机械设计基础(杨可桢版)1_18章答案(全)

合集下载

机械设计基础课后答案(1-18章全)正式完全版

机械设计基础课后答案(1-18章全)正式完全版

第11章 蜗杆传动11.1 蜗杆传动的特点及使用条件是什么?答:蜗杆传动的特点是:结构紧凑,传动比大。

一般在传递动力时,10~80i =;分度传动时只传递运动,i 可达1 000;传动平稳,无噪声;传动效率低;蜗轮一般用青铜制造,造价高;蜗杆传动可实现自锁。

使用条件:蜗杆传动用于空间交错(90)轴的传动。

用于传动比大,要求结构紧凑的传动,传递功率一般小于50kW 。

11.2 蜗杆传动的传动比如何计算?能否用分度圆直径之比表示传动比?为什么?答:蜗杆传动的传动比可用齿数的反比来计算,即1221i n n z z ==;不能用分度圆直径之比表示传动比,因为蜗杆的分度圆直径11d mq mz =≠。

11.3 与齿轮传动相比较,蜗杆传动的失效形式有何特点?为什么?答:蜗杆传动的失效形式与齿轮传动类似,有点蚀、弯曲折断、磨损及胶合。

但蜗杆传动中蜗轮轮齿的胶合、磨损要比齿轮传动严重得多。

这是因为蜗杆传动啮合齿面间的相对滑动速度大,发热严重,润滑油易变稀。

当散热不良时,闭式传动易发生胶合。

在开式传动及润滑油不清洁的闭式传动中,轮齿磨损较快。

11.4 何谓蜗杆传动的中间平面?中间平面上的参数在蜗杆传动中有何重要意义? 答:蜗杆传动的中间平面是通过蜗杆轴线且垂直于蜗轮轴线的平面。

中间平面上的参数是标准值,蜗杆传动的几何尺寸计算是在中间平面计算的。

在设计、制造中,皆以中间平面上的参数和尺寸为基准。

11.5 试述蜗杆直径系数的意义,为何要引入蜗杆直径系数q ?答:蜗杆直径系数的意义是:蜗杆的分度圆直径与模数的比值,即1q d m =。

引入蜗杆直径系数是为了减少滚刀的数量并有利于标准化。

对每个模数的蜗杆分度圆直径作了限制,规定了1~4个标准值,则蜗杆直径系数也就对应地有1~4个标准值。

11.6 何谓蜗杆传动的相对滑动速度?它对蜗杆传动有何影响?答:蜗杆传动的相对滑动速度是由于轴交角90∑=,蜗杆与蜗轮啮合传动时,在轮齿节点处,蜗杆的圆周速度1v 和蜗轮的圆周速度2v 也成90夹角,所以蜗杆与蜗轮啮合传动时,齿廓间沿蜗杆齿面螺旋线方向有较大的相对滑动速度s v ,其大小为s 1cos v v λ==。

机械设计基础课后答案(杨可桢)之欧阳与创编

机械设计基础课后答案(杨可桢)之欧阳与创编

1-1至1-4解机构运动简图如下图所示。

时间:2021.03.08 创作:欧阳与图1.11 题1-1解图图1.12 题1-2解图图1.13 题1-3解图图1.14 题1-4解图1-5 解1-6 解1-7 解1-8 解1-9 解1-10 解1-11 解1-12 解1-13解该导杆机构的全部瞬心如图所示,构件1、3的角速比为:1-14解该正切机构的全部瞬心如图所示,构件 3的速度为:,方向垂直向上。

1-15解要求轮1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。

则:,轮2与轮1的转向相反。

1-16解( 1)图a中的构件组合的自由度为:自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。

(2)图b中的CD 杆是虚约束,去掉与否不影响机构的运动。

故图 b中机构的自由度为:所以构件之间能产生相对运动。

题2-1答: a ),且最短杆为机架,因此是双曲柄机构。

b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。

c ),不满足杆长条件,因此是双摇杆机构。

d ),且最短杆的对边为机架,因此是双摇杆机构。

题 2-2解 : 要想成为转动导杆机构,则要求与均为周转副。

(1 )当为周转副时,要求能通过两次与机架共线的位置。

见图 2-15 中位置和。

在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号)。

综合这二者,要求即可。

(2 )当为周转副时,要求能通过两次与机架共线的位置。

见图 2-15 中位置和。

在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。

( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题 2-3 见图 2.16 。

图 2.16题 2-4解 : ( 1 )由公式,并带入已知数据列方程有:因此空回行程所需时间;( 2 )因为曲柄空回行程用时,转过的角度为,因此其转速为:转 / 分钟题 2-5解: ( 1 )由题意踏板在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。

机械设计基础 课后习题答案 第三版 课后答案(1-18章全) 完整版

机械设计基础 课后习题答案 第三版  课后答案(1-18章全) 完整版

机械设计基础课后习题答案第三版课后答案(1-18章全) 完整版机械设计基础课后习题答案第三版高等教育出版社目录第1章机械设计概述1第2章摩擦、磨损及润滑概述 3第3章平面机构的结构分析12第4章平面连杆机构16第5章凸轮机构 36第6章间歇运动机构46第7章螺纹连接与螺旋传动48第8章带传动60第9章链传动73第10章齿轮传动80第11章蜗杆传动112第12章齿轮系124第13章机械传动设计131第14章轴和轴毂连接133第15章轴承138第16章其他常用零、部件152第17章机械的平衡与调速156第18章机械设计CAD简介163机械设计概述机械设计过程通常分为哪几个阶段?各阶段的主要内容是什么?答:机械设计过程通常可分为以下几个阶段:1.产品规划主要工作是提出设计任务和明确设计要求。

2.方案设计在满足设计任务书中设计具体要求的前提下,由设计人员构思出多种可行方案并进行分析比较,从中优选出一种功能满足要求、工作性能可靠、结构设计可靠、结构设计可行、成本低廉的方案。

3.技术设计完成总体设计、部件设计、零件设计等。

4.制造及试验制造出样机、试用、修改、鉴定。

常见的失效形式有哪几种?答:断裂,过量变形,表面失效,破坏正常工作条件引起的失效等几种。

什么叫工作能力?计算准则是如何得出的?答:工作能力为指零件在一定的工作条件下抵抗可能出现的失效的能力。

对于载荷而言称为承载能力。

根据不同的失效原因建立起来的工作能力判定条件。

标准化的重要意义是什么?答:标准化的重要意义可使零件、部件的种类减少,简化生产管理过程,降低成本,保证产品的质量,缩短生产周期。

第2章摩擦、磨损及润滑概述按摩擦副表面间的润滑状态,摩擦可分为哪几类?各有何特点?答:摩擦副可分为四类:干摩擦、液体摩擦、边界摩擦和混合摩擦。

干摩擦的特点是两物体间无任何润滑剂和保护膜,摩擦系数及摩擦阻力最大,磨损最严重,在接触区内出现了粘着和梨刨现象。

液体摩擦的特点是两摩擦表面不直接接触,被液体油膜完全隔开,摩擦系数极小,摩擦是在液体的分子间进行的,称为液体润滑。

杨可桢《机械设计基础》配套题库【课后习题(1-18章)】【圣才出品】

杨可桢《机械设计基础》配套题库【课后习题(1-18章)】【圣才出品】

2 / 146
圣才电子书

约束,
十万种考研考证电子书、题库视频学习平台

图 1-15 最下方齿轮与机架,杆组成复合铰链,

图 1-16 F 3n 2PL PH 3 3 2 3 3 。
1-13 求出图 1-17 导杆机构的全部瞬心和构件 1、3 的角速比。
图 1-17 导杆机构 解:该导杆机构的全部瞬心如图 1-18 所示。
8.28rad
/
s。
5 / 146
圣才电子书 十万种考研考证电子书、题库视频学习平台

1-17 图 1-25 所示平底摆动从动件凸轮机构,已知凸轮 l 为半径 r=20 的圆盘,圆盘中
心 C 与凸轮回转中心的距离 lAC=15 mm,lAB=90 mm, 1 =10 rad/s,求θ=0°和θ=180° 时,从动件角速度 2 的数值和方向。
图 1-11 加药泵
图 1-12 测量仪表机构
图 1-13 缝纫机送布机构 图 1-14 冲压机构
图 1-15 差动轮系
图 1-16 机械手
解:图 1-9 滚子处为局部自由度,

图 1-10 滚子处为局部自由度,

图 1-11

图 1-12

图 1-13 滚子处为局部自由度,

图 1-14 滚子处为局部自由度,右方三杆铰接处为复合铰链,下方两导程槽之一为虚
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 1 章 平面机构的自由度和速度分析
1-1 至 1-4 绘出图示(图 1-1~图 1-4)机构的机构运动简图。
图 1-1 唧筒机构
图 1-2 回转柱塞泵
图 1-3 缝纫机下针机构 解:机构运动简图分别如图 1-5~1-8 所示。

机械设计基础(第五版)_杨可桢主编_课后习题答案

机械设计基础(第五版)_杨可桢主编_课后习题答案

时间:二 O 二一年七月二十九日机械设计基础(第五版)课后习题谜底(完整版)之阿 布丰王创作时间:二 O 二一年七月二十九日杨可竺、程光蕴、李仲生主编 1-1 至 1-4 解 机构运动简图如下图所示.图 1.11 题 1-1 解 图 图 1.12 题 1-2 解图图 1.13 题 1-3 解 图 图 1.14 题 1-4 解图 1-5 解 1-6 解 1-7 解 1-8 解 1-9 解 1-10 解 1-11 解 1-12 解 1-13 解 该导杆机构的全部瞬心如图所示,构件 1、3 的角速比为: 1-14 解 该正切机构的全部瞬心如图所示,构件 3 的速度为:,方 向垂直向上. 1-15 解 要求轮 1 与轮 2 的角速度之比,首先确定轮 1、轮 2 和机 架 4 三个构件的三个瞬心,即 , 和 ,如图所示.则:,轮 2 与轮 1 的转向相反. 1-16 解 ( 1)图 a 中的构件组合的自由度为:构件之间不能发生相对运 动.自由度为零,为一刚性桁架,所以时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日( 2)图 b 中的 CD 杆是虚约束,去失落与否不影响机构的运动. 故图 b 中机构的自由度为:所以构件之间能发生相对运动.题 2-1 答 : a ),且最短杆为机架,因此是双曲柄机构.b),且最短杆的邻边为机架,因此是曲柄摇杆机构.c),不满足杆长条件,因此是双摇杆机构.d),且最短杆的对边为机架,因此是双摇杆机构.题 2-2 解 : 要想成为转动导杆机构,则要求 与 均为周转副.( 1 )当 为周转副时,要求 能通过两次与机架共线的位置.见图 2-15 中位置和.在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号).综合这二者,要求即可.( 2 )当 为周转副时,要求 能通过两次与机架共线的位置.见图 2-15 中位置和.在位置时,从线段 来看,要能绕过 点要求:(极限情况取等号);在位置时,因为导杆 是无限长的,故没有过多条件限制.( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题 2-3 见图 2.16 .图 2.16题 2-4 解 : ( 1 )由公式方程有:因此空回行程所需时间;( 2 )因为曲柄空回行程用时 ,转过的角度为,,并带入已知数据列时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日因此其转速为:转 / 分钟题 2-5解 : ( 1 )由题意踏板 在水平位置上下摆动 ,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置.取适当比例 图 尺,作出两次极限位置和(见图2.17 ).由图量得:,.解得 :由已知和上步求解可知:,,,( 2 ) 因最小传动角位于曲柄与机架两次共线位置,因此取和代入公式( 2-3 )计算可得:或:代入公式( 2-3 )′,可知 题 2-6 解: 因为本题属于设计题,只要步伐正确,谜底不惟一.这 里给出基本的作图步伐,不 给出具体数值谜底.作图步伐如下(见图 2.18 ):( 1 )求 ,;并确定比例尺 .( 2 )作,.(即摇杆的两极限位置)( 3 )以 为底作直角三角形,,.( 4 )作的外接圆,在圆上取点 即可.在图上量取, 和机架长度.则曲柄长度,摇杆长度.在获得具体各杆数据之后,代入公式 ( 2 — 3 ) 和 ( 2-3 )′求最小传动角 ,能满足即可.图 2.18 题 2-7 图 2.19解 : 作图步伐如下 (见图 2.19 ) :( 1 )求 ,;并确定比例尺 .( 2 )作,顶角,.时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日( 3 )作的外接圆,则圆周上任一点都可能成为曲柄中心.( 4 )作一水平线,于 相距,交圆周于 点.( 5 )由图量得,.解得 :曲柄长度:连杆长度: 题 2-8 解 : 见图 2.20 ,作图步伐如下:(1).( 2 )取 ,选定 ,作 和 ,. ( 3 )定另一机架位置:角平分线,.(4),.杆即是曲柄,由图量得 曲柄长度: 题 2-9 解: 见图 2.21 ,作图步伐如下:( 1 )求 , 性.( 2 )选定比例尺 ,作 两极限位置)( 3 )做,与( 4 )在图上量取.,由此可知该机构没有急回特,.(即摇杆的交于 点. ,和机架长度曲柄长度:连杆长度:题 2-10 解 : 见图 2.22 .这是已知两个活动铰链两对位置设计四杆机构,可以用圆心法.连接 , ,作图 2.22 的中垂线与 交于 点.然后连接 ,,作 的中垂线与 交于 点.图中画出了一个位置.从图中量取各杆的长度,获得:,时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日, 题 2-11 解 : ( 1 )以 为中心,设连架杆长度为,根据作出 ,,.( 2 )取连杆长度,以 , , 为圆心,作弧.( 3 )另作以 点为中心,、,架杆的几个位置,并作出分歧半径的许多同心圆弧.( 4 )进行试凑,最后获得结果如下:的另一连,,,.机构运动简图如图 2.23 .题 2-12 解 : 将已知条件代入公式( 2-10 )可获得方程组:联立求解获得:,,.将该解代入公式( 2-8 )求解获得:,,,.又因为实际,因此每个杆件应放年夜的比例尺为:,故每个杆件的实际长度是:,,,.题 2-13 证明 : 见图 2.25 .在 上任取一点 ,下面求证点的运动轨迹为一椭圆.见图可知 点将 分为两部份,其中,.又由图可知,,二式平方相加得可见 点的运动轨迹为一椭圆.3-1 解图 3.10 题 3-1 解图如图 3.10 所示,以 O 为圆心作圆并与导路相切,此即为偏距圆.过B 点作偏距圆的下切线,此线为凸轮与从动件在 B 点接触时,导路的方向线.推程运动角 如图所示.3-2 解图 3.12 题 3-2 解图时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日如图 3.12 所示,以 O 为圆心作圆并与导路相切,此即为偏距圆.过 D 点作偏距圆的下切线,此线为 凸轮与从动件在 D 点接触时,导路的方向线.凸轮与从动件在 D 点 接触时的压力角 如图所示. 3-3 解 :从动件在推程及回程段运动规律的位移、速度以及加速 度方程分别为: ( 1)推程:0°≤ ≤ 150°( 2)回程:等加速段 ≤60 °等减速段0°≤60°≤ ≤120 °为了计算从动件速度和加速度,设移、速度以及加速度值如下:总转角 0°位移 (mm) 0速度(mm/s) 0加速度( mm/s 65.7972)总转角 120°15° 0.734 19.41662.577 135°30° 2.865 36.93153.231 150°45° 60° 6.183 10.365 50.832 59.75738.675 20.333 165° 180°. 计算各分点的位75° 1562.83290° 19.63559.757105° 23.81750.8320 195°-20.333 -38.675 210° 225°时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日位移 (mm) 27.135 29.266 3030速度(mm/s) 36.932 19.416 00加速度( mm/s -53.231 -62.577 -65.797 02)3029.066 26.250 21.5630-25-50-75-83.333 -83.333 -83.333 -83.333总转角 240° 255° 270° 285° 300° 315° 330° 345°位移 (mm) 158.438 3.750.938 0000速度(mm/s) -100-75-50-250000加速度( mm/s -83.333 -83.333 83.333 83.333 83.333 0002)根据上表 作图如下(注:为了图形年夜小协调,将位移曲线沿纵轴放年夜了 5 倍.):图 3-13 题 3-3 解图3-4 解 :图 3-14 题 3-4 图根据 3-3 题解作图如图 3-15 所示.根据(3.1)式可知,取最年夜,同时 s 2 取最小时,凸轮机构的压力角最年夜.从图 3-15 可知,这点可能在推程段的开始处或在推程的中点处.由图量得在推程的开始处凸轮机构的压力角最年夜,此时<[ ]=30° .图 3-15 题 3-4 解图3-5 解 :( 1)计算从动件的位移并对凸轮转角求导当凸轮转角 在 0≤ ≤ 过程中,从动件按简谐运动规 律上升 h=30mm.根据教材(3-7)式 可 得:0≤ ≤当凸轮转角 在 S 2 =500≤ ≤≤ ≤ 过程中,从动件远休. ≤≤≤≤当凸轮转角 在 ≤ ≤ 运动规律下降到升程的一半.根据 教材(3-5)式 可得:过程中,从动件按等加速度时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日≤≤≤≤当凸轮转角 在 ≤ ≤ 速度运动规律下降到起始位置.根 据教材(3-6)式 可得:过程中,从动件按等减≤≤当凸轮转角 S 2 =50≤≤ 在 ≤≤过程中,从动件近休. ≤≤≤≤ ( 2)计算凸轮的理论轮廓和实际轮廓本题的计算简图及坐标系如图 3-16 所示,由图可知,凸轮理 论轮廓上 B 点(即滚子中心)的直角坐标 为 图 3-16式中.由图 3-16 可知,凸轮实际轮廓的方程即 B ′ 点的坐标方程式为因为所以故由上述公式可得 理论轮廓曲线和实际轮廓的直角坐标,计算结果如下表,凸轮廓线如图 3-17 所示.x′y′x′y′0°49.301 8.333 180° -79.223 -8.88510°47.421 16.843 190° -76.070 -22.42120°44.668 25.185 200° -69.858 -34.84030°40.943 33.381 210° -60.965 -45.36940°36.089 41.370 220° -49.964 -53.35650°29.934 48.985 230° -37.588 -58.312时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日60°22.34770°13.28480°2.82990°-8.778100° -21.139110° -33.714120° -45.862130° -56.895140° -66.151150° -73.052160° -77.484170° -79.562180° -79.223图 3-17 题 3-5 解图55.943 61.868 66.326 68.871 69.110 66.760 61.695 53.985 43.904 31.917 18.746 5.007 -8.885240° 250° 260° 270° 280° 290° 300° 310° 320° 330° 340° 350° 360°-24.684 -12.409 -1.394 8.392 17.074 24.833 31.867 38.074 43.123 46.862 49.178 49.999 49.301-59.949 -59.002 -56.566 -53.041 -48.740 -43.870 -38.529 -32.410 -25.306 -17.433 -9.031 -0.354 8.3333-6 解:图 3-18 题 3-6 图从动件在推程及回程段运动规律的角位移方程为:1. 推 程 :≤ 150°2.回程:≤120 °计算各分点的位移值如下:总转角( °)015 30 45 60 75 90 105角位移( °)00.367 1.432 3.092 5.182 7.5 9.818 11.908总转角( °)120 135 150 165 180 195 210 225角位移( °)13.568 14.633 15 15 15 14.429 12.803 0.370总转角( °)240 255 270 285 300 315 330 345角位移( °)7.5 4.630 2.197 0.571 0 000根据上表 作图如下:图 3-19 题 3-6 解图3-7 解:从动件在推程及回程段运动规律的位移方程为:1.推程:0°≤ ≤ 120°2.回程:0°≤ ≤120 °计算各分点的位移值如下:总转角( °)0位移( mm) 015 30 45 60 0.761 2.929 6.173 1075 90 105 13.827 17.071 19.2390°≤ 0°≤时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日总转角( °)120 135 150位移( mm) 20 20 20总转角( °)240 255 270位移( mm) 2.929 0.761 0图 3-20 题 3-7 解图4.5 课后习题详解4-1 解 分度圆直径齿顶高165 180 195 210 19.239 17.071 13.827 10 285 300 315 330 000 0齿根高 顶隙225 6.173 345 0中心距 齿顶圆直径 齿根圆直径 基圆直径 齿距 齿厚、齿槽宽4-2 解由 分度圆直径可得模数4-3 解 由得4-4 解 分度圆半径分度圆上渐开线齿廓的曲率半径分度圆上渐开线齿廓的压力角基圆半径 基圆上渐开线齿廓的曲率半径为 0; 压力角为 .齿顶圆半径 齿顶圆上渐开线齿廓的曲率半径 齿顶圆上渐开线齿廓的压力角 4-5 解 正常齿制渐开线标准直齿圆柱齿轮的齿根圆直径:时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日基圆直径假定则解得故当齿数时,正常齿制渐开线标准直齿圆柱齿轮的基圆年夜于齿根圆;齿数,基圆小于齿根圆.4-6 解 中心距内齿轮分度圆直径内齿轮齿顶圆直径内齿轮齿根圆直径 4-7 证明 用齿条刀具加工标准渐开线直齿圆柱齿轮,不发生根切 的临界位置是极限点 正好在刀具 的顶线上.此时有关系:正常齿制标准齿轮、,代入上式短齿制标准齿轮、,代入上式图 4.7 题 4-7 解图 图 4.8 题 4-8 图图 4.9 题 4-8 解图4-8 证明 如图所示, 、 两点为卡脚与渐开线齿廓的切点,则线段 即为渐开线的法线.根据渐开线的特性:渐开线的法线必与基圆相切,切点为 .再根据渐开线的特性:发生线沿基圆滚过的长度,即是基圆上被滚过的弧长,可知:AC对任一渐开线齿轮,基圆齿厚与基圆齿距均为定值,卡尺的位置不影响丈量结果.4-9 解 模数相等、压力角相等的两个齿轮,分度圆齿厚相等.可是齿数多的齿轮分度圆直径年夜,所以基圆直径就年夜.根据渐开线的性质,渐开线的形状取决于基圆的年夜小,基圆小,则渐开线曲率年夜,基圆年夜,则渐开线越趋于平直.因此,齿数多的齿轮与齿数少的齿轮相比,齿顶圆齿厚和齿根圆齿厚均为年夜值.4-10 解 切制变位齿轮与切制标准齿轮用同一把刀具,只是刀具的位置分歧.因此,它们的模数、压力角、齿距均分别与刀具相同,从而变位齿轮与标准齿轮的分度圆直径和基圆直径也相同.故参数 、、 、 不变.变位齿轮分度圆不变,但正变位齿轮的齿顶圆和齿根圆增年夜,时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日且齿厚增年夜、齿槽宽变窄.因此 、 、 变年夜, 变小. 啮合角 与节圆直径 是一对齿轮啮合传动的范畴.4-11 解 因螺旋角 端面模数端面压力角当量齿数分度圆直径 齿顶圆直径 齿根圆直径 4-12 解 (1)若采纳标准直齿圆柱齿轮,则标准中心距应说明采纳标准直齿圆柱齿轮传动时,实际中心距年夜于标准 中心距,齿轮传动有齿侧间隙,传动不 连续、传动精度低,发生振动和噪声.( 2)采纳标准斜齿圆柱齿轮传动时,因螺旋角分度圆直径节圆与分度圆重合,4-13 解4-14 解 分度圆锥角分度圆直径 齿顶圆直径 齿根圆直径外锥距时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日齿顶角、齿根角 顶锥角 根锥角当量齿数4-15 答: 一对直齿圆柱齿轮正确啮合的条件是:两齿轮的模数和压力角必需分别相等,即、.一对斜齿圆柱齿轮正确啮合的条件是:两齿轮的模数和压力角分别相等,螺旋角年夜小相等、方向相反(外啮合),即、、.一对直齿圆锥齿轮正确啮合的条件是:两齿轮的年夜端模数和压力角分别相等,即、.5-1 解: 蜗轮 2 和蜗轮 3 的转向如图粗箭头所示,即 和.图 5.5图5.65-2 解: 这是一个定轴轮系,依题意有:齿条 6 的线速度和齿轮 5 ′分度圆上的线速度相等;而齿轮 5 ′的转速和齿轮 5 的转速相等,因此有: 通过箭头法判断获得齿轮 5 ′的转向顺时针,齿条 6 方向水 平向右. 5-3 解:秒针到分针的传递路线为: 6→5→4→3,齿轮 3 上带 着分针,齿轮 6 上带着秒针,因此有:. 分针到时针的传递路线为: 9→10→11→12,齿轮 9 上带着分 针,齿轮 12 上带着时针,因此有:图 5.7. 图 5.8时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日5-4 解: 从图上分析这是一个周转轮系,其中齿轮 1、3 为中 心轮,齿轮 2 为行星轮,构件 为行星架.则有:∵∴∴当手柄转过 ,即时,转盘转过的角度,方向与手柄方向相同.5-5 解: 这是一个周转轮系,其中齿轮 1、3 为中心轮,齿轮2、2′为行星轮,构件 为行星架.则有:∵,∴∴传动比 为 10,构件 与 的转向相同.图 5.9图 5.105-6 解: 这是一个周转轮系,其中齿轮 1 为中心轮,齿轮 2 为行星轮,构件 为行星架.则有: ∵,,∵∴∴5-7 解: 这是由四组完全一样的周转轮系组成的轮系,因此只需要计算一组即可.取其中一组作分析,齿轮 4、3 为中心轮,齿轮 2 为行星轮,构件 1 为行星架.这里行星轮 2 是惰轮,因此它的齿数与传动比年夜小无关,可以自由选取.(1)由图知(2)又挖叉固定在齿轮上,要使其始终坚持一定的方向应有:(3)联立( 1)、(2)、(3)式得:时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日图 5.11图 5.125-8 解: 这是一个周转轮系,其中齿轮 1、3 为中心轮,齿轮2、2′为行星轮, 为行星架.∵,∴∴与 方向相同5-9 解: 这是一个周转轮系,其中齿轮 1、3 为中心轮,齿轮2、2′为行星轮, 为行星架.∵设齿轮 1 方向为正,则,∴∴与 方向相同图 5.13图 5.145-10 解: 这是一个混合轮系.其中齿轮 1、2、2′3、 组成周转轮系,其中齿轮 1、3 为中心轮,齿轮 2、2′为行星轮, 为行星架.而齿轮 4 和行星架 组成定轴轮系.在周转轮系中:(1)在定轴轮系中:(2)又因为:(3)联立( 1)、(2)、(3)式可得: 5-11 解: 这是一个混合轮系.其中齿轮 4、5、6、7 和由齿轮 3 引出的杆件组成周转轮系,其中齿 轮 4、7 为中心轮,齿轮 5、6 为行星轮,齿轮 3 引出的杆件为行 星架 .而齿轮 1、2、3 组成定轴轮系.在周转轮系中:在定轴轮系中:又因为:,(2)(1)时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日联立( 1)、(2)、(3)式可得:( 1)当,时,, 的转向与齿轮 1 和 4 的转向相同.( 2)当时,( 3)当,时,, 的转向与齿轮 1和 4 的转向相反.图 5.15图 5.165-12 解: 这是一个混合轮系.其中齿轮 4、5、6 和构件 组成周转轮系,其中齿轮 4、6 为中心轮,齿轮 5 为行星轮, 是行星架.齿轮 1、2、3 组成定轴轮系.在周转轮系中:(1)在定轴轮系中:(2)又因为:,(3)联立( 1)、(2)、(3)式可得: 即齿轮 1 和构件 的转向相反. 5-13 解: 这是一个混合轮系.齿轮 1、2、3、4 组成周转轮系, 其中齿轮 1、3 为中心轮,齿轮 2 为 行星轮,齿轮 4 是行星架.齿轮 4、5 组成定轴轮系.在周转轮系中:,∴(1)在图 5.17 中,当车身绕瞬时回转中心 转动时,左右两轮走过的弧长与它们至 点的距离成正比,即: 联立( 1)、(2)两式获得:(2) ,(3)在定轴轮系中:则当:时,代入( 3)式,可知汽车左右轮子的速度分别为,时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日5-14 解: 这是一个混合轮系.齿轮 3、4、4′、5 和行星架 组成周转轮系,其中齿轮 3、5 为中心轮,齿轮 4、4′为行星轮.齿轮 1、2 组成定轴轮系. 在周转轮系中:(1)在定轴轮系中:又因为:,,依题意,指针 转一圈即(2) (3) (4)此时轮子走了一公里,即(5)联立( 1)、(2)、(3)、(4)、(5)可求得图 5.18图 5.195-15 解: 这个起重机系统可以分解为 3 个轮系:由齿轮3′、4 组成的定轴轮系;由蜗轮蜗杆 1′和 5组成的定轴轮系;以及由齿轮 1、2、2′、3 和构件 组成的周转轮系,其中齿轮 1、3 是中心轮,齿轮 4、2′为行星轮,构件 是行星架.一般工作情况时由于蜗杆 5 不动,因此蜗轮也不动,即 (1)在周转轮系中:(2)在定轴齿轮轮系中:(3)又因为:,, (4)联立式( 1)、(2)、(3)、(4)可解得:.当慢速吊重时,机电刹住,即 有:,此时是平面定轴轮系,故5-16 解: 由几何关系有: 又因为相啮合的齿轮模数要相等,因此有上式可以获得:故行星轮的齿数: 图 5.20图 5.21时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日5-17 解: 欲采纳图示的年夜传动比行星齿轮,则应有下面关 系成立:( 1) (2) (3)又因为齿轮 1 与齿轮 3 共轴线,设齿轮 1、2 的模数为 ,齿 轮 2′、3 的模数为 ,则有:(4) 联立( 1)、(2)、(3)、(4)式可得(5)当时,(5)式可取得最年夜值 1.0606;当时,(5)式接近 1,但不成能取到 1.因此的取值范围是(1,1.06).而标准直齿圆柱齿轮的模数比是年夜于 1.07 的,因此,图示的年夜传动比行星齿轮不成能两对都采纳直齿标准齿轮传动,至少有一对是采纳变位齿轮.5-18 解: 这个轮系由几个部份组成,蜗轮蜗杆 1、2 组成一个定轴轮系;蜗轮蜗杆 5、4′组成一个定轴轮系;齿轮 1′、5′组成一个定轴轮系,齿轮 4、3、3′、2′组成周转轮系,其中齿轮 2′、4 是中心轮,齿轮 3、3′为行星轮,构件 是行星架.在周转轮系中: 在蜗轮蜗杆 1、2 中: 在蜗轮蜗杆 5、4′中:(1) (2)(3)在齿轮 1′、5′中:(4)又因为:,,,(5)联立式( 1)、(2)、(3)、(4)、(5)式可解得:,即.时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日5-19 解: 这个轮系由几个部份组成,齿轮 1、2、5′、 组 成一个周转轮系,齿轮 1、2、2′、3、 组成周转轮系,齿轮 3′、4、5 组成定轴轮系. 在齿轮 1、2、5′、 组成的周转轮系中:由几何条件分析获得:,则(1) 在齿轮 1、2、2′、3、 组成的周转轮系中:由几何条件分析获得:,则(2) 在齿轮 3′、4、5 组成的定轴轮系中:(3)又因为:,(4)联立式( 1)、(2)、(3)、(4)式可解得:6-1 解顶圆直径齿高齿顶厚齿槽夹角棘爪长度图 6.1 题 6-1 解图6-2 解 拔盘转每转时间0槽轮机构的运动特性系数槽轮的运动时间槽轮的静止时间 6-3 解 槽轮机构的运动特性系数因: 6-4 解 要保证所以 则槽轮机构的运动特性系数应为时间:二 O 二一年七月二十九日时间:二 O 二一年七月二十九日因得,则槽数 和拔盘的圆销数 之间的关系应为:由此适当取槽数~8 时,满足运动时间即是停歇时间的组合只有一种: , .6-5 解:机构类型工作特点结构、运动及动力 性能适用场所棘轮机构摇杆的往复摆动酿成棘轮的单 向间歇转动结构简单、加工方 便,运动可靠,但冲击、噪 音年夜,运动精度低适用于低速、转角 不年夜场所,如转位、分 度以及超越等.槽轮机构拨盘的连续转动酿成槽轮的间结构简单,效率高,传用于转速不高的轻歇转动动较平稳,但有柔性冲击 工机械中不完全齿从动轮的运动时间和静止时间需专用设备加工,有用于具有特殊要求轮机构的比例可在较年夜范围内变动较年夜冲击的专用机械中凸轮式间只要适当设计出凸轮的轮廓,歇运念头构 就能获得预期的运动规律.运转平稳、定位精 度高,动荷小,但结构较复 杂可用于载荷较年夜 的场所7-1 解 :( 1)先求解该图功的比例尺.( 2 ) 求最年夜盈亏功 .根据 图 7.5 做能量指示图.将和曲线的交点标注 ,, , , , , , , .将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏功的数值年夜小按比例作出能量指示图(图 7.6)如下:首先自 向上做,暗示 区间的盈功;其次作 向下暗示 区间的亏 功;依次类推,直到画完最后一个封闭矢量 .由图知该机械系统在 绝对值为:( 3 )求飞轮的转动惯量曲轴的平均角速度:区间呈现最年夜盈亏功,其 ;系统的运转不均匀系数:则飞轮的转动惯量: 图 7.57-2; 图 7.6时间:二 O 二一年七月二十九日时间:二O二一年七月二十九日图 7.7 图时间:二O二一年七月二十九日。

(NEW)杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(修订版)

(NEW)杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(修订版)
目 录
第1章 平面机构的自由度和速度分析 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第2章 平面连杆机构 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第3章 凸轮机构
3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解 第4章 齿轮机构 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解 第5章 轮 系 5.1 复习笔记 5.2 课后习题详解
图1-2-1 唧筒机构
图1-2-2 回转柱塞泵
图1-2-3 缝纫机下针机构
图1-2-4 偏心轮机构 答:机构运动简图分别如图1-2-5~图1-2-8所示。
1-5至1-13.指出(图1-2-9~图1-2-17)机构运动简图中的复合铰链、局
部自由度和虚约束,计算各机构的自由度。
解:(1)图1-2-9所示机构的自由度为 (2)图1-2-10中,滚子1处有一个局部自由度,则该机构的自由度为 (3)图1-2-11中,滚子1处有一个局部自由度,则该机构的自由度为 (4)图1-2-12所示机构的自由度为
(5)图1-2-13所示机构的自由度为 (6)图1-2-14中,滚子1处有一个局部自由度,则该机构的自由度为 (7)图1-2-15中,滚子1处有一个局部自由度,A处为三个构件汇交的 复合铰链,移动副B、B'的其中之一为虚约束。则该机构的自由度为 (8)图1-2-16中,A处为机架、杆、齿轮三构件汇交的复合铰链。则该 机构的自由度为 (9)图1-2-17所示机构的自由度为 1-14.求出图1-2-18导杆机构的全部瞬心和构件1、3的角速比。
2015研、厦门大学2011研]
【答案】自由度大于0,且自由度数等于原动件数
2.两构件通过______或______接触组成的运动副称为高副。[常州大学 2015研]

杨可桢《机械设计基础》章节题库(弹簧)【圣才出品】

杨可桢《机械设计基础》章节题库(弹簧)【圣才出品】
答:有初拉力的弹簧在自由状态下就受有初拉力 FO 的作用,其特性曲线见图 18-1(a)。 当外载荷小于 FO 时,有初拉力的弹簧不伸长,只是各圈之间的并紧力减小。对比图 18-1 (b)无初拉力的弹簧特性曲线可知,在变形 λ 相同时,有初拉力的弹簧可承受较大的载荷, 即 Fa>Fb(两弹簧其他条件都相同)。
4.压缩弹簧受载后,簧丝剖面上的应力主要是( )。 A.弯曲应力 B.剪应力 C.拉应力 D.压应力 【答案】B 【解析】圆柱螺旋弹簧受拉或受压时,弹簧丝的受力情况是一样的。所产生的应力都为 切应力;对于圆柱螺旋扭转弹簧,当承受扭矩 T 时,弹簧丝中主要是受弯矩 M 作用,且 M≈T。 簧丝截面上所产生的应力为弯曲应力。
图 18-2 5.圆柱螺旋弹簧受变应力时,τm=常数和τmin=常数,各代表什么意义?请各 举一实例。 答:(1)τm=常数,意为弹簧工作时平均应力为常数,其应力变化可用图 18-3(a) 表示。τmin=常数,意为弹簧工作时的最小应力为常数,其应力变化可用题图 18-3 (b)表示。 (2)当弹簧振子质量一定,振幅不同时,τm=常数。拉紧房门的弹簧初拉力一定时, τmin=常数。当门开得大小不同时,则应力变化大小不同。
么影响?
答:根据弹簧的强度计算公式和刚度计算公式:
(其中旋绕比 C
=
D

d
3 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台

可知其他参数不变时,有: ①簧丝直径 d 愈大,弹簧的强度就愈高,刚度就愈大; ②弹簧中径 D 愈大,其强度就愈低,刚度就愈小; ③弹簧工作圈数 n 愈多,其强度不变,刚度愈小。
【答案】对
3.圆柱螺旋拉伸弹簧有两种:有初应力的和无初应力的。有初应力的弹簧在拉力达到 一定值时,弹簧才开始初拉长。

机械设计基础-第五版-课后习题答案-详细解答

机械设计基础-第五版-课后习题答案-详细解答

前言机械设计基础课程是高等工科学校近机类、非机类专业开设的一门技术基础课。

杨可桢、程光蕴主编的《机械设计基础》, 因其内容精炼、深度适中、重点突出、知识面宽而被众多高等学校作为主要教材在教学中采用。

本书是根据原国家教委颁布的“高等工业学校机械设计基础课程基本要求”, 汇集了编者多年来的教学经验, 在深刻理解机械设计基础课程内容的基础上编写而成的, 是杨可桢、程光蕴主编《机械设计基础》的配套辅导书, 章节顺序和内容体系与教材完全一致, 并涵盖了国内同类教材的重点内容。

本书特点:1 .明确每章的教学基本要求和重点教学内容。

重点介绍基本概念、基本理论、基本分析方法和设计方法。

2 . 建立明晰的知识结构框架。

3 . 考点及经典题型精解。

介绍考点的具体内容,并详尽剖析, 总结解题规律、解题思路、解题技巧。

4 . 详细的课后习题解答。

5 . 自测试题及答案符合考点精神, 便于学习总结和自我检验。

书后附有模拟试题五套。

参加本书编写工作的有: 西安电子科技大学李团结( 第1 , 14章)、西安石油大学秦彦斌(第3 章) 、西安石油大学陆品( 第13章)、西安建筑科技大学史丽晨(第2 , 5 , 7 , 8 , 12 章)、西安建筑科技大学郭瑞峰(第4 , 6 , 9 , 10 , 11 , 15 , 16 , 17 , 18 章及模拟试题)。

全书由郭瑞峰、史丽晨主编。

本书可作为近机类、非机类大学生学习《机械设计基础》课程的参考书, 也可供电大、职大、函大、夜大等相关专业的学生学习使用, 也可作为考研辅导书, 还可供有关教师及工程技术人员参考。

由于编者水平有限, 书中难免有谬误和不妥之处, 敬请读者批评指正。

编者2005 年8 月于西安2 机械设计基础导教·导学·导考目录第1 章平面机构的自由度和速度分析⋯⋯⋯⋯⋯⋯11 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 1 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 1 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯61 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯111 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯16第2 章平面连杆机构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯202 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯202 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯262 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯272 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯322 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯42第3 章凸轮机构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯503 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯503 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯573 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯583 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯673 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯79 第4 章齿轮机构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯844 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯844 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯934 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯95 4 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1014 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108第5 章轮系⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1115 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1115 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1145 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1155 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1185 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯131第6 章间歇运动机构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1376 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1376 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1406 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1406 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1426 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯144第7 章机械运转速度波动的调节⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯146 7 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1467 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1497 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1497 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯153Ⅱ机械设计基础导教·导学·导考7 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯161第8 章回转件的平衡⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1658 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1658 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1688 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯168 8 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1728 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯183 第9 章机械零件设计概论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯187 9 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1879 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1949 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯195 9 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1969 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯206 第10 章联接⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20910 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20910 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21710 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯218 10 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22410 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯240 第11 章齿轮传动⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24311 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24311 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25411 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25511 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯258目录Ⅲ11 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯274第12 章蜗杆传动⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27712 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27712 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28112 .3 考点及常见题型精解⋯ .⋯ .⋯ .⋯ .⋯ .⋯ .⋯282 12 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28612 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯293第13 章带传动和链传动⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29713 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29713 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯30613 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯30713 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31613 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯324第14 章轴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32914 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32914 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33314 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33414 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33814 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯347第15 章滑动轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35015 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35015 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35615 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35715 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯359Ⅳ机械设计基础导教·导学·导考15 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯361第16 章滚动轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36316 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36316 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37216 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37316 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37916 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯386第17 章联轴器、离合器和制动器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯390 17 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯39017 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯39217 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯39317 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯39617 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯400第18 章弹簧⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40318 .1 重点内容提要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40318 .2 重点知识结构图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40818 .3 考点及常见题型精解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40918 .4 课后习题详解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41118 .5 学习效果测试题及答案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯418附录模拟试题及参考解答⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯420附录A 模拟试题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯420附录B 模拟试题参考解答⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯439参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯449目录Ⅴ第1 章平面机构的自由度和速度分析1. 1 重点内容提要1 .1 .1 教学基本要求( 1) 掌握运动副的概念及其分类。

杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(弹 簧)

杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(弹 簧)

(3)Ⅲ类
受变载荷的作用次数在 103 以下的,即基本上受静载荷的弹簧。
四、圆柱螺旋拉伸、压缩弹簧的设计 1.结构尺寸和特性曲线
4 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台

(1)压缩弹簧的结构尺寸
图 18-1-1 弹簧的几何参数
如图 18-1-1 所示为圆柱螺旋压缩弹簧的结构,其主要尺寸及其计算公式如下:
①总圈数: n1 n (1.5 ~ 2.5) ;
②节距:t d ;
③间距: 2 ; 0.8n
④螺旋升角:
arctan
t D

⑤弹簧丝展开长度: L
D n1 cos

⑥自由高度:
a.对于两端并紧不磨平的结构,其自由高度: H0 n (n1 1)d ;
b.对于两端并紧磨平的结构,其自由高度: H0 n (n1 0.5)d 。 (2)压缩弹簧的特性曲线
弹簧特性曲线是指用来描述圆柱螺旋压缩弹簧的载荷与变形关系的曲线。
对于等节距的圆柱螺旋弹簧,变形l 和载荷成正比,有
5 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台

式中, i 为在工作载荷 Fi 作用时弹簧的变形量。
(3)拉伸弹簧的结构特点 ①为增加弹簧的刚性,多数拉伸弹簧在制成后具有一定的初应力,并且其端部做有挂钩, 以便安装和加载。常用的挂钩形式有半圆钩环型和圆钩环型; ②在计算时应注意拉伸弹簧的间距 0 ,计算弹簧丝展开长度 L 和自由高度 H0 时应把 挂钩部分的尺寸计入。 2.设计计算步骤 (1)设计弹簧应满足的要求 ①有足够的强度; ②符合载荷-变形特性曲线的要求(即刚度条件); ③不侧弯。 (2)设计计算步骤 ①首先根据工作条件选择合宜的弹簧材料及结构形式; ②运用求应力、变形的公式确定弹簧的主要参数 d、D、n; ③最后求出弹簧的其他结构尺寸 t、α、H0 及弹簧丝展开长度等。

机械设计基础课后答案(杨可桢)

机械设计基础课后答案(杨可桢)

1-1至1-4解机构运动简图如下图所示。

图 1.11 题1-1解图图1.12 题1-2解图图1.13 题1-3解图图1.14 题1-4解图1-5 解1-6 解1-7 解1-8 解1-9 解1-10 解1-11 解1-12 解1-13解该导杆机构的全部瞬心如图所示,构件 1、3的角速比为:1-14解该正切机构的全部瞬心如图所示,构件 3的速度为:,方向垂直向上。

1-15解要求轮 1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。

则:,轮2与轮1的转向相反。

1-16解( 1)图a中的构件组合的自由度为:自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。

( 2)图b中的 CD 杆是虚约束,去掉与否不影响机构的运动。

故图 b中机构的自由度为:所以构件之间能产生相对运动。

题 2-1答 : a ),且最短杆为机架,因此是双曲柄机构。

b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。

c ),不满足杆长条件,因此是双摇杆机构。

d ),且最短杆的对边为机架,因此是双摇杆机构。

题 2-2解 : 要想成为转动导杆机构,则要求与均为周转副。

( 1 )当为周转副时,要求能通过两次与机架共线的位置。

见图 2-15 中位置和。

在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号)。

综合这二者,要求即可。

( 2 )当为周转副时,要求能通过两次与机架共线的位置。

见图 2-15 中位置和。

在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。

( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题 2-3 见图 2.16 。

图 2.16题 2-4解 : ( 1 )由公式,并带入已知数据列方程有:因此空回行程所需时间;( 2 )因为曲柄空回行程用时,转过的角度为,因此其转速为:转 / 分钟题 2-5解 : ( 1 )由题意踏板在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。

机械设计基础(杨可桢版)1 18章答案(全)

机械设计基础(杨可桢版)1 18章答案(全)
第八章 回转件的平衡
机械设计基础习题答案
8-1 解 :依题意该转子的离心力大小为
该转子本身的重量为
则 8-2 答 :方法如下:
,即该转子的离心力是其本身重量的 倍。
( 1)将转子放在静平衡架上,待其静止,这时不平衡转子的质心必接近于过轴心的垂线下方;
( 2)将转子顺时针转过一个小角度,然后放开,转子缓慢回摆。静止后,在转子上画过轴心的铅垂线 1;
由图量得
,则质心偏移的距离为
,偏移的方向
就是平衡质径积的方向,与水平夹角为

( 2 ) 求左右支反力实际上就是求动平衡时在左右支点所在平面所需要的平衡力。先把不平衡质量在两支承所在平面上分解。
左支承 :

右支承 :

则在两个支承所在平面上的质径积的大小分别为:
左支承 :

右支承 :

方向沿着各自的向径指向外面。用作图法求解,取 ,作图 8 . 11 ( b )( c )所示。由动平衡条件得:
( 2)两支承都固定时,因轴的温升而加在支承上的压力
9-15 基孔制优先配合为 、 、 、 、 、 、 、 、 、 、 、 、 ,试以基本尺寸为

制其公差带图。
9-16 答 (1)公差带图见题 9-16 解图。
图 9.13 题 9-15 解图
( 2)

均采用的是基轴制,主要是为了制造中减少加工孔用的刀具品种。
其中
; 为螺栓杆直径。
螺栓杆的剪切强度验算公式
( 2)如果在 面上加一平衡质径积
进行静平衡,则按静平衡条件求解,只需要


三个质径积矢量和为零即可。
方向沿着各自的向径指向外面。用作图法求解,取

机械设计基础(高教第五版)习题答案全解

机械设计基础(高教第五版)习题答案全解

机械设计基础(第五版)课后习题答案(完整版) 杨可桢、程光蕴、李仲生主编高等教育出版社1-1至1-4解机构运动简图如下图所示。

图 1.11 题1-1解图图1.12 题1-2解图图1.13 题1-3解图图1.14 题1-4解图1-5 解1-6 解1-7 解1-8 解1-9 解1-10 解1-11 解1-12 解1-13解该导杆机构的全部瞬心如图所示,构件1、3的角速比为:1-14解该正切机构的全部瞬心如图所示,构件3的速度为:,方向垂直向上。

1-15解要求轮1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。

则:,轮2与轮1的转向相反。

1-16解(1)图a中的构件组合的自由度为:自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。

(2)图b中的CD 杆是虚约束,去掉与否不影响机构的运动。

故图b中机构的自由度为:所以构件之间能产生相对运动。

题2-1答: a ),且最短杆为机架,因此是双曲柄机构。

b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。

c ),不满足杆长条件,因此是双摇杆机构。

d ),且最短杆的对边为机架,因此是双摇杆机构。

题2-2解: 要想成为转动导杆机构,则要求与均为周转副。

( 1 )当为周转副时,要求能通过两次与机架共线的位置。

见图2-15 中位置和。

在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号)。

综合这二者,要求即可。

( 2 )当为周转副时,要求能通过两次与机架共线的位置。

见图2-15 中位置和。

在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。

( 3 )综合(1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题2-3 见图 2.16 。

图 2.16题2-4解: (1 )由公式,并带入已知数据列方程有:因此空回行程所需时间;( 2 )因为曲柄空回行程用时,转过的角度为,因此其转速为:转/ 分钟题2-5解: (1 )由题意踏板在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。

机械设计基础第五版(杨可桢版) 第一章 平面机构的自由度和速度分析

机械设计基础第五版(杨可桢版)   第一章     平面机构的自由度和速度分析
F 3 n 2 p l p h 3 3 2 4 0 1
该机构具有一个原动件 (曲柄2),原动件数与 机构的自由度相等。
【例】 求活塞泵机构的自由度。 解:活塞泵具有四个活动构件,n=4;五个低副(四 个转动副和一个移动副),一个高副,求得该机构 的自由度为:
3.从动件
在机构中随着原动件的运动而运动的其余活动 构件都是从动件。其中输出预期运动的从动件称为 输出构件,其他从动件则起传递运动的作用。如内 燃机中的连杆和曲轴都是从动件,其中曲轴是输出 构件,而连杆是传递运动的从动件。
任何一个机构中,必有一个构件被相对地看作固定构件。 例如,内燃机上的气缸体虽然跟随汽车运动,但在研究发动 机的运动时,仍然气缸体当作固定构件。在活动构件中必须 有一个或几个原动件,其余的都是从动件。
圆柱副

球面副
螺旋低副
空间运动副只作了解, 在本章中不做讨论。
§1-2 平面机构运动简图
机构运动简图:
任何一个机器的主体都是由机构组成,而机 构又由构件组成,实际构件的外形和结构往往很 复杂,在研究分析现有机械和设计新机械时,为 了使问题简化,一般不考虑那些与运动无关的因 素,如构件的外形、断面尺寸、组成构件的零件 数目以及运动副的具体结构,仅仅用简单的线条 和符号来代表构件和运动副,并按一定比例确定 各运动副的相对位置。这种说明机构中各构件间 相对运动关系的简化图形称为机构运动简图。
选取适当比例,把 构件与运动副用规定符 号画出机构运动简图。
活塞泵
其它几种机构运动简图绘制:
偏心轮传动
缝纫机机构(动)
送料机构
Hale Waihona Puke 说 明:1. 原动件的位置选择不同,所绘机构运动简图的 图形也不同;

机械设计基础(杨可桢)习题答案

机械设计基础(杨可桢)习题答案
1 7、n 8, PL 11, PH 0, F 3n (2PL PH ) 2
1 8、n 6, PL 8, PH 1, F 3n (2PL PH ) 1 1 9、n 4, PL 4, PH 2, F 3n (2PL PH ) 2 1 10、n 9, PL 12, PH 2, F 3n (2PL PH ) 1
5-3.图示轮系。已知各轮齿 数.试作:
①写出该轮系类型; ②用齿数表示轮系传动比iH3
iH 3

注意五章的习题
2020/10/13
• 六、分析题
6-1
注意斜齿轮锥齿轮蜗轮蜗杆的受力,例如习 题11-7,11-9,11-15
2020/10/13
6-2
2020/10/13
答案 答案
• 6-2或者考其它类型的题。
4 3、由da mz 2h*am 27mm
m 5mm
4 4、解 db dk cosk
分度圆曲 压率 力半 角径
200
r sin
mz 2
sin
200
5 40 sin 2
200
34.20m m
基圆曲 压率 力半 角径 bb
00 0m
m
齿顶圆
由d
b
da
cosa则a
arccos
2
ism
1 i1s
• i1m
60
imH
1 i1m
• i1H
12
5 4、i H13 n1 nH n3 nH
1 i1H
Z2Z3 Z1Z2
3
i1H
4
n1 nH
1 H
当手柄转过 900时,H转过22.50
5 5、iH13
n1 nH n3 nH
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计基础习题答案第八章回转件的平衡8-1解:依题意该转子的离心力大小为该转子本身的重量为则,即该转子的离心力是其本身重量的倍。

8-2答:方法如下:( 1)将转子放在静平衡架上,待其静止,这时不平衡转子的质心必接近于过轴心的垂线下方;( 2)将转子顺时针转过一个小角度,然后放开,转子缓慢回摆。

静止后,在转子上画过轴心的铅垂线1;( 3)将转子逆时针转过一个小角度,然后放开,转子缓慢回摆。

静止后画过轴心的铅垂线2;( 4)做线1和2的角平分线,重心就在这条直线上。

8-3答:( 1)两种振动产生的原因分析:主轴周期性速度波动是由于受到周期性外力,使输入功和输出功之差形成周期性动能的增减,从而使主轴呈现周期性速度波动,这种波动在运动副中产生变化的附加作用力,使得机座产生振动。

而回转体不平衡产生的振动是由于回转体上的偏心质量,在回转时产生方向不断变化的离心力所产生的。

(2)从理论上来说,这两种振动都可以消除。

对于周期性速度波动,只要使输入功和输出功时时相等,就能保证机械运转的不均匀系数为零,彻底消除速度波动,从而彻底消除这种机座振动。

对于回转体不平衡使机座产生的振动,只要满足静或动平衡原理,也可以消除的。

(3)从实践上说,周期性速度波动使机座产生的振动是不能彻底消除的。

因为实际中不可能使输入功和输出功时时相等,同时如果用飞轮也只能减小速度波动,而不能彻底消除速度波动。

因此这种振动只能减小而不能彻底消除。

对于回转体不平衡产生的振动在实践上是可以消除的。

对于轴向尺寸很小的转子,用静平衡原理,在静平衡机上实验,增加或减去平衡质量,最后保证所有偏心质量的离心力矢量和为零即可。

对于轴向尺寸较大的转子,用动平衡原理,在动平衡机上,用双面平衡法,保证两个平衡基面上所有偏心质量的离心力食量和为零即可。

8-4图 8 . 7解:已知的不平衡质径积为。

设方向的质径积为,方向的质径积为,它们的方向沿着各自的向径指向圆外。

用作图法求解,取,作图 8 . 7 所示。

由静平衡条件得:由图 8-7 量得,。

8-5图 8 . 9解:先求出各不平衡质径积的大小:方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 9 所示。

由静平衡条件得:由图 8 . 9 量得,方向与水平夹角为。

8-6图8.11解:( 1)求质心偏移实际就是求静平衡时的平衡向静,因此可以按照静平衡条件考虑这个问题。

先求出各不平衡质径积的大小:方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 11 ( a )所示。

由静平衡条件得:由图量得,则质心偏移的距离为,偏移的方向就是平衡质径积的方向,与水平夹角为。

( 2 )求左右支反力实际上就是求动平衡时在左右支点所在平面所需要的平衡力。

先把不平衡质量在两支承所在平面上分解。

左支承:;右支承:;则在两个支承所在平面上的质径积的大小分别为:左支承:;右支承:;方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 11 ( b )( c )所示。

由动平衡条件得:左支承:,量得,则支反力大小为右支承:,量得,则支反力大小为8-7图8.13解:( 1)先把不平衡质量在两平衡基面Ⅰ和Ⅱ上分解。

基面Ⅰ:基面Ⅱ:则在两个基面上的质径积分别为:基面Ⅰ:,方向垂直向下。

基面Ⅱ:,方向垂直向上。

用作图法求解,取,作图 8 . 13 ( a )( b )所示。

由动平衡条件得:基面Ⅰ:,平衡质径积,方向垂直向上。

基面Ⅱ:,平衡质径积,方向垂直向下。

8-8图 8.14 解:先把不平衡质量在两平衡基面和上分解。

基面:基面:则在两个基面上的质径积分别为:基面:图 8.15 基面:用作图法求解,取,作图 8 . 15 ( a )( b )所示。

由动平衡条件得:和由图上量取:,方向如图 8 . 15 ( a )( b )所示。

校核。

设坐标轴方向如图 8 . 15 所示,用解析法校核。

基面:向有:向有:基面:向有:向有:两个平面在向和向合力均为零,因此所得结果正确。

由于回转半径为,因此所加的平衡质量应为8-9图 8.17解:先把不平衡质量在两平衡基面Ⅰ和Ⅱ上分解。

基面Ⅰ:基面Ⅱ:则在两个基面上的质径积的大小分别为:基面Ⅰ:基面Ⅱ:方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 17 ( a )( b )所示。

由动平衡条件得:基面Ⅰ:,量得,,方向如图所示。

基面Ⅱ:量得,,方向如图所示。

8-10解:( 1)求左右支反力实际上就是求动平衡时在支点Ⅰ、Ⅱ所在平面所需要的平衡力。

先把不平衡质量在两平衡基面Ⅰ和Ⅱ上分解。

基面Ⅰ:基面Ⅱ:则在两个基面上的质径积的大小分别为:基面Ⅰ:基面Ⅱ:方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 19 ( a )图 8.19( b )所示。

由动平衡条件得:基面Ⅰ:,量得,则支反力方向如图 8 . 19 ( a )所示,大小为。

基面Ⅱ:量得,则支反力方向如图 8 . 19 ( b )所示,大小为( 2)如果在面上加一平衡质径积进行静平衡,则按静平衡条件求解,只需要,和三个质径积矢量和为零即可。

方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 19 ( c )所示。

由静平衡条件得:。

量得,方向如图 8 . 19 ( c )所示。

( 3)静平衡之后,按照有三个偏心质量做动平衡计算,求取基面Ⅰ和Ⅱ上的平衡力即可。

同理把所有不平衡质量在两平衡基面Ⅰ和Ⅱ上分解,然后求基面上的质径积,有:基面Ⅰ:,基面Ⅱ:,方向沿着各自的向径指向外面。

用作图法求解,取,作图 8 . 19 ( d )( e )所示。

由动平衡条件得:基面Ⅰ:,量得,则支反力方向如图 8 . 19 ( d )所示,大小为。

基面Ⅱ:量得,则支反力方向如图 8 . 19 ( e )所示,大小为( 4)静平衡后,两个支座的支反力一个增大,一个减小。

第九章机械零件设计概论9-1答退火:将钢加热到一定温度,并保温到一定时间后,随炉缓慢冷却的热处理方法。

主要用来消除应力、降低硬度,便于切削。

正火:将钢加热到一定温度,保温一定时间后,空冷或风冷的热处理方法。

可消除应力,降低硬度,便于切削加工;对一般零件,也可作为最终热处理,提高材料的机械性能。

淬火:将钢加热到一定温度,保温一定时间后,浸入到淬火介质中快速冷却的热处理方法。

可提高材料的硬度和耐磨性,但存在很大的应力,脆性也相应增加。

淬火后一般需回火。

淬火还可提高其抗腐蚀性。

调质:淬火后加高温回火的热处理方法。

可获得强度、硬度、塑性、韧性等均较好的综合力学性能,广泛应用于较为重要的零件设计中。

表面淬火:迅速将零件表面加热到淬火温度后立即喷水冷却,使工件表层淬火的热处理方法。

主要用于中碳钢或中碳合金钢,以提高表层硬度和耐磨性,同时疲劳强度和冲击韧性都有所提高。

渗碳淬火:将工件放入渗碳介质中加热,并保温一定时间,使介质中的碳渗入到钢件中的热处理方法。

适合于低碳钢或低碳合金钢,可提高表层硬度和耐磨性,而仍保留芯部的韧性和高塑性。

9-2解见下表9-3解查教材表 9-1,Q235的屈服极限查手册 GB706-88标准,14号热轧工字钢的截面面积则拉断时所所的最小拉力为9-4解查教材表9-1,45钢的屈服极限许用应力把夹紧力向截面中心转化,则有拉力和弯距截面面积抗弯截面模量则最大夹紧力应力分布图如图所示图 9.3 题9-4解图9-5解查手册,查手册退刀槽宽度,沟槽直径,过渡圆角半径,尾部倒角设所用螺栓为标准六角头螺栓,对于的螺栓,最小中心距,螺栓轴线与箱壁的最小距离。

9-6解查手册,当圆轴时,平键的断面尺寸为且轴上键槽尺寸、轮毂键槽尺寸。

图 9.5 题9-6解图9-7解(1)取横梁作为示力体,当位于支承右侧处时由得由得由得由得( 2)横梁弯矩图图 9.7 题9-7解图( 3)横梁上铆钉组的载荷力矩水平分力垂直分力9-8解水平分力在每个铆钉上产生的载荷垂直分力在每个铆钉上产生的载荷力矩在每个铆钉上产生的载荷各力在铆钉上的方向见图所示图 9.9 题9-8解图根据力的合成可知,铆钉 1的载荷最大9-9解铆钉所受最大载荷校核剪切强度校核挤压强度均合适。

9-10解支承可用铸铁HT200或铸钢ZG270-500。

其结构立体图见图。

图 9.10 题9-10解图支承的可能失效是回转副的磨损失效,或回转副孔所在横截面处拉断失效。

9-11解( 1)轮齿弯曲应力可看成是脉动循环变应力。

( 2)大齿轮循环次数( 3)对应于循环总次数的疲劳极限能提高提高了 1.24倍。

9-12答由图5-1可见,惰轮4的轮齿是双侧受载。

当惰轮转一周时,轮齿任一侧齿根处的弯曲应力的变化规律:未进入啮合,应力为零,这一侧进入啮合时,该侧齿根受拉,并逐渐达到最大拉应力,然后退出啮合,应力又变为零。

接着另一侧进入啮合,该侧齿根受压,并逐渐达到最大压应力,当退出啮合时,应力又变为零。

所以,惰轮4轮齿根部的弯曲应力是对称循环变应力。

9-13答在齿轮传动中,轮齿工作面上任一点所产生的接触应力都是由零(该点未进入啮合)增加到一最大值(该点啮合),然后又降低到零(该点退出啮合),故齿面表面接触应力是脉动循环变应力。

9-14解( 1)若支承可以自由移动时,轴的伸长量( 2)两支承都固定时,因轴的温升而加在支承上的压力9-15 基孔制优先配合为、、、、、、、、、、、、,试以基本尺寸为绘制其公差带图。

图 9.13 题9-15解图9-16答(1)公差带图见题9-16解图。

( 2)、均采用的是基轴制,主要是为了制造中减少加工孔用的刀具品种。

图 9.15 题9-16解图第十章连接10-1证明当升角与当量摩擦角符合时,螺纹副具有自锁性。

当时,螺纹副的效率所以具有自锁性的螺纹副用于螺旋传动时,其效率必小于 50%。

10-2解由教材表10-1、表10-2查得,粗牙,螺距,中径螺纹升角,细牙,螺距,中径螺纹升角对于相同公称直径的粗牙螺纹和细牙螺纹中,细牙螺纹的升角较小,更易实现自锁。

10-3解查教材表10-1得粗牙螺距中径小径螺纹升角普通螺纹的牙侧角,螺纹间的摩擦系数当量摩擦角拧紧力矩由公式可得预紧力拉应力查教材表 9-1得 35钢的屈服极限拧紧所产生的拉应力已远远超过了材料的屈服极限,螺栓将损坏。

10-4解(1)升角当量摩擦角工作台稳定上升时的效率:( 2)稳定上升时加于螺杆上的力矩( 3)螺杆的转速螺杆的功率( 4)因,该梯形螺旋副不具有自锁性,欲使工作台在载荷作用下等速下降,需制动装置。

其制动力矩为10-5解查教材表9-1得 Q235的屈服极限,查教材表 10-6得,当控制预紧力时,取安全系数由许用应力查教材表 10-1得的小径由公式得预紧力由题图可知,螺钉个数,取可靠性系数牵曳力10-6解此联接是利用旋转中间零件使两端螺杆受到拉伸 ,故螺杆受到拉扭组合变形。

相关文档
最新文档