质量或等效转动惯量、其上作用有等效力或等效力矩,而且其运动与原机械系统相应构件的运动保持相同的构件。 2、等效条件: (1) 等效构件所具有的动能等于原机械系统的总动能; (2) 等效构件的瞬时功率等于原机械系统的总瞬时功率。 3、等效参数: (1) 等效质量me,等效转动惯量Je; (2) 等效力Fe,等效力矩Me。
对于不同的机器,因工作性质不同而取不同的值[δ]。
设计时要求:δ≤[δ]
造纸织布 1/40~1/50
纺纱机 1/60`~1/100

1机械设计总论-机械设计第八版西北工业大学机械原理及机械零件教研室ppt课件

1机械设计总论-机械设计第八版西北工业大学机械原理及机械零件教研室ppt课件

§2-5 机械零件应满足的基本要求
(四〕经济性要求
零件的经济性首先表现在零件本身的生产成本上。设计零件时, 应力求设计出耗费〔包括钱财、制造时间及人工〕最少的零件。
螺纹的断裂.swf
要降低零件的成本,首先要采用轻型的零件结构,以降低材料 消耗;采用少余量或无余量的毛坯或简化零件结构,以减少加工工 时。这些对降低零轮齿根部的折件断.swf 成本均有显著的作用。工艺性良好的结构就意 味着加工及装配费用低,所以工艺性对经济性有着直接的影响。
(一〕整体断裂
零件在受拉、压、弯、剪、扭等外载荷作用时,由于某一危险 截面上的应力超过零件的强度极限而发生的断裂,或螺纹的断裂.swf者零件在受变 应力作用时,危险截面上发生的疲劳断裂均属此类。例如螺栓的断 裂、齿轮轮齿根部的折断等。
轮齿根部的折断.swf
轮齿根部的折断.swf
螺纹的断裂.swf
§2-4 机械零件的主要失效形式
(四〕破坏正常工作条件引起的失效
有些零件只有在一定的工作条件下才能正常地工作。例如: 螺纹的断裂.swf
液体摩擦的滑动轴承,只有在存在完整的润滑油膜时才能正常 地工作;带传动,只有在传递的有效圆周力小于临界摩擦力时 才能正常地工作轮齿根部的折断.swf;高速转子,只有其转速与系统的固有频率错 开时才能正常地工作等。如果破坏了这些必备的条件,则将发 生不同类型的失效。例如:滑动轴承将发生过热、胶合、磨损 等形式的失效;带传动将发生打滑的失效;高速转子将发生共 振从而使振幅增大,以致引起断裂的失效等。
(一〕避免在预定寿命期内失效的要求
3.寿命
螺纹的断裂.swf
• 有的零件在工作初期虽然能够满足各种要求,但在工作一定 时间后,却可能轮齿根部的折断.swf由于某些原因而失效。这个零件正常工作延续 的时间就叫零件的寿命。 • 影响零件寿命的主要原因有:材料的疲劳,材料的腐蚀以及 相对运动零件接触表面的磨损。

机械原理西北工业大学第七版CH07——机械原理课件资料文档

机械原理西北工业大学第七版CH07——机械原理课件资料文档

积分得
Jedω/dt=Me
ω=ω0+αt
φ=φ0+ω0t+αt2/2
15
机械运动方程式的求解(4/5)
2.等效转动惯量是常数,等效力矩是速度的函数
(1)机械系统实例及其运动方程式 如用电动机驱动的搅拌机系统,则 Je=常数, Me(ω)=Med(ω) -Mer(ω),其运动方程式为
Me(ω)= Jedω /dt
第七章 机械的运转及其速度 波动的调节
§7-1 概述 §7-2 机械的运动方程式 §7-3 机械运动方程式的求解 §7-4 稳定运转状态下机械的周期性速度
波动及其调节 §7-5 机械的非周期性速度波动及其调节
返1 回
§7-1 概 述
1.本章研究的内容及目的 (1)研究在外力作用下机械真实运动规律的求解
机械速度波动的调节就是要设法减小机械的运转速度不均匀 系数δ,使其不超过许用值, 即
δ ≤[δ ]
机械的周期性波动调节的方法就是在机械中安装飞轮——具 有很大转动惯量的回转构件。
(2)飞轮调速的基本原理
飞轮调速是利用它的储能作用,在机械系统出现盈功时,吸 收储存多余的能量,而在出现亏功时释放其能量,以弥补能量的 不足,从而使机械的角速度变化幅度得以缓减,即达到调节作用。
2.机械运转的三个阶段
(1)起始阶段 机械的角速度ω由零渐增至ωm,其功能关系为
Wd=Wc+E
3
(2)稳定运转阶段
• 周期变速稳定运转
ωm=常数,而ω 作周期性变化;
在一个运动循环的周期内,Wd=Wc。 • 等速稳定运转
ω=ωm=常数, Wd≡Wc 。
(3)停车阶段
ω由ωm渐减为零;E=-Wc 。
20
机械的周期性速度波动及其调节(4/6)

西工大机械原理课件CH

西工大机械原理课件CH

03
螺旋机构分类
根据螺旋机构的用途和结构形式,可 以分为普通螺旋机构和差动螺旋机构 等类型。
04
普通螺旋机构
普通螺旋机构的螺杆和螺母通常都是 单头的,用于实现精确的直线或回转 运动。
螺旋机构
螺旋机构定义
螺旋机构是一种通过螺旋副(即螺纹) 实现运动和动力传递的装置,通常由 螺杆和螺母组成。
01
差动螺旋机构
机构是由若干个构件通过一定的方式 联接而成的,构件可以是刚性的或柔 性的,联接方式可以是运动副或柔性 联接。
机构的分类
机构可以根据不同的分类标准进行分 类,如根据运动形式可以分为平面机 构和空间机构,根据机构的结构可以 分为单环机构和多环机构等。
机构的组成和分类
机构的组成
机构是由若干个构件通过一定的方式 联接而成的,构件可以是刚性的或柔 性的,联接方式可以是运动副或柔性 联接。
机械系统的动态特性分析
动态特性分析的意

了解机械系统的动态特性是优化 设计、控制和性能评估的基础, 有助于提高系统的稳定性和可靠 性。
动态特性分析的方

通过实验和仿真方法,分析机械 系统的动态特性,包括固有频率、 阻尼比、振型等参数。
动态特性分析的应

将动态特性分析应用于实际机械 系统,优化系统的动态性能,提 高系统的响应速度和稳定性。
空间连杆机构
空间连杆机构是由三个或更多个 刚性构件通过低副连接,构件之 间的相对运动轨迹为空间的机构。
凸轮机构
凸轮机构定义
凸轮机构是由一个凸轮和至少一个从动件组成的高副机 构,其中凸轮是一个具有曲线轮廓的主动件,而从动件 则是由凸轮轮廓控制的构件。
凸轮机构特点
凸轮机构可以实现复杂的运动规律和运动轨迹,结构简 单紧凑,工作可靠,传动效率高,因此在自动化装置和 各种机械中得到了广泛应用。

机械原理西北工业大学版 PPT

机械原理西北工业大学版 PPT
平面高副中摩擦力的确定,
t Mf Ff21
FR21
φ
n FN21 ω12
通常是将摩擦力和法向反力合
成一总反力来研究。
1
n 其总反力方向的确定为: 1)总反力FR21的方向与
V12
2
t
法向反力偏斜一摩擦角;
2)偏斜方向应与构件1相对构件2的相对速度v12的方向相反。
§4-4 不考虑摩擦时机构的受力分析
取环形微面积 ds = 2πρdρ, 设 ds 上的压强 p为常数,则其正压 力dFN = p ds ,摩擦力dFf = f d FN = f p ds,故其摩擦力矩 dMf为
dMf =ρd Ff =ρf p ds
运动副中摩擦力的确定(7/8)
总摩擦力矩Mf为 Mf =∫rRρfpds = 2πf ∫r pρR 2dρ
FN21
θ
θ
1
2 G
FN21 2
FN21 G2
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
10
3)半圆柱面接触:
FN21= k G,(k = 1~π/2)
运动副中摩擦力的确定(2/8)
摩擦力计算的通式:
Ff21 = f FN21 = fvG
其中, fv 称为当量摩擦系数,
其取值为:
G
平面接触: fv = f ;
➢确定机械上的平衡力或平衡力偶
(2)方法 ➢静力分析 ➢动态静力分析 ➢图解法和解析法
§4-2 构件惯性力的确定
B 1.一般力学方法
以曲柄滑块机构为例
B
1
2
3
A
1
A
S1 m1
JS1
α2
C 4
B 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若利用静力学的力系简化理论,求出惯性力系的主矢和主矩, 代替具体求解每一个质点的惯性力,将给解题带来方便。 因各构件的运动形式不同,惯性力系的简化有以下三种情况, 我们以曲柄滑块机构为例加以说明。
§4-2 构件惯性力的确定
1、一般力学方法 (续)
B
1 A
2 3
C
(1)作平面运动的构件 (如连杆2)
F —— 水平力 Ff21 —— 摩擦力
§4-3 运动副中摩擦力的确定
(1)摩擦力的确定 (续)
1)平面接触 FN21
2)槽面接触
θ
θ
3)半圆柱面接触
G FN21 = GF来自21 = f FN21 =fG
FN21 2
FN21 G2
FN21= G / sinθ
Ff21 = f FN21 = f G / sinθ
普通高等教育“十五”国家级规划教材
机械原理
Theory of Machines and Mechanisms
第七版 西北工业大学机械原理及
机械零件教研室

主编 孙桓 陈作模 葛文杰
第4章 平面机构的力分析
学习要求 §4-1 机构力分析的任务、目的和方法 §4-2 构件惯性力的确定 §4-3 运动副中摩擦力的确定 §4-4 不考虑摩擦时机构的力分析 §4-5 考虑摩擦时机构的力分析
作业解析
学习要求
基本要求
了解机构中作用的各种力及机构力分析的目的和方法。 掌握构件惯性力的确定方法。 能对几种常见运动副中的摩擦力及总反力进行分析和计算。 能用图解法对平面Ⅱ级机构进行动态静力分析。
本章重点
运动副中摩擦力及总反力的确定。 不考虑摩擦时机构的动态静力分析。
§4-1 机构力分析的任务、目的和方法
1、作用在机械上的力
① 按作用在机械系统的内外分: (1)外力:如原动力、生产阻力、介质阻力和重力; (2)内力:运动副中的反力(约束力)。
② 按作功的正负分: (1)驱动力:驱使机械运动的力。 特征:与其作用点的速度方向相同或成锐角; 所作的功为正功,称为驱动功或输入功。 (2)阻抗力:阻止机械运动的力。 特征:与其作用点的速度方向相反或成钝角; 所作的功为负功,称为阻抗功。
可简化为一个总惯性力FI′1 =-m1aS1 作用线偏离质心的距离:lh1=MI1 / FI1
MS1 (FI′1) 与1方向相反
❖ 曲柄转轴通过质心
MI1=-JS11
FI1 F′I1 B
1
lh1 1
A
S1
MI1 m1
JS1 aS1
1
1
A S1
B
MI1 m1 JS1
§4-3 运动副中摩擦力的确定
❖ 运动副中摩擦的类型: 低副 —— 滑动摩擦力 高副 —— 滑动兼滚动摩擦力
△FN21 G FN21=Σ△FN21=-G FN′ 21=Σ|△FN21|=k G
1 A
(2)作平移运动的构件 (如滑块3) 作变速移动时,则: FI3 =-m3aS3(作用于质心)
B 2
aS3
3 C
4
3
C
FI3
S3 m3
§4-2 构件惯性力的确定
1、一般力学方法 (续)
(3)作定轴转动的构件 (如曲柄1) ❖ 曲柄转轴不通过质心 FI1=-m1aS1(作用于质心)
MI1=-JS11
② 确定机械上的平衡力或平衡力偶
机械在已知外力作用下,为了使该机械能按给定的运动规 律运动,必须施加于机械上的未知外力。 平衡力的确定是确定机械所需原动机的最小功率,或确定 机械所能克服的最大生产阻力的依据。
§4-1 机构力分析的任务、目的和方法
3、机构力分析的方法
① 静力分析 不计构件惯性力的机构力分析。
§4-1 机构力分析的任务、目的和方法
1、作用在机械上的力 (续)
❖ 阻抗力又可分为有效阻力和有害阻力。 1)有效阻力(生产阻力):机械在生产过程中为了改变工 作物的外形、位置或状态等所受到的阻力。
有效功(输出功):克服有效阻力所作的功。
2)有害阻力:机械在运转过程中所受到的非生产阻力(如 摩擦力、介质阻力等,一般常为有害阻力)。
一般分析 考虑各种影响因素进行机构力分析。
❖ 机构力分析的方法:图解法和解析法
§4-1 机构力分析的任务、目的和方法
❖ 达朗贝尔原理与动态静力分析
FI v
实例:用动静法分析作圆周运动的小球
由牛顿第二运动定律:
F
ma
令:
FI
ma
——
质点的惯性力
则: F FI 0
m Fa
作用于质点的所有力和虚加的惯性力在形式上组成平衡力系。
1、移动副中的摩擦
(1)摩擦力的确定
移动副中滑块在力 F 的作用下右移时,
Ff21
FN21
1 v12
F
所受的摩擦力的大小为: Ff21 = f FN21
2
方向与滑块1相对于平台2的相对速度v12的方向相反
G
G —— 铅垂载荷
式中: f 为摩擦系数
FN21 —— 法向反力
❖ FN21 的大小与接触面的几何形状有关。
损失功:克服有害阻力所作的功。
注意 摩擦力和重力既可以是阻抗力,也可成为驱动力。
§4-1 机构力分析的任务、目的和方法
2、机构力分析的任务和目的
① 确定运动副中的反力
运动副两元素接触处彼此作用的正压力(法向力)和摩擦力 (切向力)的合力 。 运动副反力是计算机构的强度、运动副中的摩擦及磨损、 确定机械的效率以及研究机械的动力性能的基础。
FI2=-m2aS2(作用于质心)
MI2=-JS2 2
可简化为一个总惯性力FI′2 =-m2aS2 作用线偏离质心的距离:lh2=MI2 / FI2
MS2 (F′I2 ) 与2方向相反
4
2
B 2
lh2
F′I2 FI2 MI2
aS2
S2 m2
JS2
C
§4-2 构件惯性力的确定
1、一般力学方法 (续)
(低速机械)
设计新机械时,机构的尺寸、质量和转
假设分析
动惯量等都没有确定,因此可在静力分 析的基础上假定未知因素进行动态静力
分析,然后再修正,直至机构合理。
② 动态静力分析
进行机构力分析时,一般可不考虑构件
(高速及重型机械) 简化分析
的摩擦力或重力(使得问题简化),所得结 果大都能够满足工程实际的需要。
作用在质点系上的所有外力与虚加在每个质点上的惯性力在形式 上组成平衡力系。
❖ 动态静力分析:将惯性力视为外力施加于相应构件上后, 再按静力平衡条件求解。
§4-2 构件惯性力的确定
1、一般力学方法
应用达朗贝尔原理研究质点系的运动时,须对质点系内每一个 质点加上各自的惯性力。 一个构件(刚体)是一个质点系,质点系内每个质点的惯性力形成 一个惯性力系。
相关文档
最新文档