缩合反应-人名反应

合集下载

《药物合成反应》人名反应整理

《药物合成反应》人名反应整理

〈〈药物合成反应(闻韧主编第三版)》人名反应整理一、卤化反应1、Hunsdriecke反应(汉斯狄克反应):短酸银盐和漠或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烧。

2、Sandmeyer反应(桑德迈尔反应):用氯化亚铜或漠化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烧。

3、Gattermann反应(加特曼反应):将Sandmeyer反应条件改为铜粉和氢卤酸。

4、Schiemann反应(席曼反应):将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或将芳胺直接用亚硝酸钠和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烧。

二、烧化反应5、Willamson合成(威廉姆森合成):醇在碱(钠,氢氧化钠,氢氧化钾等)存在下与卤代烧反应生成酰的反应。

6、Gabriel合成(盖布瑞尔合成):将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾形成钾盐,然后与卤代烧作用,得N-烧基邻苯二甲酰亚胺,腓解或酸水解即可得纯伯胺。

7、Delepine反应(德勒频反应):用卤代烧与环六亚甲基四胺(乌洛托品Methenamine )反应得季俊盐,然后水解可得伯胺。

8、Leuckart-Wallach反应(鲁卡特-瓦拉赫反应):用甲酸及其俊盐可以对醛酮进行还原烧化,得各类胺。

9、Ullmann反应(沃尔曼反应):卤代芳烧与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。

三、酰化反应10、Friedel-Crafts反应(傅列德尔-克拉夫茨反应,也称傅-克酰基化反应):短酸及段酸衍生物在质子酸或Lewis酸的催化下,对芳烧进行亲电取代生成芳酮的反应。

11、Hoesch反应(赫施):睛类化合物与氯化氢在Lewis酸催化剂ZnC2的存在下与烧基或烷氧基取代的芳烧进行反应可生成相应的酮亚胺,再经水解则羟基或烷氧基取代的芳香酮。

12、Gattemann反应(伽特曼反应):将羟基或烷氧基取代的芳烧在AlC3、ZnC2催化下与停化氢及氯化氢反应生成牙胺盐酸盐,再经水解生成相应芳香醛的反应。

有机人名反应大全

有机人名反应大全

索引:Arbuzov 反应Arndt-Eister 反应.Baeyer-Villiger 氧化Beckmann 重排Birch还原Bischler-Napieralski 合成法Bouveault・Blanc 还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen酯缩合反应Claisen・Schmidt 反应Clemmerisen 还原Combes合成法Cope重排Cope消除反应Curtius 反应Dakin反应Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs反应Eschweiler-Clarke 反应Favorskii 反应Favorskii 重排Friedel—Crafts 烷基化反应Friedel—Crafts 酰基化反应Fries重排Gabriel合成法Arbuzov(加成仮应Gattermann 反应Gattermann・ Koch 反应Gomberg-Bachma nn 反应Hantzsch合成法Haworth反应Hell-Volhard-Zelinski反应Hinsberg 反应Hofmann烷基化Hofmann消除反应Hofmann重排(降解)Houben・Hoesch 反应Hunsdiecker 反应Kiliani孰化增碳法Knoevenagel 反应Knorr反应Koble反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein・Ponndorf 反应Meerwein・Ponndorf 反应Michael加成反应Norrish I和II型裂解反应Oppenauer 氧化Paal-Knorr反应Pictet・Spengler 合成法Pschorr 反应Reformatsky反应Reimer-Tiemann 反应Reppe合成法Robinson缩环反应Rosenmund 还原Ruff递降反应Sandmeyer 反应Schiemann反应Schmidt 反应Skraup合成法Sommelet-Hauser 反应Stephen 还原Stevens 重排Strecker氨基酸合成法Tiffeneau・Demja nov 重排Ullmann 反应Vilsmeier 反应Wagn er-Meerwei n 重排Wacker反应Williamson 合成法Wittig反应Wittig-Horner反应Wohl递降反应Wolff-Kishner-黄鸣龙反应Yu rev反应Zeisel屮氧基测定法亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基麟酸二烷基酯和一个新的卤代烷:R*(RO)3P +亚髓酸三烷荃酯R1夏------- - (RO)2P=O 4 RX烷基瞬酸二诜基酯卤代烷反应时,其活性次序为:Rl>RBr>R'Clo 除了卤代烷外,烯丙型或烘丙型 卤化物、 卤代醯、或卤代酸酯.对甲苯磺酸酯等也可以进行反应。

考研有机经典人名反应

考研有机经典人名反应

12.Darzens反应反应机理反应实例13.Dieckmann缩合反应机理反应实例14.Demjanov重排环烷基甲胺或环烷基胺与亚硝酸反应,生成环扩大与环缩小的产物。

如环丁基甲胺或环丁胺与亚硝酸反应,除得到相应的醇外,还有其它包括重排的反应产物:这是一个重排反应,在合成上意义不大,但可以了解环发生的一些重排反应。

反应机理15.Favorskii重排α-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状α-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯此法可用于合成张力较大的四元环。

反应机理反应实例16.Favorskii反应炔烃与羰基化合物在强碱性催化剂如无水氢氧化钾或氨基钠存在下于乙醚中发生加成反应,得到炔醇液氨、乙二醇醚类、四氢呋喃、二甲亚砜、二甲苯等均能作为反应的溶剂。

反应机理反应实例17.Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF 等)存在下,发生芳环的烷基化反应。

卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。

反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体 络合物,然后失去一个质子得到发生亲电取代产物:反应实例18.Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。

反应机理反应实例19.Fries重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。

重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F -或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

有机人名反应韩奇反应

有机人名反应韩奇反应

NH3 NH4
R''
O OR' R
O
H2N
R
中 间 体 II
R'O R O- H2N R
R''
O R'O R O- HN
O OR' R
R''
O R'O R O HN R O OR'
OR'O R
O HN
R''
O R'O R O HN
O OR' R
关环
R''
O R'O R -O N H
R''
O OR' R
CO2R' R
CHO
• Hantzsch反应的过程首先是一分子β-酮酸 酯与醛发生Knoevenagel反应得到缩合产物 关键中间体I,另一分子β-酮酸酯和氨发生 缩合反应得到相应的烯胺中间体II,然后中 间体I和II再通过分子内的加成—消除反应发 生环化形成二氢吡啶化合物,最后在氧化 剂作用下芳环化形成吡啶环:
Hantzsch反应
(韩奇反应)
• Hantzsch(韩奇)反应是由一分子醛、两分子β-酮 酸酯和及一分子氨发生缩合反应,得到二氢吡啶衍 生物。在经氧化或脱氢得到取代的吡啶-3,5-二甲酸 酯,后者可经水解、脱羧得到的相应的砒啶衍生物。
O R'O R O O OR' O R R''
R''
NH3
O2CR' R N H
NH4 NH3
O R'O R HO N H
O OR' R
O
-H2O

有机人名反应大全

有机人名反应大全

索引:Arbuzov反应Arndt-Eister反应Baeyer-Villiger 化氧Beckmann 重排Birch 原还Bischler-Napieralski 合成法Bouveault-Blanc原还Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 合反酯缩应Claisen-Schmidt 反应Clemmensen 原还bes 合成法Cope 重排Cope 消除反应Curtius 反应Dakin 反应Darzens 反应Demjanov 重排Dieckmann 合反缩应Elbs 反应Eschweiler-Clarke反应Favorskii 反应Favorskii 重排Friedel-Crafts基化烷反应Friedel-Crafts基化酰反应Fries 重排Gabriel 合成法Gattermann 反应Gattermann-Koch反应Gomberg-Bachmann反应Hantzsch 合成法Haworth 反应Hell-Volhard-Zelinski反应Hinsberg 反应Hofmann 基化烷Hofmann 消除反应Hofmann 重排(降解)Houben-Hoesch 反应Hunsdiecker 反应Kiliani 化增法氰碳Knoevenagel 反应Knorr 反应Koble 反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein-Ponndorf反应Meerwein-Ponndorf反应Michael 加成反应Norrish I和II型裂解反应Oppenauer 化氧Paal-Knorr 反应Pictet-Spengler合成法Pschorr 反应Reformatsky 反应Reimer-Tiemann 反应Reppe 合成法Robinson 反缩环应Rosenmund 原还Ruff 降反递应Sandmeyer 反应Schiemann 反应Schmidt 反应Skraup 合成法Sommelet-Hauser 反应Stephen 原还Stevens 重排Strecker 基酸合成法氨Tiffeneau-Demjanov 重排Ullmann 反应Vilsmeier 反应Wagner-Meerwein 重排Wacker 反应Williamson 合成法Wittig 反应Wittig-Horner 反应Wohl 降反递应Wolff-Kishner-黄鸣龙反应Yurév 反应Zeisel 甲基定法氧测Arbuzov(加成)反应磷酸三基作核代作用,生成基酸二基和一新的代:亚烷酯为亲试剂与卤烷烷膦烷酯个卤烷代反,其活性次序:卤烷应时为R'I >R'Br >R'Cl 。

常见有机人名反应

常见有机人名反应

常见有机人名反应Beckman 贝克曼重排:酮肟在酸性条件下变酰胺的反应(己内酰胺)Cannizzarro 康尼查罗歧化:无α-H的醛在强碱下生成醇和羧酸的反应(苯甲醛)Claisen 克莱森酯缩合:酯在强碱下形成碳负离子对另一酯进行亲核加成消去的反应(有机合成最重要的反应之一) Clemmensen 克莱门森还原法:醛酮在锌汞齐和浓盐酸下还原为烃的反应(羰基变亚甲基)Cope 科浦消去反应:叔胺用过氧化氢处理后加热发生的消去反应(霍夫曼规则)Corey-House 科瑞-豪斯反应:卤代烃和二烷基铜锂试剂的偶联(重要的连接碳链的反应)Cram 克拉姆规则:亲核试剂优先从空间阻力小的一侧进攻Dickerman 狄克曼缩合:反应类似酯缩合,成环Diels-Alder 狄尔斯-阿德尔反应:一般为1,3-丁二烯的衍生物和乙烯的衍生物的反应(协同反应)Fehling 菲林试剂:新制氢氧化铜把醛氧化成酸Fisher 费歇尔投影式:把碳链投影,横键朝前,竖键向后Friedel-Crafts 傅-克反应:苯环上引入烃基或酰基的反应Gabriel 盖布瑞尔合成法:邻苯二甲酰亚胺盐和卤代烃反应制伯胺Gattermann-Koch 盖德曼-柯赫反应:芳烃和盐酸及一氧化碳反应生成芳醛的反应Grignard 格利雅试剂:有机合成最重要试剂之一,卤代烃和镁及乙醚可制得Haworth 哈武斯式:糖的立体投影式Hinsberg 兴斯堡反应:芳烃用于鉴别第一、第二、第三胺的反应,试剂苯璜酰氯Hofmann 霍夫曼消除:季胺碱加热后的消除反应,反应方向和查依采夫规则相反霍夫曼降解:酰胺在溴的碱溶液中生成少一碳的胺Hucker 休克尔规则:π电子数为4n+2时封闭环具有芳香性(有例外,还需考虑环内H的张力)Knoevernagel 克脑文盖尔反应:醛酮在弱碱下和有α-H的化合物的缩合反应Lindar 林德拉催化剂:钯用碳酸钙醋酸铅处理,使活性降低,部分加氢的试剂Lucas 卢卡斯试剂:无水氯化锌和浓盐酸的溶液,用于鉴别伯仲叔醇Mannich 曼尼许反应:有α-H的酮和甲醛及铵盐的水溶液反应生成β氨基酮的反应Markownikoff 马尔科夫尼科夫规则:不对称烯烃加成时氢加氢多的碳Meerwein-Ponndorf 麦尔外因-彭多夫还原法:异丙醇铝把醛酮还原成醇的反应,逆反应为Oppenauer 欧芬脑氧化Perkin 珀金反应芳香醛和酸酐在羧酸钠存在下发生的类似羟醛缩合的反应,可得到α,β不饱和芳香酸。

常见的人名反应

常见的人名反应

R1 R2
C C
R4 R3
Pb(OAc)4
R1 R2
C O +
R4 R3
C O
D: Darzen 醛酮与α卤代酯的缩合反应
ClCH2COOEt NaOEt Cl R C - CHCOOEt R' O O CH COOEt + R C R' Cl R C - CHCOOEt R' O
O + ClCH2COOEt Na OEt O CHCOOEt
O RC R'

O RC
+ R'
CO
R + R'
R R'
O: OPPenauer仲醇氧化反应 仲醇在叔丁醇铝或异丙醇铝和丙酮作用下,氧化 成为相应的酮,而丙酮则还原为异丙醇。这个反 应相当于Meerwein-Ponndorf反应的逆向反应。
O C CH3 C CH3 CH2
C2H5O
O C OC2H5 CH3 C CH CH3 3
O
Cl CH3ONa
O CH3O
O C OCH3
Friedel-Crafts 芳环烷基化
芳烃与卤代烃、醇类或烯类化合物在Lewis催化 剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等) 存在下,发生芳环的烷基化反应。
O O R' + NH R C CH3 + H C H R'' H2O O R' RC CH2CH2 N R''
Meerwein-Ponndorf反应 醛或酮与异丙醇铝在异丙醇溶液中加热,还原成相 应的醇,而异丙醇则氧化为丙酮,将生成的丙酮由 平衡物中慢慢蒸出来,使反应朝产物方向进行。这 个反应相当于的逆向反应。

有机人名反应大全

有机人名反应大全

索引:Arbuzov反应Arndt-Eister反应Baeyer-Villiger 氧化Beckmann 重排Birch 还原Bischler-Napieralski 合成法Bouveault-Blanc还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 酯缩合反应Claisen-Schmidt 反应Clemmensen 还原Combes 合成法Cope 重排Cope 消除反应Curtius 反应Dakin 反应Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs 反应Eschweiler-Clarke 反应Favorskii 反应Favorskii 重排Friedel-Crafts烷基化反应Friedel-Crafts酰基化反应Fries 重排Gabriel 合成法Gattermann 反应Gattermann-Koch 反应Gomberg-Bachmann 反应Hantzsch 合成法Haworth 反应Hell-V olhard-Zelinski 反应Hinsberg 反应Hofmann 烷基化Hofmann 消除反应Hofmann 重排(降解)Houben-Hoesch 反应Hunsdiecker 反应Kiliani 氰化增碳法Knoevenagel 反应Knorr 反应Koble 反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化Paal-Knorr 反应Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应Reimer-Tiemann 反应Reppe 合成法Robinson 缩环反应Rosenmund 还原Ruff 递降反应Sandmeyer 反应Schiemann 反应Schmidt反应Skraup 合成法Sommelet-Hauser 反应Stephen 还原Stevens 重排Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应Vilsmeier 反应Wagner-Meerwein 重排Wacker 反应Williamson 合成法Wittig 反应Wittig-Horner 反应Wohl 递降反应Wolff-Kishner-黄鸣龙反应Yurév 反应Zeisel 甲氧基测定法Arbuzov(加成)反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

常见人名反应及机理

常见人名反应及机理

1. Aldol Condensation:羟醛缩合是一种有机反应:烯醇或烯醇负离子和羰基化合物反应形成β-羟基醛或者β-羟基酮,然后发生脱水得到共轭烯酮。

反应第一步为羟醛反应,第二部反应为脱水反应。

酸催化碱催化图例使用OCH3 做碱2.Baeyer –Villiger Oxidation酮在过氧化物如过氧化氢、过氧化羧酸等氧化下,在羰基和一个邻近烃基之间引入一个氧原子,得到相应的酯的化学反应。

醛可以进行同样的反应,氧化的产物是相应的羧酸。

2.Baylis –Hillman Reactionαβ-不饱和化合物与亲电试剂(醛、酮)在合适的催化剂作用下,生成烯烃α-位加成产物的反应。

催化剂一般采用DABCO(14-二氮双环222辛烷的缩写形式,俗称:三亚乙基二胺),生成物为烯丙基醇1。

贝里斯-希尔曼反应经历叔胺与活化烯烃的Michael 加成反应启动的加成-消除反应历程4. Beckmann Rearrangement是一个由酸催化的重排反应,反应物肟在酸的催化作用下重排为酰胺。

若起始物为环肟,产物则为内酰胺。

α-二酮、α-酮酸、α-叔烃基酮反式、α-二烷基氨基酮、α-羟基酮和β-酮醚生成的肟在路易,又斯酸或质子酸的作用下断裂为腈及相应的官能团化合物。

这个反应称为―异常贝克曼重排‖称非正常贝克曼重排;二级贝克曼重排;贝克曼断裂反应等。

5. Benzoin Condensation 安息香缩合反应,又称苯偶姻缩合,是一个有机反应,是氰离子催化下两分子芳香醛进行缩合生成一个偶姻分子的反应。

由于生成物是安息香(Ph-CO-CHOH-Ph)的衍生物,故名??. Birch Reduction钠和醇在液氨中将芳香环还原成14-环己二烯的有机还原反应。

Birch 还原的重要性在于:尽管剩下的双键(非芳香性)更为活泼,该反应却能停留在环己双烯上,而不继续还原。

反应中的钠也可以用锂或钾取代,使用的醇通常是甲醇或叔丁醇。

《药物合成反应(闻韧主编第三版)》人名反应整理(新)

《药物合成反应(闻韧主编第三版)》人名反应整理(新)

《药物合成反应(闻韧主编第三版)》人名反应整理一、卤化反应1、Hunsdriecke反应(汉斯狄克反应):羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃。

☆☆☆☆☆2、Sandmeyer反应(桑德迈尔反应):用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃。

☆☆3、Gattermann反应(加特曼反应):将Sandmeyer反应条件改为铜粉和氢卤酸。

☆☆4、Schiemann反应(席曼反应):将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或直接将芳胺用亚硝酸钠和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烃。

☆二、烃化反应5、Willamson合成(威廉姆森合成):醇在碱(钠、氢氧化钠、氢氧化钾等)存在下与卤代烃反应生成醚的反应。

☆☆☆☆6、Gabriel合成(盖布瑞尔合成):将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾形成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,再经过肼解或酸水解即可得纯伯胺。

☆☆☆☆☆7、Delepine反应(德勒频反应):用卤代烃与环六亚甲基四胺(乌洛托品Methenamine)反应得季铵盐,然后水解即可得伯胺。

8、Leuckart-Wallach反应(鲁卡特-瓦拉赫反应):用甲酸及其铵盐可对醛酮进行还原烃化,得各类胺。

☆9、Ullmann反应(沃尔曼反应):卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。

三、酰化反应10、Friedel-Crafts反应(傅列德尔-克拉夫茨反应,也称傅-克酰基化反应):羧酸及羧酸衍生物在质子酸或Lewis酸的催化下,对芳烃进行亲电取代生成芳酮的反应。

☆☆☆☆☆11、Hoesch反应(赫施反应):腈类化合物与氯化氢在Lewis酸催化剂ZnCl2等的存在下与烃基或烷氧基取代的芳烃进行反应可生成相应的酮亚胺,再经水解则得到羟基或烷氧基取代的芳香酮。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1・Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯〉甲基〉氢2・Corey-Kim氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3・Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4・Criegee臭氧化:烯烃臭氧化后水解成醛酮5・Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6・Dess—Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7・Fleming氧化•硅烷经过酸化,过酸盐氧化,水解以后形成醇8・Hooker氧化:2—羟基一3烷基一1,4—醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9・Moffatt氧化(Pfitzner—Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10・Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11・Riley氧化:活泼亚甲基(羰基a位等)被SeO2氧化成酮12・Rubottom氧化:烯醇硅烷经过m—CPBA和K2CO3处理后a—羟基化KHCO3氧化成醇13・Sarett氧化:CrO3・Py络合物氧化醇成醛酮14・Swern氧化:用(COC1)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15・Tamao—Kumada氧化:烷基氟硅烷被KF,H2O2,16・Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1・・Barton—McCombie去氧反应:从相关的硫羰基体中间用n—Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2・Birch还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基:带吸电子基团的苯环,取代基在烯丙位。

)3・Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4・Cannizzaro歧化:碱在芳香醛,甲醛或者其他无a—氢的脂肪氢之间发生氧化还原反应给出醇和酸5・Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6・Corey—Bakshi—Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7・Gribble吲哚还原:用NaBH4直接还原会导致N—烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8・Gribble二芳基酮还原.用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9・Luche还原:烯酮在NaBH4—CeCl3下发生1,2—还原形成烯丙位取代烯醇10・McFadyen—Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein—Ponndorf—Verley还原:用Al(OPr')3/Pr'OH体系将酮还原为醇12・Midland还原:用B—3—a—蒎烯一9—BBN对酮进行不对称还原13・Noyori不对称氢化.羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14・Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15・Wolff—Kishner—黄鸣龙还原.用碱性肼将羰基还原为亚甲基成烯反应:1・Boord反应:B-卤代烷氧基与Zn作用生成烯烃2・Chugaev消除:黄原酸酯热消除成烯3・Cope消除:胺的氧化物热消除成烯烃4・Corey-Winterolefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5・Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6・Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7・Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8・Peterson成烯反应:从a-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting反应9・Ramberg-Backlund烯烃合成:A-卤代砜用碱处理生成烯烃10・Witting反应:羰基用膦叶立德变成烯烃11・Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro—Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg—Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F—或者OH—之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind—Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry偶联•羰基用低价Ti,如TiC13/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille—Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和a—卤代酯和Zn反应得到B—酮酯Benzoin缩合:芳香醛经CN—催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为B—酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃》然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从a—卤代酯和羰基化合物生成a,B—环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evansaldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi—Thorpe缩合(2—吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2—吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对a,B-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki—Hiyama—KIshi反应:Cr—Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和B—酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应.有机Zn试剂(从a—卤代酯来)对羰基的亲核加成反应Reimer—Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正不稳定的叶立德和醛发生的Witting反应生成Z—烯烃,而改进的Schlosser反应可以得到E—烯烃Stetter反应(Michael—Stetter反应):从醛和a,B—不饱和酮可以得到1,4—二羰基衍生物。

基础有机化学人名反应

基础有机化学人名反应

基础有机化学人名反应在有机化学领域,有许多重要的反应被以其发现者的名字命名,这些被称为人名反应。

这些反应在有机合成中起着关键的作用,帮助化学家们合成各种有机化合物并推动了该领域的发展。

本文将介绍几个代表性的基础有机化学人名反应。

1. 邻菲罗啉重排反应(Friedel-Crafts重排反应)邻菲罗啉重排反应是以法国化学家Charles Friedel和美国化学家James Crafts的名字命名的。

该反应可以将芳香烃转化为更高反应活性的中间体,如芳香醇、醛、酮等。

这个反应通常发生在有氯化铝或氯化铟等路易斯酸催化剂的存在下。

邻菲罗啉重排反应在有机合成中非常重要,可用于合成多种重要有机化合物,如苯甲酸、乙酸苯酯等。

2. 斯内夫反应(SnCl4催化的醇醚缩合反应)斯内夫反应以德国化学家Heinrich Snethlage的名字命名。

该反应是一种使用SnCl4作为催化剂,在醇和醚之间发生的缩合反应。

斯内夫反应广泛用于有机合成中,可用于合成醚、酯等化合物。

此外,其他的Sn催化剂也可以用于不同类型的醇醚缩合反应。

3. 阿尔金反应(AlCl3催化的醛酮缩合反应)阿尔金反应是以德国化学家Heinrich Alkohol的名字命名。

该反应是一种醛和酮之间的缩合反应,使用AlCl3作为催化剂。

阿尔金反应在有机合成中被广泛应用于合成α,β-不饱和酮、羧酸等化合物。

4. 卡巴列罗反应(Gabriel合成)卡巴列罗反应以德国化学家Siegmund Gabriel的名字命名。

该反应是一种通过使用氨和HCl与马来酰亚胺反应,生成胺的方法。

这个反应被广泛用于制备一级胺,并且在药物合成中具有重要的应用。

5. 罗宾森环化反应(Robinson环化反应)罗宾森环化反应是以英国化学家Sir Robert Robinson的名字命名。

这个反应可以将某种具有共轭体系的化合物环化为具有更稳定的环形结构。

罗宾森环化反应在天然产物合成和人工合成中都有广泛的应用。

实用|缩合成环重排人名反应

实用|缩合成环重排人名反应

实用|缩合成环重排人名反应引言数据图表是进行知识归纳整理最有效的方法之一。

常用、实用的数据图表,可以给人们学习、工作、生活带来极大的便利。

化学科学,不得不提到的表格是俄国科学家门捷列夫(Dmitri Mendeleev)于1869年首次提出的元素周期表(The Periodic table of elements):他将当时已知的63种元素,依据元素相对原子质量大小,以表的形式进行排列,把化学性质相似的元素放在同一列,制成元素周期表的雏形。

150多年来,化学元素周期表不断地得到填充和完善,如今第7周期全部填满了。

除了元素周期表,化学各类学科还有众多的实用数据表格。

小编将不定期推出实用数据表格,以方便各位读者朋友,希望能够给大家学习、工作提供便利。

下面,小编给大家分享一些常见的保护基Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi 处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理2 进行的分子内重排反应:一般认为是按 SN反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

药物合成反应 人名反应

药物合成反应 人名反应
P156
20
Delépineamine synthesis.
Delepine胺合成
用卤代烃与环六亚甲基四胺(乌洛托品)反应得季铵盐,然后水解可得伯胺。
P057
21
Dieckmanncondensation
若两个酯在同一分子之内,在上述条件下可发生分子内缩合,得环状β-酮酸酯,此反应称为Dieckmann反应。
P194
58
Stobbecondensation
丁二酸酯或α-烃基取代的丁二酸酯在碱性试剂存在下,与羰基化合物进行缩合而得α-烷烃或芳烃亚甲基丁二酸单酯的反应。(常用碱性试剂有醇钠,叔丁醇钾,氰化钠和三苯甲烷钠等)
P153
59
Streckeramino acid synthesis
脂肪族或芳香族醛、酮类与氰化氢和过量氨(或胺类)作用生成α-氨基腈,再经酸或碱水解得到(dl)-α-氨基酸类的反应。
P140
39
Meerwein–Ponndorf–Verleyreduction
将醛、酮等羰基化合物和异丙醇铝在异丙醇中共热,可还原得到相应的醇,同时将异丙醇氧化成丙酮。
P267
40
Michael addition
活性亚甲基化合物和α,β-不饱和羰基化合物在碱性催化剂存在下发生加成缩合,生成β-羰烷基类化合物。
芳醛与含有α-活泼氢的醛、酮之间的缩合。芳醛和脂肪醛、酮在碱催化下缩合生成β-不饱和醛酮的就反应。
P132
15
Clemmensenreduction
在酸性条件下,用锌汞齐或锌粉还原醛基、酮基为甲基和亚甲基的反应。
P262
16
Cope rearrangement
1,5-二稀(连二烯丙基)经过[3,3]-σ迁移,异构化成另一双烯丙基衍生物的反应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ph 3P-CH 2
(I)
Ph 3P=CH 2
(II)
贡献大
在相邻位置上带有相反电荷的两性离子称为叶利德
(ylide)。磷叶利德也称为魏悌息试剂。
魏悌息试剂制备
Ph3P + CH3X C6H5Li Ph3+-CH2Ph3P+-CH3X-
Ph3P + XCH2COOC2H5
K2CO3
+ Ph3P
Ph3P+-CH2COOC2H5 X-
NaOEt EtOH, 25℃
H Ph Ph Ph C C + C C Ph H H H
41 % 35 %
魏悌息-霍纳尔试剂
O (EtO) 2P CHR
(I)
O (EtO) 2P-CHR
(II)
O
Et
(C2H5O)3P + RCH2Br
-EtBr
(EtO) 2P CH 2R Br-
O (EtO) 2P-CH 2R
缩合反应
——李昊坤
缩合反应
分子间或分子内不相连接的两个 碳原子连接起来形成新的碳碳键,成 为新的化合物,同时往往有比较简单 的无机或有机小分子化合物生成。这
样的反应统称为缩合反应。
一、 曼尼期反应--氨甲基化反应 二、 麦克尔加成反应 三、 鲁宾逊缩环反应 四、 魏悌息反应和魏悌息--霍纳尔反应 五、 达参反应
O (CH3C)2CH-CH 2-CH=CH-O EtOH
O (CH3C)2CH-CH 2-CH=CH-OH O (CH3C)2CHCH 2CH2CHO
互变异构
麦克尔加成反应的规律
1. 不对称酮进行麦克尔加成时,反应总是在多取代的 -C上发生。
O
O CH3 + CH2=CH-C-CH 3
EtO -
实 例
CH3 N CH3 CHO + CHO
给体(受体)
KCN 醇-水
受体(给体)
CH3 N CH3
OH C C H O
CH3 + N CH3
OH C C O H
二苯乙醇酸重排
1、定义: α-二酮在浓碱作用下发生重排,生成安息 香酸的重排反应称为二苯乙醇酸重排。 2、反应机理:
O C6H5C O CC6H5 OH140 oC O OC6H5C C C6H5 OH
4 5
1,6-加成的反应机理如下
(C2H5OOC)2CH2 碱
(C2H5OOC)2CH
CH=CH-CH=CH-C=O CH3 CH3
(C2H5OOC) 2CHCH-CH=CH-CH=C-O CH3 CH3
EtO H
(C2H5OOC) 2CH-CH-CH=CH-CH=C-OH CH 3 CH 3
O (C2H5OOC) 2CH-CH-CH=CH-CH 2CCH 3 CH 3
α
β
不对称酮反应时,亚甲基比甲基优先反应。
eg 2:
O CH3
+ CH2O + (CH3)2NH
HC l , H 2O
O CH 3 CH 2N(CH 3)2 67 %
O
+
(CH3)2NCH2
CH 3
33 %
2. 在芳、杂环上引入氨甲基 eg 3
eg 4:
3. 制备杂环化合物
eg 5 CH2 CH CH2 eg 6
O CH3CCH 2CH2NR3I-
碱 ① 曼氏碱热消除
O CH3CCH=CH 2
O

G ② 麦克尔加成
O G
O

OH G
O
③ 分子内醇醛缩合
应用实例
CH3
eg 1. 选用合适的原料合成
O + CH2=CHCCH 3
O
C2H5O C2H5OH
-
CH3 O
CH3 O
CH3 O
O
OH-
CH3 OH O
-
O
R H
H R'
O + (EtO)PONa
反式烯烃
二乙磷酸钠 (溶于水,后 处理较易)
反 应 机 理
反应规律:生成的烯烃以反式为主.
魏悌息反应和魏悌息-霍纳尔 反应的应用实例
1. 用来制备环外烯烃
O + Ph3P-CH2
Et2O
25oC
CH2
35%-40 %
2. 制备α,β-不饱和羰基化合物
3. 制备丙二烯衍生物
O CH3CH=CH-CH=CH-COCH 3 + CH2(COOC 2H5)2

CH3-CH-CH=CH-CH 2COOCH 3 CH(COOC 2H5)2
6 7
5
4
3
2
1
+
2 1
1,6-加成产物 (72 %)
CH3CH=CH-CH
1,4-加成产物 (8 %)
3
CH2COOCH 3 CH(COOC 2H5)2
CO2Et H
CH3 C C H C6H5 CO2Et OOH-
-Br-
CH3 C C6H5 O
CHCO2Et
H+
CH 3 C C 6H 5 O
CH H
C O
O
-CO2
CH 3 C=CH-OH C6H5
CH 3 CHCHO C 6H 5
应 用
合成环氧酸酯,合成比原料醛、酮多一个碳的醛、酮。
Cl RCHCO2Et t-BuOK, 0-15℃ O ClCH 2CO2Et t-BuOK, 0-15℃, 3h
-H2O H+ or OH-
50 %
O
Eg 2. 选用合适的原料合成
O O O O CH 3CCH 2 CH 2 CH 2COC 2H5
O
剖 析
O O *1 CH 3CCH 3 + CH2=CHCOC 2H5
NaOEt EtOH
O O CH3CCH 2CH2CH2COC 2H5
EtONa
O O
魏悌息反应和魏悌息-霍纳尔反应 一、魏悌息试剂:
O(C6H5)2C=C=O + [ (EtO) 2P+-CHCOOC 2H5 ] Na+
(C6H5)2C=C=CH-COOC 2H5
32 %
4. 合成多烯类天然产物
CH=O
(10 C)
+ Ph 3P
(10 C)
CH2OH
CH 2OH
Vitamin A (20 C)
达参反应
醛、酮与α-卤代酸酯在强碱(RONa, NaNH2, (CH3)3COK) 催化作用下互相作用,生成α,β-环氧酸酯的反应称为达参 (Darzen, G.)反应.
* C=O + BrCH 2CO2Et
NaNH2 or RO-
C CH CO2Et O
α,β-环氧酸酯
β
α
OH-
H+
CHCHO
* CH2 生成醛 CHR 生成酮
反应机理
NaNH2 CH3 C=O C6H5
BrCH 2COOEt
Br CH3 C C C6H5 O-
BrCHCOOE t
Br +
产生碳负离子
六、 安息香缩合反应和二苯乙醇酮重排
曼尼期反应——氨甲基化反应
具有活泼氢的化合物、甲醛、胺同时缩合,活 泼氢被氨甲基或取代氨甲基取代的反应,称为曼尼 期 (Mannich, C.)反应,生成的产物称为曼氏碱。
O CH 3-C-CH 2-H + CH 2O + HN O CH 3-C-CH 2-CH 2N
O (EtO) 2P-CHR
NaH
O (EtO) 2P CHR
魏悌息-霍纳尔反应
魏悌息-霍纳尔试剂与醛、酮反应,制备烯烃, 这一反应称为魏悌息(Wittig, G.) -霍纳尔(Horner, L.) 反应。(比魏悌息反应容易进行)
O RCH +
_ (EtO)2PCHRNa+ O + _ (EtO)2P CHRNa+
CHCOOC2H5
Na2CO3, NaOH, NaOR, NaNH2, NaH, RLi
魏悌息反应
魏悌息试剂与醛、酮反应, 生成烯烃, 称为魏悌息(Wittig, G.)反应.
C=O + [ Ph 3P-CR 2 Ph3P=CR2 ]
C=CR 2 + Ph 3P=O
反 应 机 理
反应规律
*2
+ PhCHO + Ph3P-CH2C6H5Cl-
给体 受体 EtO EtOH
O α β (CH 3C) 2CH CH 2CH2CHO
5 4 3 2 1,5-二羰基化合物 1
常用碱性催化剂:
N H
, Et3N, KOH, EtONa, (CH3)3COK, R4N+OH-
反应机制
O (CH 3C)2CH2
O EtO (CH 3C)2CH
-
CH2=CH-CH=O#43;
R R'
取代的氨甲基
试用原料的范围
1. 具有α-H的醛、酮、酸、酯、硝基化合物、腈、末端炔烃、含 有活泼氢的芳香环系化合物。
H HO H N CH3
H N H
2. 二级胺。
反应机制
R
CH 2=O
H
+
CH 2=OH
R'
NH
R R'
H+转移
N-CH2OH H
R R'
N-CH2-OH 2
-H2O
实例:由环己酮转 化成其他化合物
R O CO 2Et CO 2Et
相关文档
最新文档