中级计量经济学 第五讲

合集下载

计量经济学第五讲---模型函数形式

计量经济学第五讲---模型函数形式

Prob. 0.0000 0.0000 5.468946 0.086294 -9.94267 -9.84926 81786.04 0.000000
ˆ 5.317 0.0098t ln Y t
斜率0.0098表示,平均而言, se (0.000608 )(0.0000343 ) Y的年增长率为0.98%。
每提高1个百分点,平均而言,数学S.A.T分数将增加0.13 个百分点。根据定义,如果弹性的绝对值小于1,则称缺 乏弹性。因此,在该例中,数学S.A.T分数是缺乏弹性的。 另外,r2=0.9, 表明logX解释了变量logY的90%的变 动。
13
第5章
经济学的弹性:

以价格弹性为例: 价格弹性的准确定义是需求量变动的百分比除以价格变动的百分 比。 价格变动一个百分点,引起需求量变动超过一个百分点,则该物 品就富有价格需求弹性;需求变动量不到一个百分点,则缺乏价 格需求弹性;需求变动量等于一个百分点,则该物品拥有单位需 求价格弹性。
S.D. dependent var
Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)
20.51101
2.260832 2.354245 23141.80 0.000000
S.E. of regression Sum squared resid Log likelihood
2642.152 134.6207
Mean dependent var S.D. dependent var
S.E. of regression
Sum squared resid Log likelihood Durbin-Watson stat

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
精品课件
原始模型:
YX (5.8)
• 其中Y为观测值取1和0的虚拟被解释变量,X为 解释变量。
• 模型的样本形式: yi Xii
(5.9)
• 因为E(i)0
,E所(y以i)Xi
• 令: p i P ( y i 1 ) 1 p i P ( y i 0 )
• 于是有: E ( y i) 1 P ( y i 1 ) 0 P ( y i 0 ) p i
其它季度
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
精品课件
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模 型
精品课件
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
精品课件
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066

《计量经济学简介》PPT课件

《计量经济学简介》PPT课件

D
R
T=
(0.68) (5.32)
(1.58)
R2= 0.73 调整的精选RP2P=T 0.68
F=20.18
12
➢ 关于随机扰动项
1. 引进的必要性:
(1)经济行为具有随机性;
(2)设定模型时省略了很多因素;
(3)取样本时也会有测量误差。
2. 构成:

(1)省略误差:x的 次要的解释变量必须扔掉
1
2D 3 R
精选PPT
11
三、计量经济模型的建立(续)
(4)引进扰动项(下一页有解释)
C Y W 1 2D 3 R
理论上的经济计量模型
(二)收集数据:比如时序数据1973~1991年(t=19),
单位:亿元
(三)模型估计
(1)估计方法:比如 OLS
C ˆ Y W (2)估计式: 0 .0 0 3 0 .8 1 2 0 .1 3 8
不可观测的变量也得省掉
可观测不可定量化的省掉
未认识到的变量
f的:数学形式设定中导出的误差
(2)测量误差:观测误差、统计数据归并时的误差。
精选PPT
13
三、经济计量模型的建立(续)
(四)模型检验
(1)经济合理性检验:
比如YD和WR的系数是否在(0,1)之间 (2)古典统计检验:R2,T, F检验
(五)模型应用
人、企业等观测单位本身具有而我们又观测不 到的特性
精选PPT
18
例: 一个两年的面板数据格式如下
Obsno city year y x1 x2 x3
1
1 1986 . . .
.
2
1 1990 . . .
.
3

最新计量经济学课件-第五章教学讲义PPT

最新计量经济学课件-第五章教学讲义PPT
模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Y t a b 0 X t b 1 Y t 1 b 2 Y t 2 b q Y t q U t
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
Y b 0 b 1 X b 2 P a 1 D 1 a 2 D 2 a 3 D 3 a 4 D 4 U
存在什么问题?
• 解释变量观测值矩阵为:
1
X1
1
X2
P1
1 0 0 0
P2
0
1
0
0
1
X3
1
X4
P3
0 0 1 0
P4
0 0 0 1
1
X0
1
X n2
Pn 2
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
经验权数法
根据实际问题的特点、实际经验给各滞后变量指定权 数,滞后变量按权数线性组合,构成新的变量。权数
据的类型有:
• 递减型: 权数是递减的,X的近期值对Y的影响较远期 值大。 如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8 则新的线性组合变量为:
W 1 t1 2X t1 4X t 11 6X t 28 1X t 3
• 矩型: 即认为权数是相等的,X的逐期滞后值对值Y 的影响相同。 如滞后期为3,指定相等权数为1/4,则新的线 性组合变量为:

计量经济学讲义(一到四章)(计量经济学-东北财经大学,王

计量经济学讲义(一到四章)(计量经济学-东北财经大学,王

计量经济学讲义王维国讲授课程的性质计量经济学是一门由经济学、统计学和数学结合而成的交叉学科,从学科性质来看,计量经济学是一门应用经济学。

具体来说,计量经济学是在经济学理论指导下,借助于数学、统计学和计算机等方法和技术,研究具有随机特征的经济现象,目的在于揭示其发展变化规律。

课程教学目标计量经济学按其内容划分为理论计量经济学和应用计量经济学。

本课程采用多媒体教学手段,结合Eviews软件应用,讲解理论计量经济学的最基本内容。

本课程教学目标:一是使学生了解现实经济世界中可能存在的计量经济问题,掌握检测及解决计量经济问题的方法和技术;二是使学生能够在计算机软件辅助下,建立计量经济模型,为其他专业课的学习及对经济问题进行实证分析研究奠定基础。

课程适用的专业与年级本大纲适用于数量经济专业2001级计量经济学课程的教学。

课程的总学时和总学分课程总学时为72,共计4学分。

本课程与其他课程的联系与分工学习本课程需要学生具备概率论与数理统计、微积分、线性代数、Excel、微观经济学、宏观经济学、经济统计等学科知识。

概率论与数理统计等数学课是计量经济学的方法论基础,计量经济学主要解决的是实际中不满足数理统计假定时经济变量之间关系及经济变量发展变化规律分析方法和技术,而经济学为计量经济学提供经济理论的准备,它仅就经济变量之间的关系提出一些理论假设,而不进行实证分析,只有具备了计量经济学的基本知识才能更好地解决一些实际问题。

课程使用的教材及教学参考资料使用的教材:计量经济学(Basic Econometrics) 第三版,[美]古扎拉蒂(DamodarN.Gujarati) 著,林少宫译,中国人民大学2000年3月第1版。

该教材畅销美国,并流行于英国及其他英语国家。

该书充分考虑了学科发展的前沿,十分重视基础知识的教学及训练,内容深入浅出。

教学参考资料:1. 王维国,《计量经济学》,东北财经大学2001.2.Aaron C. Johnson, Econometrics Basic and Applied学时分配表第一讲引言:经济计量学的特征及研究X围第一节什么是计量经济学一、计量经济学的来源二、计量经济学的定义计量经济学几种定义。

经济计量学第五讲 回归方程的函数形式

经济计量学第五讲 回归方程的函数形式

双曲函数模型的一个显著特征是,当X无限 增大时,Y将逐渐接近于B1(渐进值或极值)。可以
用双曲函数模型来描述平均成本曲线、恩格尔消
费曲线和菲利普斯曲线等领域的情况。
东北财经大学数量经济系
第六节 多项式回归模型
下述模型称为多项式回归模型:
Yi B1 B2 X i B3 X B4 X ui
Yi B1 B2 ln X i ui
B2的含义为:X的相对变化引起的Y的绝对量变 化量;即表示自变量的一个单位相对增量引起因变量 平均的绝对增量。
Y B2 (X / X )
东北财经大学数量经济系
第五节 双曲函数模型
下述模型称为双曲函数模型:
Yi B1 B2 1 Xi ui
2 i 3 i
多项式回归模型在生产与成本函数领域应用广
泛。在多项式回归模型中,等式右边虽然只有一个 解释变量,但却以不同的次幂出现,因此可以把它
们看做是多元回归模型中的不同解释变量。
东北财经大学数量经济系
我们通过观察散点图,认为需求量和价格之间是近似
的线性关系,因此建立两变量线性回归模型来研究需 求量和价格之间的关系。 若需求量和价格之间的关系不是线性关系而是指 数形式,则我们就需要建立下面的模型来描述需求量
和价格之间的关系,即:
Yi AX
东北财经大学数量经济系
B i
(1)
第一节 双对数模型(2)
东北财经大学数量经济系
第三节 多元对数线性回归模型(4)
例:根据墨西哥1955年到1974年的数据估计多元对 数模型的结果如下:
东北财经大学数量经济系
第四节 半对数模型(1)
下述模型称为半对数模型或对数—线性模型:

计量经济学讲义第五讲(共十讲)

计量经济学讲义第五讲(共十讲)

第五讲 自相关高斯-马尔科夫假定五是:(,)0,i j i j C ovariance i j εεεεδ==≠如果该假定不成立,那么称模型的误差项是序列相关的。

由于序列相关主要针对于时间序列数据,因此,下面把i 改写为t ,样本容量N 改写为T 。

笔记:1、如果基于横截面数据的回归模型其误差项是相关的,则称为空间自相关。

但是要记住,除非观察顺序具有某种逻辑或者经济上的意义,否则,在横截面数据回归中,观察顺序是可以随意的,因此,也许在某种观测顺序下误差项呈现出一种模式的自相关但在另一种观测顺序下又呈现出另外一种模式的自相关。

然而,当我们处理时间序列时,观测服从时间上的一种自然顺序。

2、在经济变量时间序列回归模型中,误差项经常被称之为冲击(Shock )。

对经济系统的冲击经常具有持续性,从而这为误差项序列相关提供了现实依据。

一、 自相关的后果在证明高斯-马尔科夫定理时,我们仅仅在证明OLS 估计量的方差最小(在所有线性无偏估计量中)时用到了序列无关假定,而在证明线性、无偏性并没有用到该假定,因此违背无自相关性假定并不影响线性、无偏性,只影响方差最小性质。

在证明方差最小时,我们分了两步,其中第一步是计算OLS 估计量的方差。

对模型:t 01t t y x ββε=++有:12ˆ12222()()()()(())()()[()]t t t t t t t t tx x Variance x x x x Variance x x Variance x x x x βεδβεε-=+---==--∑∑∑∑∑∑在假定五:0,0t t j j εεδ+=≠下,有:122ˆ222()[()]ttt x x x x βεδδ-=-∑∑如果假定五不成立,那么正确的方差表达式应该是:12ˆ1221122()2()()[()]t t t jT T tt t t j t j t x x x x x x x x βεεεδδδ+--+==-+--=-∑∑∑∑所以, OLS 法下通常的系数估计量方差的表示是错误的。

计量经济学课件第5章

计量经济学课件第5章
第5章 假设检验
回归分析是通过样本所估计的参数来代替总体的 真实参数,或者说是用样本回归线代替总体回归线。
尽管从统计性质上已知,如果有足够多的重复抽 样,参数的估计值的期望(均值)就等于其总体的 参数真值,但在一次抽样中,估计值不一定就等于 该真值。
那么,在一次抽样中,参数的估计值与真值的差 异有多大,是否显著,这就需要进一步进行统计检 验。
单侧检验与双侧检验:P67。
5
只有将非预期结果作为原假设,才能控制拒绝原 假设事实上为真但偶然被拒绝的概率,即控制拒绝 原假设犯错误的概率。但反之不真,即在原假设为 假时,无法确切地知道将其错误地接受为真的概率。
即拒绝原假设,我们知道犯错误的概率,但接受 原假设,不知道犯错误的概率,所以最好说不拒绝 而不是接受。
由样本推断总体,可能会犯错误, 第一类错误:原假设H0符合实际情况,检验结果 将它否定了,称为弃真错误。 第二类错误:原假设H0不符合实际情况,检验结果 无法否定它。称为取伪错误。 例:P68,图5-1,图5-2。
8
5.1.3 假设检验的判定规则
判定规则:在检验一个假设时,首先计算样本统计量, 将样本统计值与预先选定的临界值比较,根据比较 结果决定是否拒绝原假设.即临界值将估计值的取 值范围分为两个区域,接受域和拒绝域,来决定是否 拒绝还是接受.
产生不正确推断时所面对的两类错误。
4
5.1.1 古典原假设和备选假设
原假设或者零假设(null hypothesis),待检验的 假设,用符号H0表示, 代表研究者的非预期取值. 例如,你预期参数是正值,则建立虚拟假设为:
H0: <=0 备选假设,对研究者预期取值的表述,用符号HA表示,
接上例,备选假设为: HA : >0

中级计量经济学课件ppt课件

中级计量经济学课件ppt课件

i 1,2,,n
OLS的判断标准(最小二乘法原则):实际值 与估计值的离差平方和达到最小。令
n
Q
Yi Yˆi 2
i1
使Q值达到最小,从而得到β 0和β 1 的估计值:
ˆ0、ˆ1
• ˆ0、ˆ1 的求解
n
Q
Y i Y ˆ i 2n
(3)回归分析的前提:相关密切且有因果 关系
二、总体回归函数 (双变量)总体回归函数是:
E(Y/Xi)f(Xi)
线性总体回归函数:
E(Y/Xi)01Xi
三、随机干扰项
E E ((YY//X Xii)) f0( Xi)1Xi
Y i E (Y /X i)i f(X i)i
– 样本区间经济行为的一致性 如纺织业,以80年代中期作为分界线
– 样本数据的可比性(价格) – 样本观测值过于集中的问题 – 模型随机误差项序列相关的问题
• 截面数据
– 样本与母体的一致性 – 模型随机误差项的异方差问题
• 虚变量数据
– 2、样本数据的质量
• 完整性:各变量得到相同容量的样本观测值 • 准确性:数据准确,且数据间相互对应 • 可比性
• (5)随着样本容量的增加,解释变量X的方差趋 于一个有限的常数,即:
(XiX)2 Q,当 n 时
n
• (6)回归模型是正确设定的.
二、参数的普通最小二乘估计(OLS)
• 简称OLS(Ordinary Least Square)

设所估计的直线方程为:
Yi 0 1Xi i
• 四、检验和发展经济理论
– 检验理论:根据经济理论 建立模型 以样本数据进行拟合
– 发现和发展理论:样本数据

第五讲 动态面板数据模型

第五讲  动态面板数据模型
ˆ α
1 IV
=
∑∑ y ( y
i =1 t = 2 N i ,t − 2 i =1 t = 3 N T
i =1 t = 2 N T
∑∑ y ( y
i ,t − 2
N
T
i ,t
− y i ,t −1 ) − y i ,t − 2 )
(5.3)
i ,t −1
ˆ α
2 IV
=
∑∑ ( y
T
i ,t − 2
⎧⎡ 1 ⎪ min ⎨⎢ α ⎪⎣ N ⎩
⎤ ⎡1 Z ( Δyi − αΔyi ,−1 ) ⎥ WN ⎢ ∑ i =1 ⎦ ⎣N
N ' i
'
⎤⎪ ⎬ ∑ Z ( Δy − α Δ y ) ⎥ ⎦
N i =1 ' i i i ,−1
⎫ ⎪ ⎭
(5.6)
估计自回归系数,其中,WN 是渐近正定权重 l × l 矩阵。 对(5.6)式关于 α 求导,解 α 得到自回归系数的 GMM 估计
(
)
( yi ,t −1 − yi ,t −2 ) 相 关 , 但 是 与 ( u
it
− ui ,t −1 ) 无 关 。 因 此 , y i ,t − 2 和
( yi ,t −2 − yi ,t −3 ) 均 为
( yi ,t −1 − yi ,t −2 ) 的工具变量。于是,模型(5.2)中参数的工具变量估计分别是
面板数据计量分析
白仲林
ˆ IV 和 α ˆ IV 就是 α 的一致估计。 的工具变量估计 α
1 2
广义矩估计的一般形式 设 X 是 p×1 的随机向量,f 是 l×1 的向量值函数,θ 是 k×1 的参数向量,并且 k ≤ l,Θ 是参数空间,即,θ∈Θ, E[f(X,θ)] = 0 是 X 的矩方程。 对于 X 的 N 个观测值 { X 1 , " ,

经济学计量经济学第五章PPT课件

经济学计量经济学第五章PPT课件

• 当a>0、0<b<1时,y 随着t 的增加而趋向于0
• 描述以几何极数递增或递减的现象
• 序列的观察值按指数规律变化
• 序列的逐期观察值按一定的增长率增长或衰减
• 参数估计方法 • 采用对数变换法将模型化为线性进行估计
29
第29页/共45页
修正指数型增长曲线模型
• 一般形式
y L ab •

~yi ˆ0 yi f xi , ˆ0 zi ˆ0 ˆ0
• 易平~y求方i 出和ˆ其式0参最数小zi 的ˆ0普 通ˆ最小二i 乘估计值

ˆ
,该估计值使得残差
2
ˆ1
n
S ˆ1
~yi ˆ0 zi ˆ0 ˆ1 2
i 1
17
第17页/共45页
Gauss-Newton迭代法(续2)
• 类别 • 多项式增长曲线模型 • 简单指数型增长曲线模型 • 修正指数型增长曲线模型 • Logistic增长曲线模型 • Gompertz增长曲线模型
27
第27页/共45页
多项式增长曲线模型
• 一般数学形式

y• t
yt:a第0t

的a1某t
个经a济2t指2

;t :时a间k t
k
• a0,a1,…,ak:模型参数
• 至此完成非线性模型的OLS估计
18
第18页/共45页
Gauss-Newton迭代法(续3)
• 步骤
• 给出参数估计值 近似值
的初值 ,将
ˆ
在 处展开泰勒级数,取一阶
ˆ0
f xi , ˆ
ˆ0
• 计算

的样本观z测i 值ˆ0

第五讲异方差和自相关精制课件

第五讲异方差和自相关精制课件
检查是否具有异方差。 2。reg weight length mpg 检查是否具有异方差。 3。use production,clear
reg lny lnk lnl 检查是否具有异方差
精制课件
16
4。use nerlove,clear reg lntc lnq lnpl lnpf lnpk 检验是否具有异方差
对于经典计量模型,我们的基本假设有:
假设 对于解释变量的所有观测值,随机误差项
有相同的方差。
Var(i
)
E
(
2 i
)
2
i 1, 2,...n
Var(U ) E[U E(U )][U E(U )]' E(UU ')
E(μμ )
E
1
1
n
12 E
1 n
n
n
1
2 n
其二,可能的情况下对变量取自然对数。变量取对 数降低了变量的变化程度,因此有助于消除异方差。
精制课件
26
自相关
经典假设 随机误差项彼此之间不相关 Cov(i , j ) E(i j ) 0 i j i, j 1,2,, n • 如果存在自相关,则:
COV (ui,uj) 0
• 时间序列数往往存在着自相关,即:
精制课件
17
异方差的处理
1。使用“OLS+异方差稳健标准误”(robust standard error):这是最简单,也是目前比较 流行的方法。只要样本容量较大,即使在异方差 的情况下,只要使用稳健标准误,则所有参数估 计、假设检验均可照常进行。
sysuse nlsw88, clear
reg wage ttl_exp race age industry hours

计量经济学讲义(5)

计量经济学讲义(5)
19
* * Pr[ b 2 - t a se ( b 2 ) b 2 b 2 + ta se ( b 2 )] = 1 - a 2 2 * 给 定 b 2= b 2 下 , b 2以 概率 1 - a 落入 该 置 信区 间 。
而 不 是 真 值 b 2的 分 布 域 ( 置 信 区 间 ) 。
= 2.306
* 令 H 0 : b 2 = b 2 = 0.3
H 1 : b 2 0.3 Pr(0.2177 b 2 0.3823) = 0.95
拒绝H0
拒绝H0
2.5%
不拒绝H0
2.5%
β 2 = 0 .5091 落在此拒绝域
步骤 2:给定显著性水平 a 和自由度 n - 2, 查表得到临界值 t a
2 2 i
拒绝H0
2.5% 拒绝域
95%不拒绝H0
- t a se ( b 2 )
2
2.5% 拒绝域
= 由 Pr ( - t a t t a ) 1 - a 得 : Pr ( - t a
2 2 2
b
* 2
b
* 2
+ t a se ( b 2 )
2
β2
x
s
2
临界值
注 : 此 方 法 考 察 的 是 估 计 值 b 2的 分 布 域 ( 置 信 区 间 ) ,
2
步骤 3:考察计算的 t 值是否落在接受域( - t a , t a )中
2 2
0.2177
0.3
0.3823
β2
21
如果是的话,接受 H 0;否则拒绝 H 0。
22
消费-收入例子
0.5091 - 0.3 t= = 5.86 0.0357

完整的计量经济学 计量经济学第五章 线性回归的PPT课件

完整的计量经济学 计量经济学第五章  线性回归的PPT课件
被忽略的因素对被解释变量的影响,会从 误差项中表现出来,导致误差不再是纯粹 的随的变量关系为
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y

D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2

第五讲 自相关性

第五讲  自相关性

第5章 自相关性5.1 自相关性及其产生的原因5.1.1 什么是自相关性对于模型:t kt k t t t u x b x b x b b y +++++= 22110 (5.1.1)如果随机误差项的各期值之间存在着相关关系,即协方差0)())())(((),cov(≠=--=s t s s t t s t u u E u E u u E u E u u (s t ≠,k s t ,2,1,=)这时,称随机误差项之间存在自相关性或序列相关(Autocorrelation or serial correlation)。

随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶序列相关:0)(),cov(11≠=--t t t t u u E u u ,或者:)(1-=t t u f u 。

一阶自相关性可以表示为t t t v u u +⋅=-1ρ (5.1.2)其中ρ是t u 与1-t u 的一阶自相关系数,t v 是满足回归模型基本假定的随机误差项。

因为在大样本情况下,根据OLS 原理,ρ的OLS 估计式为:∑∑--=211ˆt t tuuu ρ(0)(=t u E )而t u 和1-t u 之间的相关系数r 为:∑∑∑--=2121t tt t uu u u r ≈ρˆ211=∑∑--t t tuu u (在大样本情况下,∑∑-≈212t t u u ) 因此,可以认为ρ是t u 与1-t u 的一阶自相关系数。

1≤ρ,1=ρ表示完全正自相关,t t t v u u +=-1;10〈〈ρ表示正自相关;0=ρ表示不存在自相关,t t v u =;01〈〈-ρ表示负自相关;1-=ρ表示完全负自相关,t t t v u u +-=-1。

自相关性的一般形式可以表示成:),,,(21p t t t t u u u f u ---= ,或者:t p t p t t t v u u u u ++++=---ρρρ 2211 (5.1.3)称之为p 阶自回归形式,或模型存在p 阶自相关。

计量经济学重点笔记第五讲

计量经济学重点笔记第五讲

第五讲 自相关高斯-马尔科夫假定五是:(,)0,i j Cov i j εε=≠如果该假定不成立,那么称模型的误差项是序列相关的。

由于序列相关主要针对于时间序列数据,因此我们把脚标i 改写为t ,把样本容量N 改写为T 。

笔记:1、如果基于横截面数据的回归模型其误差项是相关的,则称为空间自相关。

但是要记住,除非观察顺序具有某种逻辑或者经济上的意义,否则,在横截面数据回归中,观察顺序是可以随意的,因此,也许在某种观测顺序下误差项呈现出一种模式的自相关但在另一种观测顺序下又呈现出另外一种模式的自相关。

然而,当我们处理时间序列时,观测服从时间上的一种自然顺序。

2、在时间序列模型中,误差项经常被称之为冲击(Shock)。

对经济系统的冲击经常具有持续性,从而这为误差项序列相关提供了现实依据。

一、 自相关的后果与仅仅违背同方差假定一样,仅仅违背序列无关假定并不影响OLS 估计量所具有的线性、无偏性、一致性等性质。

在误差项序列相关的情况下,OLS 估计法并没有利用这个信息,故OLS 估计量不是最有效的。

我们下面来推导在误差项序列相关情况下OLS 估计量的方差表达。

假定真实模型是:t 01t t y x ββε=++则12ˆ12222()()()()(())()()[()]t t t t t t t t tx x Var x x x x Var x x Var x x x x βεδβεε-=+---==--∑∑∑∑∑∑ 在假定五:0,0t t jj εεδ+=≠下,有:122ˆ222()[()]tt t x x x x βεδδ-=-∑∑但如果假定五不成立,那么正确的方差表达式应该是:12ˆ1221122()2()()[()]t t t j T T tt t t j t j t x x x x x x x x βεεεδδδ+--+==-+--=-∑∑∑∑所以, OLS 法下通常的系数估计量方差的表示是错误的,一般来说它小于真实的方差。

《中级计量经济学》课件

《中级计量经济学》课件

05
计量经济学应用
宏观经济预测
总结词
宏观经济预测是计量经济学应用的重要 领域之一,通过建立计量模型,分析宏 观经济数据,预测未来经济走势。
VS
详细描述
计量经济学家使用各种统计和计量方法, 对宏观经济指标进行建模和预测。这些模 型可以帮助政策制定者了解未来经济形势 ,从而制定出更加科学合理的经济政策。
03
时间序列分析
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和季节 性等特点,可以反映经济现象随时间 的变化趋势和规律。
平稳性检验
定义
平稳性检验是对时间序列是否具有平稳性的检验,即检验时间序列的统计特性是否随时间而变化。
方法
常见的平稳性检验方法有ADF检验、PP检验和KPS检验等。
面板数据的检验与诊断
• 总结词:面板数据的检验与诊断是确保数据分析结果可靠的重要步骤, 包括异方差性检验、自相关检验和序列相关性检验等。
• 详细描述:在处理面板数据时,需要进行一系列的检验与诊断来确保数据分析结果的可靠性和有效性。这些检验与诊断 包括异方差性检验、自相关检验和序列相关性检验等。异方差性检验用于检查不同个体或时间的数据是否存在异方差现 象,自相关检验用于检查数据是否存在自相关问题,序列相关性检验用于检查不同时间的数据是否存在序列相关性问题 。通过这些检验与诊断,可以发现数据中存在的问题,并进行相应的处理和修正,以保证数据分析结果的准确性和可靠 性。
03
通过这些检验与诊断,可以评估模型的预测能力和解
释能力,以及发现模型可能存在的问题。
多元回归分析
01
多元回归分析是研究因变量与 两个或多个自变量之间关系的 统计方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The asymptotic normality of OLS OLS的渐近正态
3
Why considering consistency?
为什么考虑一致性
We have discussed the following finite sample (small sample) properties of the OLS estimators and test statistics: 我们已经讨论了有限样本(小样本)中OLS估计量和检验统计 量具有的如下性质:
Suppose true value of z=0, a random variable x =0.5 with probability 0.5, and x=-0.5 with probability 0.5. Then E(x)=0. But as x always fluctuates around the line x=0, its variance does not vanish as n goes to infinity. Therefore, it is an inconsistent estimator of z.
5
What is Consistency
什么是一致性
Let Wn be an estimator of based on a sample y1, y2 ,..., yn. Wn is a consistent estimator of if for every >0, Pr(|Wn | ) 0 as n . When Wn is consistent, we also say that is the probability limit of Wn , written as p lim(Wn ) .
Asymptotic Efficiency of OLS OLS的渐近有效性
2
Lecture Outline 本课提纲
What do we mean by saying consistency 一致性的含义是什么
Consistency of OLS estimators OLS估计量的一致性
Unbiasedness of OLS estimators (MLR.1-4) 在MLR. 1-4下 OLS估计量具有无偏性 BLUE of OLS estimators (MLR.1-5) 在MLR.1-5下 OLS估计量是最优线性无偏估计量 MVUE of OLS estimators (MLR.1-6) 在MLR.1-6 下OLS估计量是最小方差无偏估计量 The distribution of t (F) statistic is t (F)distribution t(F)统计量的分布为t(F)分布。
记plim(x) 为n趋向无穷大时x的取值。因此
plim(x)=z=0.
7
Consistency v.s. unbiasedness
一致性与无偏性
Is it possible for an estimator to be unbiased but inconsistent? 是否有可能(一个估计量)是无偏却不一致的?
These properties hold for any sample size n. 样本容量为任意n时,这些性质都成立。
4
Why consider consistency?
为什么考虑一致性
Since in many situations the error term is not normally distributed, it is important to know the asymptotic properties (large sample properties), i.e., the properties of OLS estimator and test statistics when the sample size grows without bound. 由于在很多情形下误差项可能呈现非正态分布,了解 OLS 估计量和检验统计量的渐近性,即当样本容量任意 大时的特性就是重要的问题。
Multiple Regression Analysis: OLS Asymptotics (1) 多元回归分析: OLS的渐近性(1)
y = b0 + b1x1 + b2x2 + . . . + bkxk + u
1
Chapter Outline 本章提纲
Consistency 一致性
Asymptotic Normality and Large Sample Inference 渐近正态和大样本推断
假设Z的真值为0,一个随机变量X以(n-1)/n的概率取值为Z,而以 1/n的概率取值为n。
E(x)=z* (n-1)/n+n* 1/n=1 X的期望为1
plim(x) is the value of x as n goes to infinity. Therefore plim(x)=z=0.
The Inconsistency of OLS when the zero conditional mean assumption fails 当零条件均值假设不成立时OLS没有一致性。
What do we mean by asymptotic normality and large sample inference 渐近正态性和大样本推断的含义是什么
令 Wn是基于样本 y1, y2,..., yn的关于 的估计量。
如果对于任何 >0,当 n 时Pr(|Wn | ) 0
Wn便是 的一个一致估计量。
当 Wn具有一致性时,我们也称
作是 p lim(Wn ) .为源自Wn的概率极限,写6
Consistency v.s. unbiasedness
一致性与无偏性
Is it possible for an estimator to be biased in finite sample but consistent in large sample?
一个估计量是否有可能在有限样本中是有偏的但又具有一 致性?
Suppose true value of z=0, a random variable x =z with probability (n-1)/n, and x=n with probability 1/n.
相关文档
最新文档