正弦函数图像的变化

合集下载

正弦余弦函数的图像性质(周期、对称、奇偶)

正弦余弦函数的图像性质(周期、对称、奇偶)



正弦函数y=sinx的图 象
-
-
-
x
-
每隔2π ,图象重复出现
− 6π − 4π
-
y
即对任意x,y = sin x + 2π) sin x ( =
1-1-
− 2π
-
o



如果令f(x)= 如果令 ( )=sinx,则 f(x+2π)= (x) , ( + )=f( )= )= 抽象 f (x +T) = f(x)
y
2
+ kπ,k ∈ Z
(kπ,0),k∈Z , ) ∈
余 弦函 数 y=cosx的 图象 的
1-
− 4π
-
− 2π
-
o
- 1心: 无数个 对称中心:
-
-
x
0 k ( + kπ, )( ∈ z) 2
π
巩固运用
例4、判断下列函数的奇偶 性 5 (1) f( x) 2sin (2x+ π); = 2
-
-
-
-
x
-
正弦余弦函数对称性
正弦函数.余弦函数的图象和性质 正弦函数 余弦函数的图象和性质
y
正弦 函数 y=sinx的 图象 的
1-
− 6π
对称轴: 无数条 对称轴:
x=
− 6π
-
对称轴: 无数条 对称轴: x=kπ, x=kπ,k∈Z
-
− 4π
-
− 2π
-
o
-1 -



x
π
对称中心: 无数个 对称中心:
答: T =

三角函数的图像变换

三角函数的图像变换

cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。

三角函数的变化规律总结

三角函数的变化规律总结

三角函数的变化规律总结三角函数是数学中常见的函数之一,包括正弦函数、余弦函数和正切函数。

它们在数学、物理、工程等领域有广泛的应用。

通过观察和研究,我们可以总结出三角函数的变化规律。

一、正弦函数的变化规律正弦函数的图像是一条连续的曲线,其定义域为整个实数集,值域在[-1,1]之间变化。

正弦函数的变化规律主要包括以下几点:1. 周期性:正弦函数是周期函数,其周期是2π。

也就是说,对于任意实数x,有sin(x+2π)=sin(x)。

2. 对称性:正弦函数关于原点对称,即sin(-x)=-sin(x)。

这意味着,正弦函数的图像关于y轴对称。

3. 最值点:正弦函数在整个定义域上有最大值和最小值,分别为1和-1。

最大值出现在x=π/2+kπ(k为整数),最小值出现在x=3π/2+kπ(k为整数)。

4. 单调性:正弦函数在每个周期内是先增后减或先减后增的。

当x 在[2kπ, (2k+1)π](k为整数)范围内增加时,sin(x)递增;当x在[(2k+1)π, (2k+2)π]范围内增加时,sin(x)递减。

二、余弦函数的变化规律余弦函数的图像也是一条连续的曲线,其定义域为整个实数集,值域在[-1,1]之间变化。

余弦函数的变化规律包括以下几点:1. 周期性:余弦函数也是周期函数,其周期是2π。

对于任意实数x,有cos(x+2π)=cos(x)。

2. 对称性:余弦函数关于y轴对称,即cos(-x)=cos(x)。

这意味着,余弦函数的图像关于y轴对称。

3. 最值点:余弦函数在整个定义域上有最大值和最小值,分别为1和-1。

最大值出现在x=kπ(k为整数),最小值出现在x=(2k+1)π(k为整数)。

4. 单调性:余弦函数在每个周期内是先减后增或先增后减的。

当x在[2kπ, (2k+1)π](k为整数)范围内增加时,cos(x)递减;当x在[(2k+1)π, (2k+2)π]范围内增加时,cos(x)递增。

三、正切函数的变化规律正切函数的图像也是一条连续的曲线,其定义域是除去所有使得cos(x)=0的实数之外的整个实数集。

正弦函数和余弦函数的图像与性质.ppt

正弦函数和余弦函数的图像与性质.ppt

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(

x) 可知余弦函数
y

cos
6
x的图像可由
y

2 sin
x
的图像向左平移
2
4
个单位得到.

1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2

3 2
2
2 8
5
-10

高考数学中的三角函数图像及解析式

高考数学中的三角函数图像及解析式

高考数学中的三角函数图像及解析式在高中数学的学习中,三角函数是一个非常重要的概念之一,而三角函数的图像及解析式往往是高考数学中的常考的知识点之一。

在本文中,我们将详细地探讨三角函数的图像及解析式,帮助读者更好地掌握这一知识点,提高高考数学的成绩。

一、正弦函数的图像及解析式正弦函数是三角函数中最为基础的一个函数,其通式为:y = sin x正弦函数的图像为一条波形曲线,波峰和波谷交替出现,形状类似于一条弯曲的绳子或者水波。

正弦函数的图像以 y 轴为对称轴,且有一个最高点和最低点,最高点为(π/2,1),最低点为(3π/2,-1)。

而整张图像的周期为2π,也就是说函数在 x 轴上每隔2π 个单位长度就会重复一次。

二、余弦函数的图像及解析式余弦函数也是一个基础的三角函数,通式为:y = cos x余弦函数的图像也是一条波形曲线,波峰和波谷也是交替出现,但是与正弦函数的图像不同,余弦函数图像是以 x 轴为对称轴,它也有一个最高点和最低点,最高点为(0,1),最低点为(π,-1)。

余弦函数的周期也是2π。

三、正切函数的图像及解析式正切函数是三角函数中比较特别的一个函数,通式为:y = tan x正切函数的图像类似于一条斜率一直不断变大或变小的直线,它的图像在π/2 和3π/2 处有一个垂直渐近线。

除此之外,还有一个水平渐近线 y=0。

正切函数的周期为π。

四、余切函数的图像及解析式余切函数是正切函数的倒数,通式为:y = cot x余切函数的图像是一条波形曲线,它也有一个垂直和水平的渐近线。

余切函数的周期也是π。

总之,三角函数的图像及解析式是高考数学中的重要知识点,掌握这些知识不仅能够帮助我们在数学考试中取得好成绩,还能增进我们对数学知识的理解和掌握。

正弦函数图像和性质

正弦函数图像和性质

2.求函数的值域,并求取得最值时X的取值集合。
(1)y= - 2sinx
(2)y= 2sin(2x+ 4 )
x [ , ]
4
(3)y= sin2x + 2sinx - 2
-4 -3
-2
y
1
-
o
-1
2
周期的概念
3
4
5 6x
一般地,对于函数 f (x),如果存在一个非零常数 T ,
使得当 x 取定义域内的每一个值时,都有
练习:函数y=asinx+b的最大值为2,最小值为-1,
则a=________,b=________.
[解] 当 a>0 时,由题意得
[答案] 32或-32
1 2
a+b=2 -a+b=-1
,解得ab= =3212
.
当 a<0 时,由题意,得- a+a+ b=b= -21 ,
解得ab= =- 12 32
.
正弦函数的奇偶性
由公式 sin(-x)=-sin x
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
2
2
2
-1
x
π 2
3π 2
2 5π
2
3 7π 4 2
正弦函数的单调性
观察正弦函数图象
x
π 2

sinx -1
0… 0
π…
2
1

3π 2
0
-1
在闭区间 π22π2k,π,π2π2 2kπ, k Z 上, 是增函数;
f ( x+T )= f (x)
,那么函数 f (x) 就叫做周期函数,非零常数 T 叫做这个

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律在高中数学的学习过程中,三角函数是一个重要的内容。

它们在解决几何问题、物理问题以及工程问题中发挥着重要的作用。

而要理解三角函数的性质和应用,我们首先需要掌握它们的基本变换规律。

一、平移变换规律平移是指将函数图像沿着横坐标或纵坐标方向进行平移。

对于三角函数而言,平移变换规律可以用以下形式表示:1. 正弦函数的平移变换规律:y = a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的平移变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

通过平移变换规律,我们可以将函数图像在平面上进行移动,从而观察到函数图像的变化。

二、伸缩变换规律伸缩是指将函数图像沿着横坐标或纵坐标方向进行拉伸或压缩。

对于三角函数而言,伸缩变换规律可以用以下形式表示:1. 正弦函数的伸缩变换规律:y = a*sin(b(x-c)) + d其中,a表示纵坐标方向的伸缩倍数,b表示横坐标方向的伸缩倍数,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的伸缩变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示纵坐标方向的伸缩倍数、横坐标方向的伸缩倍数、横坐标方向平移量和纵坐标方向平移量。

通过伸缩变换规律,我们可以观察到函数图像在平面上的形状发生变化,从而更好地理解函数的性质。

三、反射变换规律反射是指将函数图像沿着横坐标或纵坐标方向进行镜像。

对于三角函数而言,反射变换规律可以用以下形式表示:1. 正弦函数的反射变换规律:y = -a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的反射变换规律:y = -a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

正弦型函数的图像性质

正弦型函数的图像性质
详细描述
相位是正弦波在时间轴上的偏移量,决定了波形开始的时间点。当 $varphi > 0$ 时,图像向右位移;当 $varphi < 0$ 时,图像向左位移。相位的变化不会 改变波形周期和振幅,但会影响波形在时间轴上的位置。
03 正弦型函数的奇偶性
奇函数性质
奇函数性质
正弦型函数是奇函数,因为对于任意x,都有f(-x) = -f(x)。这意 味着正弦型函数的图像关于原点对称。
对称轴
正弦函数图像关于y轴对称
正弦函数$y = sin x$的图像关于y轴对称,即当$x$取正值和负值时,$y$的值相 同。
余弦函数图像关于x轴对称
余弦函数$y = cos x$的图像关于x轴对称,即当$y$取正值和负值时,$x$的值相 同。
对称中心
要点一
正弦函数图像关于点$(kpi, 0)$对 称
通过调整A、ω、φ的值,可以获 得不同振幅、周期和相位偏移的 正弦型函数。
单位圆与三角函数关系
单位圆是指在平面直角坐标系中, 以原点为圆心、半径为1的圆。
三角函数与单位圆密切相关,单 位圆上的点可以用三角函数来表
示。
在单位圆上,正弦和余弦函数的 值等于点的纵坐标和横坐标的比 值,正切函数的值等于点的纵坐
图像特点
偶函数的图像关于y轴对称,即当 x=0时,y达到最大或最小值。在 x>0和x<0的区间内,函数值相等。
应用实例
偶函数性质在电磁学中有广泛应用, 例如磁场分布等。
既非奇又非偶函数性质
既非奇又非偶函数
性质
正弦型函数既不是奇函数也不是 偶函数。虽然它的图像关于原点 和y轴都有对称性,但它不符合奇 偶函数的严格定义。
振幅与图像高度

正弦函数的图像课件

正弦函数的图像课件
解决实际问题
通过掌握正弦函数的性质和图像, 可以解决许多实际问题,提高解决 实际问题的能力和素养。
未来研究方向和挑战
深入研究和探索
随着科学技术的发展,正弦函数的应用领域也在 不断扩大和深化,需要进一步研究和探索其性质 和应用。
数值分析和计算物理
随着计算机技术的发展,如何利用正弦函数进行 数值分析和计算物理的研究也是未来的一个重要 方向。
数学建模和算法设计
如何利用正弦函数建立数学模型和设计算法,是 未来研究的一个重要方向。
跨学科应用
正弦函数作为数学中的基础函数,可以与其他学 科进行交叉融合,例如与物理学、工程学、经济 学等学科的结合,需要进一步探索其跨学科应用 的价值和可能性。
THANKS
感谢观看
图像形状
正弦函数和对数函数的图像形状也不同。正弦函数的图像呈现波形,而对数函数的图像 呈现向上或向下凸出的趋势。
05
总结与展望
正弦函数的重要性和应用价值
数学基础
正弦函数是数学中的基本函数之 一,是学习三角函数、复数、微
积分等数学领域的基础。
应用广泛
正弦函数在物理学、工程学、经济 学等多个领域都有广泛的应用,例 如振动分析、交流电、信号处理等 。
振幅和相位
通过调整正弦函数中的振幅和相位参 数,可以改变图像的高度和位置。了 解这些参数对理解正弦函数图像的影 响非常重要。
03
正弦函数的应用
在物理中的应用
简谐振动
正弦函数描述了许多物理现象, 如简谐振动。在物理中,简谐振 动是一种基本的振动类型,其位 移与时间的关系通常可以用正弦
函数表示。
交流电
操作步骤
在软件中选择相应的函数图像绘制工具,输入正弦函数公式(例如y=sin(x)), 然后选择x的取值范围(例如-π到π),最后点击“绘制”按钮即可生成正弦函数 的图像。

正弦函数图象及其变换

正弦函数图象及其变换

π π π 2π 6 3 2 3 3 1 3 1 2 2 2
5π π 7π 4π 3π 5π11π 6 6 3 2 3 6 2π 3 3 10 1 0 1 1 1 2 2 2 2 2
.
π/2
o1
A
.o
-1
. π
3π/2
2

x
.
函数y=sinx, x∈[0,2π]的图象 函数 ∈ π 的图象
五点画图法
A
y=
1 2
5π π 12
A
-A
0
5π π 6

x
(3) y=sin2x
解: x 2x 0 0
π 4 π 2 π 2 3π 4 π 3π 2π π 2
1 (4) y=sin x 2
x
1 x 2 1 sin x 2
0 0 0
π
π 2
2π 3π 4π π π π
π
π
3π 2π π 2
sin2x 0 y 1 o -1
π/2
y=1+sinx, x∈[0,2π] ∈ π
.
π 3π/2
.
o
.

实质: 实质:f(x)=sinx向左平 向左平 移π/2,即f(x+π/2)=sin , (x+ π/2)=cosx
y
1
π -4
π -3
π -2

-1
o
π/2 π 3π/2 2 π
3 π
4 π
x
函数y=cosx x∈R的图象 函数 ∈ 的图象
变换后正弦函数的五点法作图
y=Asin(wx+φ)(A>0, w>0)中的常数 ,w, φ 中的常数A, , 中的常数 的作用 正数A决定了? 正数 决定了? 决定了

三角函数的正负变化规律

三角函数的正负变化规律

三角函数的正负变化规律正文:三角函数是数学中常见的函数之一,包括正弦函数、余弦函数和正切函数。

在数学和物理等领域中,我们经常需要研究它们的性质和变化规律。

本文将详细探讨三角函数的正负变化规律,并分析其相关特点。

一、正弦函数的正负变化规律正弦函数通常用sin(x)表示,其中x为自变量。

正弦函数的图像在坐标系中表现为一条连续的曲线,其正负变化规律如下:1. 当x = 0时,sin(x) = 0,即正弦函数在原点处取得零值;2. 当x = π/2 + 2kπ时(k为整数),sin(x) = 1,即正弦函数在每个周期的最高点处取得最大值1;3. 当x = π/2 + (2k + 1)π时(k为整数),sin(x) = -1,即正弦函数在每个周期的最低点处取得最小值-1;4. sin(x)在[0, π/2]区间上单调递增,在[π/2, π]上单调递减,以此类推,每个周期都重复这一规律。

二、余弦函数的正负变化规律余弦函数通常用cos(x)表示,其图像也是一条连续的曲线。

余弦函数的正负变化规律如下:1. 当x = π/2 + 2kπ时(k为整数),cos(x) = 0,即余弦函数在每个周期的最高点处取得零值;2. 当x = 2kπ时(k为整数),cos(x) = 1,即余弦函数在每个周期的中点处取得最大值1;3. 当x = (2k + 1)π时(k为整数),cos(x) = -1,即余弦函数在每个周期的最低点处取得最小值-1;4. cos(x)在[0, π/2]区间上单调递减,在[π/2, π]上单调递增,以此类推,每个周期都重复这一规律。

三、正切函数的正负变化规律正切函数通常用tan(x)表示,其图像也是一条连续的曲线。

正切函数的正负变化规律如下:1. 当x = kπ时(k为整数),tan(x) = 0,即正切函数在每个周期的最高点和最低点处取得零值;2. 正切函数在(2k - 1)π/2和(2k + 1)π/2之间为正数,这是因为在这个区间内,正切函数处于斜率递增的状态;3. 正切函数在(kπ - π/2, kπ + π/2)之间为负数,这是因为在这个区间内,正切函数处于斜率递减的状态;综上所述,三角函数的正负变化规律可以总结如下:正弦函数的正负变化规律是:周期内从最小值-1递增至最大值1,再从最大值1递减至最小值-1。

正弦、余弦、正切函数图象及其性质

正弦、余弦、正切函数图象及其性质

函数正弦函数y=sinx 余弦函数y=cosx 正切函数y=tanx图像定义域R R{x∣x≠Kπ+π/2,K∈Z}值域[-1,1][-1,1]R周期性最小正周期都是2π最小正周期都是2π最小正周期都是π奇偶性奇函数偶函数奇函数对称性对称中心是(Kπ,0),K∈Z;对称轴是直线x=Kπ+π/2,K∈Z对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z对称中心是(Kπ/2,0),K∈Z单调性在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增最值当X=2Kπ(K∈Z)时,Y取最大值1;当X=2Kπ+3π/2(K∈Z时,Y取最小值-1当X=2Kπ+π/2(K∈Z)时,Y取最大值1;当X=2Kπ+π(K∈Z时,Y取最小值-1无最大值和最小值正弦、余弦、正切函数图象及其性质注意1、正弦函数y=sinx在[2kπ-π/2, 2kπ+π/2](k∈Z)上是增函数,但不能说它在第一或第四象限是增函数;对于正切函数,它在定义域的每一个单调区间内都是增函数,但不能说它在定义域上是增函数。

2、对于复合函数y=Asin(ωx+φ)、y=Acos(ωx+φ)、y=Atan(ωx+φ)均可以将ωx+φ视为一个整体,用整体的数学方法转化为熟悉的形式解决。

当ω<0时,要特别注意。

如:y=sin(-2x+π/4)可以化为y=-sin(2x-π/4)或y=cos(2x+π/4)再求解。

3、函数y=Asin(ωx+φ)、y=Acos(ωx+φ)的最小正周期为2π/∣ω∣,y=Atan(ωx+φ) 的最小正周期为π/∣ω∣。

正弦、余弦、正切函数的图象与性质

正弦、余弦、正切函数的图象与性质

讲解新课:正弦、余弦函数的图象(1)函数y=sinx 的图象:叫做正弦曲线第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象:叫做余弦曲线 根据诱导公式,可以把正弦函数y=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象.y=cosxy=sinxπ2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11y x-11o xy(3)用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0) 余弦函数y=cosx x [0,2]的五个点关键是哪几个(0,1) (2π,0) (,-1) (23π,0) (2,1)讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2)y=-COSx探究 如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到 (1)y =1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

正弦函数、余弦函数的图象和性质

正弦函数、余弦函数的图象和性质


7 6
4 3
3 2
5 3
11 6
2
x
-
图象的最低点 ( ,1)
4.8 正弦函数.余弦函数的图象和性质
例1.画出下列函数的简图
(1)y=sinx+1, x∈[0,2π]
(2)y=-cosx , x∈[0,2π] 解:(2 1)列表
xx
cos x x 01 sin sin cosx x 1 1 -1
2。用平移诱变法,由正弦图象平移得到佘弦 函数图象,这不是新问题,在函数一章学习 平移作图时,就使用过,请同学多作比较。 应该说明的是平移量是不唯一的,方向也可 左可右。
单位 :蠡县南庄实验中学 网址 :
;
/
y sin x, x [0,2 ]
2
2 2
xx
y cos x, x [0,2 ]
4.8 正弦函数.余弦函数的图象和性质
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
总结提炼
1。本节课介绍了四种作函数图象的方 法,其中五点作图法最常用,要牢记五 个关键点的选取特点。
-1
o
-1 -
6


2
3
2 3
5 6

7 6
4 3
2
x

简图作法 (1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点)
-
图象的最低点 ( 3 ,1)
2
4.8 正弦函数.余弦函数的图象和性质
利用变换法作余弦函数的图像

正弦函数的图像

正弦函数的图像
正弦函数的图像
目录
• 正弦函数的定义与性质 • 正弦函数的图像绘制 • 正弦函数的应用 • 正弦函数与其他函数的对比 • 正弦函数的扩展
01
正弦函数的定义与性质
定义
总结词
正弦函数是三角函数的一种,定义为 直角三角形中锐角的对边长度与斜边 长度的比值。
详细描述
正弦函数通常表示为sin(x),其中x是角 度(以弧度为单位)。在直角三角形中, 锐角的对边长度为y,斜边长度为r,则 正弦函数的定义为y/r。
工程中的应用
机械工程
在机械振动和稳定性分析 中,正弦函数用于模拟和 预测结构的振动和稳定性。
航空航天
在航空航天领域,正弦函 数用于计算飞行器的姿态 角、角速度等参数。
电子工程
在信号处理和通信中,正 弦函数用于调制和解调信 号,实现信息的传输和接 收。
数学其他领域中的应用
三角恒等式
01
正弦函数与其他三角函数(余弦、正切等)之间存在许多重要
总结词
描述正弦函数积化和差公式的应用和意义。
详细描述
正弦函数的积化和差公式是三角函数中另一个重要的公式,它描述了正弦函数乘积与和差之间的关系。通过这个 公式,我们可以将两个正弦函数的乘积转化为一个正弦函数和另一个正弦函数之和或差的乘积,从而进一步简化 计算。
正弦函数的倍角公式
总结词
描述正弦函数倍角公式的应用和意义。
相位
相位决定了正弦函数图像在x轴上的位置,通过调 整相位参数,可以改变图像起始点的位置。
03
正弦函数的应用
物理中的应用
振动和波动
正弦函数是描述简谐振动和波动的基本函数,如弹簧振荡器、声 波等。
交流电
正弦函数用于描述交流电的电压和电流,广泛应用于电力系统和 电子设备。

正弦函数图像的变换

正弦函数图像的变换

小结: (1)三角函y=Asin(ѡx+φ ) 的五点作图法. (3)注意变换的语言叙述.
正弦函数图像的变换
方法二:先伸缩后平移 对 y=Asin(ѡx+φ )图像可以看作由 y=sinx图像上所有点的横坐标缩短(当 ѡ>1时)或伸长(当0< ѡ <1时)到原来的 1/ ѡ倍(纵坐标不变),再向左(当 φ >0时)或向右(当φ <0时)平移φ /ѡ个 单位,再把所得个点的纵坐标伸长(当 A>1时)或缩短(当0 <A < 1时)到原来 的A倍(横坐标不变).
正弦函数图像的变换
正弦函数图像变换
1 两种变换方法
2例
3小


正弦函数图像的变换
方法一:先平移后伸缩 对 y=Asin(ѡx+φ )图像可以看作由 y=sinx图像上所有点先向左(当 φ >0时) 或向右(当φ <0时)平移φ 个单位,再把 所得个点的横坐标缩短(当ѡ>1时)或伸 长(当0< ѡ <1时)到原来的1/ ѡ倍(纵 坐标不变),再把所得个点的纵坐标伸 长(当A>1时)或缩短(当0 <A < 1时) 到原来的A倍(横坐标不变).

正弦函数的图像ppt课件

正弦函数的图像ppt课件

信号处理
在信号处理领域,正弦函数常被用 于信号的滤波、调制和解调等操作。
机械工程
在机械振动和噪音控制中,正弦函 数被用于描述和分析振动模式和频 率。
在日常生活中的应用
音乐
正弦函数在音乐领域的应 用非常广泛,如音高和音 长的计算等。
通信
无线电和电视信号的传输 过程中,正弦函数用于调 制和解调信号。
医学成像
正弦函数的周期性
总结词
正弦函数具有周期性,即函数图像每 隔一定周期重复出现。
详细描述
正弦函数的周期为360度或2π弧度,这 意味着每经过360度或2π弧度,函数值 会重复之前的值,形成周期性的波形。
正弦函数的奇偶性
总结词
正弦函数是奇函数,具有奇函数的性质。
详细描述
奇函数满足性质f(-x)=-f(x),对于正弦函数,当取相反角度时,函数值也取相反 数。例如,sin(-π/2) = -1,与sin(π/2)的值相反。
03
正弦函数的应用
在物理中的应用
01
02
03
简谐振动
正弦函数是描述简谐振动 的基本函数,如弹簧振荡 器、单摆等。
交流电
正弦函数被广泛用于描述 交流电的电压、电流和频 率,是电力系统的基本模 型。
声学
声音的传播和波动可以用 正弦函数来描述,如声波 的振幅和频率。
在工程中的应用
控制系统
正弦函数在控制系统分析中有着 广泛应用,如PID控制器等。
03
奇偶性
正弦函数是奇函数,而正切函数是奇函数。这意味着它们在对称性上有
相同的表现。
与其他三角函数的比较
定义域
除了正弦函数、余弦函数和正切函数外,还有其他一些三角函数,如反正弦函数、反余弦 函数、反正切函数等。它们的定义域各不相同,但都与正弦函数、余弦函数和正切函数的 定义域有交集。

正弦函数及其图像变换

正弦函数及其图像变换

周期变换
周期缩短:正弦函数的图像 在周期内进行平移,使得图 像的周期缩短。
周期延长:正弦函数的图像 在周期内进行平移,使得图 像的周期延长。
周期变换规律:正弦函数的 图像变换遵循一定的规律,
即周期变换规律。
周期变换的应用:周期变换 在信号处理、振动分析等领
域有着广泛的应用。
相位变换
相位变换的概念:通过改变正弦函数的相位,使其在时间上移动。
信号处理:正弦函数在信号处理领 域中用于滤波、调制和解调等操作, 提高信号质量和通信效率。
添加标题
添加标题
添加标题
添加标题
交流电:正弦函数用于描述交流电 的电压和电流,广泛应用于电力传 输和分配。
物理实验:在物理实验中,正弦函 数常用于测量、分析和建模各种物 理现象,如光干涉、衍射等。
在工程学中的应用
正添加弦副函标数题 及其图像 变换
汇报人:XX
目录
PART One
正弦函数的性质
PART Two
正弦函数的图像 变换
PART Three
正弦函数的应用
PART Four
正弦函数的扩展弦函数是三角函数的一种,定义为y=sinx,其中x是角度,y是正弦值。
正弦函数的周期为360度,即每隔360度重复一次。
正弦函数的图像是一个周期性变化的波形,最高点为1,最低点为-1。 正弦函数的表达式可以表示为y=Asin(ωx+φ),其中A是振幅,ω是角频 率,φ是初相。
周期性和振幅
正弦函数的周期性:正弦函数在一定周期内呈现规律性的变化,其周期为2π。 正弦函数的振幅:振幅是正弦函数图像在垂直方向上的最大或最小值,表示函数值的波动幅度。
三角函数的积化和差公式

三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

1、(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=2、(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 3、(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数4、(湖南卷理6)函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1C. 325、(天津卷文6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R ,B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,6、(全国Ⅰ卷文9)为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7、(全国Ⅰ卷理8)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位1.(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴方程为232x k πππ+=+,即212k x ππ=+,0,12k x π==2.(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.9.(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三角函数的化简,主要应用了与的关系,同时还考查了二倍角公式和函数的奇偶性和利用公式法求周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦函数图像的变化
刘毅 财经管理系
【课题】正弦函数图像的变化
【课时】1课时
【教材分析】
本节内容是。

众所周知,函数的概念抽象,性质多样,学习难度大,学生不易掌握,而函数的图像却能直观形象地展现出函数诸多性质和特征,比如单调性、奇偶性、周期性等,因此函数图像总是各类型函数学习的重点。

在“三角函数”此章新课内容中涉及到了正弦函数的图像,正弦型函数的图像,余弦函数的图像、正切函数的图像,这些内容有些相互联系,有些难度较大。

根据成人高考大纲及历年成考出现的三角函数试题,本节课在正弦函数图像复习完成的基础上将正弦函数的简单变形和正弦型函数的图像放到了一起(弱化了较难的“ω、φ”共同作用的效果);以往在讲授这部分内容时学生亲自参与的程度不高,到了最后函数没学好,函数图像也没学好,因此本节课设计时偏向于学生参与为主。

【学情分析】13会计4班,班级中大部分学生没有良好的学习习惯,学习比较被动、懒惰,课堂上肯花功夫,课后不舍得花精力所以知识遗忘速度很快。

在日常教学过程中学生在教师的引导下大部分学生能展现出一定的学习兴趣和能力。

【教学目标】知识目标:重点掌握参数A 和ω的作用
能力目标:能参照正弦函数的“五点法”分析各参数的作用效果
情感目标:通过对各类参数作用的讨论,体验到了特殊到一般,数形结合及简
单的数学思辨思想
【教学重难点】
sin()y K A x ωϕ=+±中参数A,ω的作用 【教学思路】
① 复习:正弦函数图像和基本性质
② 单独解决参数K,A,ω(包含学生自己动手绘制图形)
③ 通过观察教师操作,弱化
ωϕ和的共同使用效果 ④ 适当练习,加强记忆
【教学过程】
一、复习
1、正弦函数的性质
定义域:
值域:
周期:
周期产生的原因:
奇偶性:
单调性:单调递增区间_______________________、单调递减区间_______________________
2、“五点”法作简图
五个关键点坐标:
二、新课讲解和探究
观察课件 我们看到 这些函数虽然不是正弦函数,但它们的图像都与正弦函数的图像有“关系”.本节课我们就来找出它们之间的“关系”
1、参数K
观察:y=2+sinx ;y=-2+sinx 并利用“五点法”作第一个函数图像
“K ”让正弦函数图像发生了什么样的变化?
①正弦图像向上、下平移(值域发生变化)
②周期(T 不变)
试一试:能写出函数y=1+sinx 的五个关键点坐标吗?
2、参数A 观察:y=2sinx “A ”让正弦函数图像发生了什么样的变化?
①正弦图像在竖直方向上拉伸(A>1)或压缩(A<1)了A 倍
②周期(T 不变)
试一试:“五点法”作出y=2sinx 一个周期上图像
3、参数ω 观察:y=sin2x ; “ω”让正弦函数图像发生了什么样的变化?
① 正弦图像在水平方向上拉伸(ω<1)或压缩(ω>1)了ω倍
②新周期
练习:说出下列函数的周期,并做第一个函数的图像
①y=sin3x
②y=1+sin3x
③y=2sin3x
4、参数φ 观察: “±φ”让正弦函数图像发生了什么样的变化?
①正弦图像在水平方向上发生了平移
②不改变最大,最小值(值域不变)
③周期不变,单调区间相应平移
试一试:说出下列函数的周期和最大、最小值 ① ② 三、内容小结:
观察到了四个参数,K,A,ω,φ 对于正弦函数图像的作用
①能影响最值得参数是:
②能影响周期的参数是: ③能改变竖直方向位置的参数是:
④能改变水平方向位置的参数是:
四、课后作业 【教学反思】 y 2sinx ;y 2sinx ;sin()4y x π=+==+1y sin x 2=1y sin(x)2=2T πω=y sin(x )4π=+y sin(x )4π=-1sin()6y x π=++2sin()3y x π=-。

相关文档
最新文档