平方差公开课课件.ppt
合集下载
平方差公式课件ppt
![平方差公式课件ppt](https://img.taocdn.com/s3/m/76889eab534de518964bcf84b9d528ea81c72fcd.png)
(1) (x+3)(X-3)=x2-9 (2) (-1-2x)( 2x-1)= 1-4x2 (3) (m+n)(n-m)=n2-m2 (4) (-1+y)(-y-1)=1-y2 (5) (-3a2+2b2)(-3a2-2b2)=9a4-4b4
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
= x2 − 4y2
你还有其它的计 算方法吗?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
⑴ (a+1)(a-1)= a2-1 ⑵ (3+x)(3-x)= 9-x2 ⑶ (a+2b)(a-2b)= a2-(2b)2 =a2-4b2 ⑷ (3x+5y)(3x-5y)= (3x)2-(5y)2 =9x2-25y2 ⑸ (10s-3t)(10s+3t)= (10s)2-(3t)2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2:计算 (1)102×98 (2) (y+2)(y-2)-(y-1)(y+5)
(2)解:原式=y2-4-(y2+4y-5) =y2-4-y2-4y+5 =-4y+1
= (2a)2 − b2 = 4a2 − b2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例1 运用平方差公式计算: (1) (3x+2)(3x − 2)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
= x2 − 4y2
你还有其它的计 算方法吗?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
⑴ (a+1)(a-1)= a2-1 ⑵ (3+x)(3-x)= 9-x2 ⑶ (a+2b)(a-2b)= a2-(2b)2 =a2-4b2 ⑷ (3x+5y)(3x-5y)= (3x)2-(5y)2 =9x2-25y2 ⑸ (10s-3t)(10s+3t)= (10s)2-(3t)2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2:计算 (1)102×98 (2) (y+2)(y-2)-(y-1)(y+5)
(2)解:原式=y2-4-(y2+4y-5) =y2-4-y2-4y+5 =-4y+1
= (2a)2 − b2 = 4a2 − b2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例1 运用平方差公式计算: (1) (3x+2)(3x − 2)
平方差公式 公开课一等奖课件
![平方差公式 公开课一等奖课件](https://img.taocdn.com/s3/m/5f7222feb14e852458fb57cf.png)
探究题:
计算下列多项式的积,你能发现它们运算的各 因式与结果各有什么规律吗?
( x 1)(x 1) x
(2 x 1)(2 x 1)
2
2
- x x -1 x -1
2
2
(m 2)(m 2)=m 2m 2m - 4 m - 4
4x - 2x 2x - 1 4x - 1
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
根据S长方形=S大正方形-S小正方形,得到:
(a+b)(a-b)= a2 -
b2
小结:
谈一谈:你这一节课有什么收获?
平方差公式:(a b)( a b) a 2
b
2
文字叙述:两个数的和与这两个数的差的积,等 于这两个数的平方差。 注意: ①公式中的字母a、b可以表示数,也可表示式(单 项式、多项式等); ②要符合公式结构特征才能运用公式,否则仍用多 项式相乘法则。
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
计算下列多项式的积,你能发现它们运算的各 因式与结果各有什么规律吗?
( x 1)(x 1) x
(2 x 1)(2 x 1)
2
2
- x x -1 x -1
2
2
(m 2)(m 2)=m 2m 2m - 4 m - 4
4x - 2x 2x - 1 4x - 1
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
根据S长方形=S大正方形-S小正方形,得到:
(a+b)(a-b)= a2 -
b2
小结:
谈一谈:你这一节课有什么收获?
平方差公式:(a b)( a b) a 2
b
2
文字叙述:两个数的和与这两个数的差的积,等 于这两个数的平方差。 注意: ①公式中的字母a、b可以表示数,也可表示式(单 项式、多项式等); ②要符合公式结构特征才能运用公式,否则仍用多 项式相乘法则。
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
《平方差公式》课件(共24张PPT)【推荐】
![《平方差公式》课件(共24张PPT)【推荐】](https://img.taocdn.com/s3/m/eb058ab0294ac850ad02de80d4d8d15abe230082.png)
例2 运用平方差公式计算.
(1)1998×2002; (2)20202-2017×2023. 分析 应用平方差公式可使运算简便. (1)中,1998×2002=(2000-2)×(2000+2); (2)中,20202-2017×2023=20202-(2020-3)× (2020+3). 解析(1)1998×2002=(2000-2)×(2000+2) =20002-4=4000000-4=3999996. (2)20202-2017×2023=20202-(2020-3)× (2020+3)=20202-(20202-9)=9.
3 3 9 9 9
81
(2)(2x+1)(4x2+1)(2x-1)(16x4+1)
=(2x+1)(2x-1)(4x2+1)(16x4+1)
=(4x2-1)(4x2+1)(16x4+1)
=(16x4-1)(16x4+1)
=256x8-1
解析 (1) . x 乘除
6 平方差公式
知识点一 平方差公式
平方差 公式
内容
字母表示
知识 详解
知识点一 平方差公式
内容
字母表示
平方差 两个数的和与这两个数的差的积,等于 (a+b)(a-b)=a2-
公式
它们的平方差
b2
知识 详解
(1)平方差公式的特点:(i)等号左边是两个二项式相乘,并且 这两个二项式中有一项完全相同,另一项互为相反数. (ii)等号右边是相同项的平方减去相反项的平方.(2)对于形 如两数和与这两数差相乘的多项式乘法,都可以用平方差公式计 算. (3)公式中的字母a,b可以是单项式,也可以是多项式. (4)探究平方差公式的几何意义:如图①,边长为a的大正方形中 有一个边长为b的小正方形,阴影部分的面积为a2-b2; 如图②,将图①中的阴影部分剪拼成一个长方形,面积为(a+b )(a-b),所以有(a+b)(a-b)=a2-b2
平方差公式课件PPT
![平方差公式课件PPT](https://img.taocdn.com/s3/m/a670fe4a6d85ec3a87c24028915f804d2b1687d8.png)
$(a+b-c)^2 = a^2 + b^2 - c^2 + 2ab - 2bc$
$(a-b+c)^2 = a^2 - b^2 + c^2 + 2(ab)c$
平方差公式的其他变种形式
$(a+b)^3 = (a+b)(a^2 - ab + b^2)$ $(a-b)^3 = (a-b)(a^2 + ab + b^2)$
平方差公式课件
目录
CONTENTS
• 平方差公式的基本概念 • 平方差公式的推导过程 • 平方差公式的证明 • 平方差公式的应用举例 • 平方差公式的变种 • 总结与回顾
01 平方差公式的基本概念
平方差公式的定义
总结词
平方差公式是数学中一个重要的恒等 式,用于表示两个数的平方差与这两 个数之间的关系。
$(a+b+c)^3 = (a+b+c)(a^2 - ab + b^2 - ac + bc - c^2)$
06 总结与回顾
本节课的重点回顾
01
02
03
04
平方差公式的形式和结 构
平方差公式的推导过程
平方差公式的应用范围 和条件
平方差公式的代数表示 和几何意义
本节课的难点解析
01
02
03
04
如何理解和记忆平方差公式的 形式和结构
目标
证明该公式成立
证明的步骤
01
02
03
步骤1
展开左侧,得到 $(a+b)(a-b) = a^2 b^2 + ab - ab$
步骤2
合并同类项,得到 $(a+b)(a-b) = a^2 b^2$
《平方差公式说》课件
![《平方差公式说》课件](https://img.taocdn.com/s3/m/01c7a60032687e21af45b307e87101f69e31fb81.png)
围。
二次项系数不为1的平方差公式推广
当二次项系数不为1时,平方差 公式仍然成立,但形式会有所不
同。
推广后的公式可以适用于更广泛 的情况,包括二次项系数不为1
的等式和恒等式。
通过推广平方差公式,我们可以 更好地理解和应用数学中的一些
基本概念和原理。
平方差公式的其他形式和推广
除了标准的平方差公式外,还有许多 其他形式和推广的平方差公式。
03
CATALOGUE
平方差公式的证明
利用数学归纳法证明
总结词
数学归纳法是一种证明数学命题的重要方法,通过归纳递推 的方式,证明命题对所有自然数都成立。
详细描述
首先证明基础步骤,即n=1时命题成立;然后假设n=k时命 题成立,推导出n=k+1时命题也成立;最后由归纳递推得出 ,命题对所有自然数n都成立。
利用多项式乘法法则推导
总结词
通过多项式乘法法则,将平方差公式进行拆解和重组,推导出其公式形式。
详细描述
首先将平方差公式中的每一项视为一个多项式,然后利用多项式乘法法则,将 每一项与另一项相乘,得到的结果再合并同类项,最终推导出平方差公式。
利用因式分解法推导
总结词
通过对平方差公式进行因式分解,将其拆解为更简单的形式,从而推导出其公式 形式。
通过学习和掌握这些公式,我们可以 更好地理解和应用数学中的一些基本 概念和原理,从而更好地解决实际问 题。
这些公式可以用来解决一些特定的问 题,例如求解某些数学问题和证明某 些等式。
THANKS
感谢观看
平方差公式的应用范围
01
02
03
04
在代数中,平方差公式常用于 因式分解和多项式简化。
在几何中,它可以用于计算某 些图形的面积和周长。
二次项系数不为1的平方差公式推广
当二次项系数不为1时,平方差 公式仍然成立,但形式会有所不
同。
推广后的公式可以适用于更广泛 的情况,包括二次项系数不为1
的等式和恒等式。
通过推广平方差公式,我们可以 更好地理解和应用数学中的一些
基本概念和原理。
平方差公式的其他形式和推广
除了标准的平方差公式外,还有许多 其他形式和推广的平方差公式。
03
CATALOGUE
平方差公式的证明
利用数学归纳法证明
总结词
数学归纳法是一种证明数学命题的重要方法,通过归纳递推 的方式,证明命题对所有自然数都成立。
详细描述
首先证明基础步骤,即n=1时命题成立;然后假设n=k时命 题成立,推导出n=k+1时命题也成立;最后由归纳递推得出 ,命题对所有自然数n都成立。
利用多项式乘法法则推导
总结词
通过多项式乘法法则,将平方差公式进行拆解和重组,推导出其公式形式。
详细描述
首先将平方差公式中的每一项视为一个多项式,然后利用多项式乘法法则,将 每一项与另一项相乘,得到的结果再合并同类项,最终推导出平方差公式。
利用因式分解法推导
总结词
通过对平方差公式进行因式分解,将其拆解为更简单的形式,从而推导出其公式 形式。
通过学习和掌握这些公式,我们可以 更好地理解和应用数学中的一些基本 概念和原理,从而更好地解决实际问 题。
这些公式可以用来解决一些特定的问 题,例如求解某些数学问题和证明某 些等式。
THANKS
感谢观看
平方差公式的应用范围
01
02
03
04
在代数中,平方差公式常用于 因式分解和多项式简化。
在几何中,它可以用于计算某 些图形的面积和周长。
数学--平方差公式名师公开课获奖课件百校联赛一等奖课件
![数学--平方差公式名师公开课获奖课件百校联赛一等奖课件](https://img.taocdn.com/s3/m/972a0891a0c7aa00b52acfc789eb172ded6399e5.png)
例3 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y -x),其中x=1,y=2.
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,
原式=5×12-5×22=-15.
例4:先化简,再求值:(x+1)(x-1)+x2(1-x)+ x3,其中x=2.
(2)根据你旳猜测计算: ①(1-2)(1+2+22+23+24+25)=___-6_3____; ②2+22+23+…+2n=_2_n+__1-__2__(n为正整数); ③(x-1)(x99+x98+x97+…+x2+x+1)=_x_1_00_-__1__;
备用复习题
例4 对于任意旳正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)旳值一定是10旳整数倍吗?
平方差公式;对于不能直接
应用公式旳,可能要经过变
形才能够应用
拓展提升 8.已知x≠1,计算:(1+x)(1-x)=1-x2,(1-x)(1+ x+x2)=1-x3,(1-x)(1+x+x2+x3)= (1)观察以上各式并猜测:(1-x)(1+x+x2+…+xn) =__1_-__x_n_+1_;(n为正整数)
(1)(a-2)(a+2)(a2 + 4) 解:原式=(a2-4)(a2+4)
=a4-16.
(2) (x-y)(x+y)(x2+y2)(x4+y4).
解:原式=(x2-y2)(x2+y2)(x4+y4) =(x4-y4)(x4+y4) =x8-y8.
(3)经过以上规律请你进行下面旳探索: ①(a-b)(a+b)=_a_2_-__b_2__; ②(a-b)(a2+ab+b2)=_a_3_-__b_3__; ③(a-b)(a3+a2b+ab2+b3)=__a_4-__b_4__.
14.2.1 平方差公式 课件(共20张PPT)人教版数学八年级上册
![14.2.1 平方差公式 课件(共20张PPT)人教版数学八年级上册](https://img.taocdn.com/s3/m/56f5671fc950ad02de80d4d8d15abe23482f03f8.png)
2.请同学们阅读课本107页思考并讨论.
3.判断下列式子是否正确. (1)(x+2)(x-2)=x2-2( × ); (2)(-3a-2)(3a-2)=9a2-4( × ); (3)(-2x+y)(-2x-y)=4x2-y2( √ ); (4)(a+3)(a-4)=a2-12( × ).
4.请同学们完成课本108页例2.
新知导入
游戏导入
同学们,我们来做一个数字游戏. 请同学们在纸上写出你最喜欢的一个幸运数字(10以内),然后计算100与这 个数的和,接着乘100与这个数的差. (给学生半分钟思考、计算的时间) 同学们都算得很投入,只要告诉我,你计算的结果,我就能马上说出你的幸运 数字是几,信吗? (请两位学生来试验) 等我们学了今天的知识以后,大家也能像老师一样,马上猜出其他同学的幸运 数字.
典例精讲
【题型一】平方差公式
例1:下列式子中,可以用平方差公式计算的是( C )
A.(x+2)(2+x)
B.(x+y)(-x-y)
C.(2x+y)(y-2x)
D.(2x-y)(x+2y)
变式:下列各式中,不能用平方差公式计算的是( D )
A.(-x+y)(-x-y)
Hale Waihona Puke B.(x-y)(-x-y)
C.(x+y)(-x+y)
14.2乘法公式
14.2.1平方差公式
学习目标
1. 经历探索平方差公式的过程,会运用多项式乘法法则推 导平方差公式,进一步发展符号感和推理能力.
2.通过自主探究平方差公式,认识平方差公式及其几何模 型,感受数学公式的意义和作用.
3.通过观察,理解、掌握平方差公式的结构特征,能灵活 熟练地运用平方差公式,培养学生解决问题的能力.
3.判断下列式子是否正确. (1)(x+2)(x-2)=x2-2( × ); (2)(-3a-2)(3a-2)=9a2-4( × ); (3)(-2x+y)(-2x-y)=4x2-y2( √ ); (4)(a+3)(a-4)=a2-12( × ).
4.请同学们完成课本108页例2.
新知导入
游戏导入
同学们,我们来做一个数字游戏. 请同学们在纸上写出你最喜欢的一个幸运数字(10以内),然后计算100与这 个数的和,接着乘100与这个数的差. (给学生半分钟思考、计算的时间) 同学们都算得很投入,只要告诉我,你计算的结果,我就能马上说出你的幸运 数字是几,信吗? (请两位学生来试验) 等我们学了今天的知识以后,大家也能像老师一样,马上猜出其他同学的幸运 数字.
典例精讲
【题型一】平方差公式
例1:下列式子中,可以用平方差公式计算的是( C )
A.(x+2)(2+x)
B.(x+y)(-x-y)
C.(2x+y)(y-2x)
D.(2x-y)(x+2y)
变式:下列各式中,不能用平方差公式计算的是( D )
A.(-x+y)(-x-y)
Hale Waihona Puke B.(x-y)(-x-y)
C.(x+y)(-x+y)
14.2乘法公式
14.2.1平方差公式
学习目标
1. 经历探索平方差公式的过程,会运用多项式乘法法则推 导平方差公式,进一步发展符号感和推理能力.
2.通过自主探究平方差公式,认识平方差公式及其几何模 型,感受数学公式的意义和作用.
3.通过观察,理解、掌握平方差公式的结构特征,能灵活 熟练地运用平方差公式,培养学生解决问题的能力.
人教版数学八年级上册..平方差公式 课件PPT优秀课件
![人教版数学八年级上册..平方差公式 课件PPT优秀课件](https://img.taocdn.com/s3/m/71a9454c647d27284b73518d.png)
人教版数学八年级上册14.2.1平方差 公式 课件
14.2.1 平方差公式
人教版数学八年级上册14.2.1平方差 公式 课件
规律探索:
人教版数学八年级上册14.2.1平方差 公式 课件
计算: (1) (x+1)(x-1) = x2 - 1 (2) (m+2)(m-2) = m2 - 4 (3) (2x+1)(2x-1) = 4x2 - 1
人教版数学八年级上册..平方差公式 课件PPT优秀课件
人教版数学八年级上册14.2.1平方差 公式 课件
人教版数学八年级上册..平方差公式 课件PPT优秀课件
人教版数学八年级上册14.2.1平方差 公式 课件
运用平方差公式计算:
1、(m+n)(-n+m) = 2、(-x-y) (x-y) = 3、(2a+b)(2a-b) = 4、(x2+y2)(x2-y2)=
注意:a、b可以是数,也可以是整式
人教版数学八年级上册14.2.1平方差 公式 课件
知识延伸
人教版数学八年级上册14.2.1平方差 公式 课件
灵活运用平方差公式计算:
(1)(3x+4)(3x-4) – (2x+3)(3x-2);
(2)(x+y)(x-y)(x2+y2); (3) x(x-1)-(x-1)(x1) 33
人教版数学八年级上册..平方差公式 课件PPT优秀课件
人教版数学八年级上册14.2.1平方差 公式 课件
小结
人教版数学八年级上册14.2.1平方差 公式 课件
平方差公式
字母:(a+b)(a-b)=a2-b2
特征: 有两个完全相同的项 和两个符号相反的项
14.2.1 平方差公式
人教版数学八年级上册14.2.1平方差 公式 课件
规律探索:
人教版数学八年级上册14.2.1平方差 公式 课件
计算: (1) (x+1)(x-1) = x2 - 1 (2) (m+2)(m-2) = m2 - 4 (3) (2x+1)(2x-1) = 4x2 - 1
人教版数学八年级上册..平方差公式 课件PPT优秀课件
人教版数学八年级上册14.2.1平方差 公式 课件
人教版数学八年级上册..平方差公式 课件PPT优秀课件
人教版数学八年级上册14.2.1平方差 公式 课件
运用平方差公式计算:
1、(m+n)(-n+m) = 2、(-x-y) (x-y) = 3、(2a+b)(2a-b) = 4、(x2+y2)(x2-y2)=
注意:a、b可以是数,也可以是整式
人教版数学八年级上册14.2.1平方差 公式 课件
知识延伸
人教版数学八年级上册14.2.1平方差 公式 课件
灵活运用平方差公式计算:
(1)(3x+4)(3x-4) – (2x+3)(3x-2);
(2)(x+y)(x-y)(x2+y2); (3) x(x-1)-(x-1)(x1) 33
人教版数学八年级上册..平方差公式 课件PPT优秀课件
人教版数学八年级上册14.2.1平方差 公式 课件
小结
人教版数学八年级上册14.2.1平方差 公式 课件
平方差公式
字母:(a+b)(a-b)=a2-b2
特征: 有两个完全相同的项 和两个符号相反的项
《平方差公式》PPT教学课件
![《平方差公式》PPT教学课件](https://img.taocdn.com/s3/m/975a41e8b1717fd5360cba1aa8114431b90d8ebf.png)
(是)
(2)(-2a+b)(-2a-b) (是)
(3)(-a+b)(a-b)
(否)
(4)(a+b)(a-c)
(否)
例1运用平方差公式计算:
(1)(3x+2y )( 3x-2y) (2)(-7+2m2 )(-7-2m2 ) (3)(x-1)(x+1)(x2+1)
解:(1)(3x+2y)(3x-2y) =(3x)2-(2y)2 =9x2-4y2
=1002 - 22
=10000-4
=9996
例2计算: 1.102 ×98
2. y 2y 2 y 1y 5
解:2.原式=y2–22- (y2+5y-y-5)
=y2–4 – (y2+4y-5) =y2–4 –y2-4y+5 =-4y+1
注:合并同类项,化到最简。
随堂练习
1. a 3ba 3b
都未添括号。
拓展应用
1.利用平方差公式计算:
2 12 122 124 128 1
2 (1 1)(1 1) (1 1) (1 1 ) (1 1 )
2
2
4
16
256
小结:
通过本节课的学习你有什么收获?
1.什么是平方差公式? 2.运用公式要注意: (1)要符合公式特征才能运用平方差公式; (2)有些例子表面不能应用公式,但实质能应用公式,要注意变形。
2.利用平方差公式填表。
(a-b)(a+b)
a
b
a2-b2
(1+x)(1-x)
1x
12-x2
(-3+a)(-3-a)
-3 a (-3)2-a2
平方差公式ppt课件
![平方差公式ppt课件](https://img.taocdn.com/s3/m/c1ce3b0c3d1ec5da50e2524de518964bce84d24f.png)
1. 计算 (+)(−) 的结果是(
A. −
B. −
)
A
C. −
D. −
2. 下列多项式相乘中,不能用平方差公式计算的是( A )
A. ( − )( − )
B. (− + )(− − )
C. ( − )( + )
D. ( + )( − )
3.(1)(2021德阳)已知a+b=2,a-b=3,则a 2-b2 的值
为
6
;
(2)计算:(x+2)(x-2)(x 2+4)=
x 4-16 .
知识点三:巧用平方差公式计算
技巧:当出现多个因式相乘时,要仔细观察式子的特点,
看是不是符合平方差公式的结构特征或根据题意“凑”出
符合平方差公式结构的形式,然后依次运用公式,一直到
小结:正确列式表示图①和图②中的阴影面积是关键.
例1 判断下列各式是否满足平方差公式的结构特征,若满足,则运用平方差公式计算.
【点拨】先观察题中的式子是否符合“ ( + )( − ) ”的结构特征,若符合,进
而确定式子中的“ ”与“ ”,然后依据公式可得出运算结果.
例3 计算:
【点拨】 (1) (−) 与 (+) 符合平方差公式的形式,其结果再与 ( +) 结合.(2)
观察式子的特点, (+) 可以理解为 × (+) = (−)(+) = − ,这样可借助平方差公
式计算.
(1) (−)( +)(+) ;
【解】原式 = (−)(+)( +)
平方差公式公开课优质课课件.pptx
![平方差公式公开课优质课课件.pptx](https://img.taocdn.com/s3/m/f1d1fac5e2bd960591c67723.png)
通过本课时的学习,需要我们掌握: 平方差公式:
(a+b)(a-b)=a2-b2. 即两个数的和与这两个数的差的积,等于这两个 数的平方差.
平方差公式的逆用: a2-b2 = (a+b)(a-b)
=10 000-0.25 =9 999.75.
1.(眉山·中考)下列运算中正确的是( )
A.3a + 2a = 5a 2
B.(2a + b)(2a − b) = 4a2 − b2
C.2a 2 a3 = 2a 6
D.(2a + b)2 = 4a2 + b2
【解析】选B. 在A中3a+2a=5a;C中2a2 a3 = 2a2+;3 = 2a5
5.化简:(x-y)(x+y)(x2+y2)(x4+y4)(x8+y8)(x16+y16).
【解析】原式=(x2y2 )( x2+y2)(x4+y4)(x8+y8)(x16+y16) =(x4-y4)(x4+y4)(x8+y8)(x16+y16) =(x8-y8)(x8+y8)(x16+y16) =(x16-y16)(x16+y16) = x32-y32.
a2-b2 = (a+b)(a-b)
(4)(0.5 − x)(x + 0.5)(x2 + 0.25).
【解析】原式=(0.5-x)(0.5+x)(x2 +0.25) =( 0.25-x2)( 0.25+x2) =0.062 5-x4.
(5)100.5×99.5. 【解析】原式=(100+0.5)(100-0.5)
《平方差公式》PPT优质课件
![《平方差公式》PPT优质课件](https://img.taocdn.com/s3/m/b605d151ae1ffc4ffe4733687e21af45b307fe29.png)
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米
平方差公式课件(市一等奖)
![平方差公式课件(市一等奖)](https://img.taocdn.com/s3/m/9784a267abea998fcc22bcd126fff705cc175ccf.png)
平方差公式的特点
形式特点:形如a^2 - b^2 = (a+b)(a-b) 结构特点:左边是两个相同的二项式相减,右边是两个相同的二项式相加 符号特点:当a、b同号时,结果为正;当a、b异号时,结果为负 代数式特点:左边是两个相同的代数式相减,右边是两个相同的代数式相加
平方差公式的应用
第四章
练习与巩固
第六章
基础练习题
计算(a+b)^2的值
计算(a^2-b^2)^2的值
计算(a-b)^2的值 计算(a^2+b^2)^2的值
提升练习题
计算(a+b)(a-b)的值 计算(2x+y)(2x-y)的值 计算(3a+2b)(3a-2b)的值 计算(-5m+6n)(-5m-6n)的值
综合练习题
文字,以便观者准确地理解您传达的思想
归纳法证明法:通过归纳法,从特殊到一般,逐步推导出平方差公式的结论。 以上是几种常见
04
的平方差公式的证明方法,可以根据不同的需求和实际情况选择合适的方法进行证明。
以上是几种常见的平方差公式的证明方法,可以根据不同的需求和实际情况选
择合适的方法进行证明。
证明过程演示
平方差公式的应用范围
代数式变形:利用 平方差公式对代数 式进行变形和化简
计算:利用平方差 公式计算一些数学 表达式的结果
证明:利用平方差 公式证明一些数学 命题
应用题:利用平方 差公式解决一些实 际问题
平方差公式的应用实例
计算平方差公式 中的a和b的值
计算平方差公式 中的c的值
计算平方差公式 中的d的值
计算平方差公式 中的e的值
平方差公式的应用技巧
识别平方差公式形式:首先需要识别题目中的平方差公式形式,以便正确应用。
平方差公式PPT经典教学课件市公开课一等奖省优质课获奖课件
![平方差公式PPT经典教学课件市公开课一等奖省优质课获奖课件](https://img.taocdn.com/s3/m/3ba2ae752bf90242a8956bec0975f46526d3a754.png)
= x2− ( 2y )2
= x2 −4y2 ;
(3) (−m+nn)(−−mm−n )n = ( −m )2 − n2 = n2 −n2 .
阅读
p59例2.
注意 当“第
一(二)数”是一分数 或是数与字母乘积时, 要用括号把这个数整 个括起来,再平方;
最终结果又 要去掉括号。
第7页
随堂练习
随堂练习
(a+b+c)(a—b—c)。
第13页
本题是公式变式训练,以加 深对公式本质特征了解.
(4a−1)(4a−1)
利用加法交换律, =( −14a−−41a ) ( 4−a1 −+14a )
法一 变成公式标准形式。 =(1)2 −(4a)2 = 1−16a2。
提取两“−”号中“−”号 法二,
变成公式标准形式。
(4a−1)(4a−1) =−(4a+1)(4a−1) = [ (4a)2 −1]
这两个数平方差.
第5页
初识平方差公式
(a+b)(a−b)=a2−b2
特征 结构
(1) 公式左边两个二项式必须是 相同两数和与差相乘; 且左边两括号内第一项相等、 第二项符号相反[互为相反数(式)];
(2) 公式右边是这两个数平方差; 即右边是左边括号内第一项平方 减去第二项平方.
(3) 公式中 a和b 能够代表数, 也能够是代数式.
假如 (x+a)(x+b)中a、b再有某种特殊关系, 又将得到什么特殊结果呢? 这就是从本课起要学习内容.
第2页
a
试一试
a
a-b 将图中纸片只剪一刀,
再拼成一个长方形.
b
a-b b
平方差公式ppt课件
![平方差公式ppt课件](https://img.taocdn.com/s3/m/6495801c326c1eb91a37f111f18583d048640f15.png)
解:(4)
例 在括号中填入适当的整式
(1)(b+a(a -b)=a²-b²; (2)(m-n(-n -m)=n²-m²;
(3)(=1-3x)(=1
+3x)=1-9x²;(4)(a²+b²)(a²-b²)=a⁴-b4
分析:观察此题的结果,是两数的平方差,再对比左侧已知的 因式,分析出谁是相同项,谁是相反项.
=9996
例 计算:
(3)(x"+4)(x"-4);
分析:(3)xn 可以看成公式中的a,4 可以看成公式中的b, 根据平方差公式,结果为(xn)²-42.
解:
(3) (x”+4)(xn-4)
=(x”)²-4²
=x²n-16.
例 计算: (3)(x”+4)(x”-4);
分析:(4)需要先把前两项利用平方差公式计算出来,然 后利用结果二次利用平方差公式,从而得到最终结果.
平方差公式
阅读小故事,并回答问题:
小明和小兰分别负责两块区域的值日工作.小明负责一块边长为a 米 的正方形空地,小兰则负责一块长方形空地,长为正方形空地边长加5 米,宽度是正方形空地边长减5米.有一天,小明对小兰说:“咱们换 一下值日的区域吧,反正这两块地大小都一样. ”你觉得小明说的对吗? 为什么?
符号语言: (a+b)(a-b)=a²-b²
atb(a-b)=a²-b²→ 平方差公式
代数推导:(a+b)(a-b)=a²-ab+ab-b²
=a²-b².
文字描述:两个数的和与这两个数差的积,等于这两个数的 平方差.
结构特点:左边:a 符号相同,b 符号相反. 右边:符号相同项a的平方减去符号相反项b的平方.
例 在括号中填入适当的整式
(1)(b+a(a -b)=a²-b²; (2)(m-n(-n -m)=n²-m²;
(3)(=1-3x)(=1
+3x)=1-9x²;(4)(a²+b²)(a²-b²)=a⁴-b4
分析:观察此题的结果,是两数的平方差,再对比左侧已知的 因式,分析出谁是相同项,谁是相反项.
=9996
例 计算:
(3)(x"+4)(x"-4);
分析:(3)xn 可以看成公式中的a,4 可以看成公式中的b, 根据平方差公式,结果为(xn)²-42.
解:
(3) (x”+4)(xn-4)
=(x”)²-4²
=x²n-16.
例 计算: (3)(x”+4)(x”-4);
分析:(4)需要先把前两项利用平方差公式计算出来,然 后利用结果二次利用平方差公式,从而得到最终结果.
平方差公式
阅读小故事,并回答问题:
小明和小兰分别负责两块区域的值日工作.小明负责一块边长为a 米 的正方形空地,小兰则负责一块长方形空地,长为正方形空地边长加5 米,宽度是正方形空地边长减5米.有一天,小明对小兰说:“咱们换 一下值日的区域吧,反正这两块地大小都一样. ”你觉得小明说的对吗? 为什么?
符号语言: (a+b)(a-b)=a²-b²
atb(a-b)=a²-b²→ 平方差公式
代数推导:(a+b)(a-b)=a²-ab+ab-b²
=a²-b².
文字描述:两个数的和与这两个数差的积,等于这两个数的 平方差.
结构特点:左边:a 符号相同,b 符号相反. 右边:符号相同项a的平方减去符号相反项b的平方.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结 相同为a
(a+b)(a-b)=(a)2-(b)2
合理加括号
相反为b
相同项的平方减去相反项的平方
课本P 156 T 1 同步练习册P98
谢谢各位老师指导
(m+n+2)(m+n-2)能用平方差 公式运算吗?
例1 运用平方差公式计算: ⑴ (3x+2)(3x-2) ;
(2)
(3) ( 2 - x2 )(-x2- 2 ).
例2 计算: ⑴ 102 ×98
灵活运用平方差公式计算:
1、 51×49.
2、 (y+2)(y-2)-(y-1)(y+5)
3、 (x+y)(x-y)(x2+y2);
观察(2+1)(22+1)(24+1)这个式子 还能用 平方差公式计算吗
(a+b)(a-b)=a2-b2
特征:
相同项
(a+b)(a-b)=a2-b2
特征:
符号相 反的项
(a+b)(a-b)=a2-b2
特征:
(相同项)2-(符号相反项)2
1、找一找、填一填
使等式两边满足平方差公式 1. (1+x)( 1-x)=1- x2 2. (-3+a)(-3- a )= 9 -a2 3. (x+a)(a -x )=a2 –x2 4. (0.3x-2)( -2-0.3x)=4-0.09 x2 5. (ab -x)(-ab-x)= x2 - a2b2 6. (m+n)( m- n )= m2- n2 或者 (m+n)( n - m )= n2-m2
(2) (1+2x)(1-2x) = 1- 4x2 =12- (2x)2
(3) (3m+n)(3m-n) = 9m2 - n2 =(3m)2 - n2
归纳猜想: 两个数的和与这两个数的差的积, 等于这两个数的平方差。
用字母a.b表示为:
(a+b)(a-b) = a2-b2
怎样验证?
代数法验证
(a+b)(a-b) = a2-b2
你认为老王吃亏了吗?
(X+5)米
5米
? (X-5)米
x米
5米
开发商很
(X+5)米
是亏还是赚?? 黑心,亏 (X-5)米
?
ቤተ መጻሕፍቲ ባይዱ
x米
了
25m2
x²
多项式乘多项式法则 :
(x+5)(x-5)
(a+b)(m+n)
=X2-5x+5x-25
=am+an+bm+bn =X2-25
计算下列多项式的积:
(1) (x+1)(x-1) = X2-1 =x2 - 12
感谢各位老师 光临指导
福州第二十中学数学组 王哲玲
指导老师 俞铭
老王在某开发商处预定了一套边长为x米的正方形户型, 到了交房的日子,开发商对老王说:“ 你定的那套房子结构 不好,我给你换一个长方形的户型,比原来的一边增加5米, 另一边减少5米,这样好看多了,房子总价还一样,你也没 有吃亏,你看如何?”老王一听觉得没有吃亏,就答应了。
(a+b)(a-b) = a2-ab+ab-b2 = a2-b2
a
a-b
a
b
a-b b
a
b
a-b
a
a-b
a
b
a-b b
a
b
a-b
b
a
a-b
a
a-b
a
b
a-b b
a
b
a-b
b
a
a-b
结论: (a+b)(a-b)=a2-b2
a
b
(a+b)(a-b)=a2-b2
特征:
两个数的这和两个数的这差两数的平方差