2020年单招数学冲刺押题卷(带答案)
2020—2021年高考总复习数学高职招考押题卷及参考答案(精品试题).docx
年高职招考数学押题卷(二)一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,2,3,4} B.{1,2,3} C.{1,3,5} D.{2,4,6}2.i是虚数单位,若复数z+2i﹣3=3﹣3i,则|z|=()A.5 B.C.61 D.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12 B.24 C.36 D.485.若一个圆锥的轴截面是等边三角形,则该圆锥的侧面积与底面积的比等于()A.3 B.2 C.D.6.若sin(π﹣α)=,则tanα的值为()A.B.﹣C.D.7.△ABC中,已知A=90°,=(k,6),=(﹣2,3),则k的值是()A.﹣4 B.﹣3 C.4 D.98.已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)9.设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.10.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx11.当函数f(x)=x+,(x>1)取得最小值时,相应的自变量x等于()A.2 B.3 C.4 D.512.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时13.设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数14.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.15.lg0.01+log216的值是.16.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为.17.若不等式x2﹣ax﹣b<0的解集为{x|2<x<3},则a+b= .18.给出下列命题:①“x2=1”是“x=1”的充分不必要条件;②“x=﹣1”是“x2﹣3x+2=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题;其中真命题有.(把你认为正确的命题序号都填上)三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤.19.已知数列{a n}是的通项公式为a n=e n(e为自然对数的底数);(Ⅰ)证明数列{a n}为等比数列;(Ⅱ)若b n=lna n,求数列{}的前n项和T n.20.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD.21.某企业招聘大学生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A等,小于80分者为B等.(Ⅰ)求女生成绩的中位数及男生成绩的平均数;(Ⅱ)如果用分层抽样的方法从A等和B等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A等的概率.22.已知函数f(x)=ax2﹣blnx在点(1,f(1))处的切线方程为y=1;(Ⅰ)求实数a,b的值;(Ⅱ)求f(x)的最小值.23.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.24.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.参考答案与试题解析一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,2,3,4} B.{1,2,3} C.{1,3,5} D.{2,4,6}【考点】交集及其运算.【专题】计算题;转化思想;定义法;集合.【分析】先求出集合B,再用交集定义求解.【解答】解:∵全集A={1,2,3,4,5,6},B={y|y=2x﹣1,x∈A}={1,3,5,7,9,11},∴A∩B={1,3,5}.故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.i是虚数单位,若复数z+2i﹣3=3﹣3i,则|z|=()A.5 B.C.61 D.【考点】复数求模.【专题】计算题;规律型;数系的扩充和复数.【分析】化简复数然后求解复数的摸.【解答】解:复数z+2i﹣3=3﹣3i,则|z|=|6﹣5i|==.故选:D.【点评】本题考查复数的摸的求法,考查计算能力.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【考点】收集数据的方法.【专题】应用题;概率与统计.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12 B.24 C.36 D.48【考点】等差数列的前n项和.【专题】方程思想;转化思想;等差数列与等比数列.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=3,a5=9,∴,解得d=2,a1=1.则其前6项和S6=6+×2=36.故选:C.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.5.若一个圆锥的轴截面是等边三角形,则该圆锥的侧面积与底面积的比等于()A.3 B.2 C.D.【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;数形结合法;立体几何.【分析】设圆锥的底面半径为r,根据轴截面的性质求出母线,计算侧面积作出比值.【解答】解:设圆锥的底面半径为r,则母线l=2r,∴S侧=πrl=2πr2,S底=πr2,∴=2.故选:B.【点评】本题考查了圆锥的结构特征和侧面积计算,属于基础题.6.若sin(π﹣α)=,则tanα的值为()A.B.﹣C.D.【考点】同角三角函数基本关系的运用;运用诱导公式化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用诱导公式,同角三角函数基本关系式的应用可求sinα=,即可求得cosα=±的值,从而可求tanα=.【解答】解:∵sin(π﹣α)=sinα=,∴cosα=±=±,∴tanα==±.故选:C.【点评】本题主要考查了诱导公式,同角三角函数基本关系式的应用,属于基础题.7.△ABC中,已知A=90°,=(k,6),=(﹣2,3),则k的值是()A.﹣4 B.﹣3 C.4 D.9【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】根据向量垂直,则数量积为0,即可求出k的值.【解答】解:∵△ABC中,A=90°,∴,∴=0,∵=(k,6),=(﹣2,3),∴﹣2k+18=0,解得k=9,故选:D.【点评】本题考查数量积与向量的垂直关系,属基础题.8.已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线y2=2px(p>0)的准线经过点(﹣1,1),求得=1,即可求出抛物线焦点坐标.【解答】解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.【点评】本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.9.设f(x)=,则f(f(﹣2))=()A.﹣1 B.C.D.【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵,∴f(﹣2)=2﹣2=,f(f(﹣2))=f()=1﹣=.故选:C.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.10.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【考点】三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】由条件利用诱导公式化简函数的解析式,再根据三角函数的奇偶性和周期性得出结论.【解答】解:由于函数y=sin(2x+)=cos2x为偶函数,故排除A;由于函数y=cos(2x+)=﹣sin2x为奇函数,且周期为,故B满足条件;由于函数y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故排除C;由于函数y=sinx+cosx=sin(x+)为非奇非偶函数,故排除D,故选:B.【点评】本题主要考查三角函数的奇偶性和周期性,诱导公式的应用,属于基础题.11.当函数f(x)=x+,(x>1)取得最小值时,相应的自变量x等于()A.2 B.3 C.4 D.5【考点】对勾函数.【专题】函数思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】函数f(x)=(x﹣1)++1,且x﹣1>0,运用基本不等式可得f(x)的最小值3,由等号成立的条件,可得x=2.【解答】解:函数f(x)=x+,(x>1),可得f(x)=(x﹣1)++1≥2+1=3,当且仅当x﹣1=,即x=2时,取得最小值3.故选:A.【点评】本题考查函数的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于基础题.12.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【考点】指数函数的实际应用.【专题】函数的性质及应用.【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e22k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.13.设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数【考点】函数的单调性与导数的关系;正弦函数的奇偶性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.14.已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程.【解答】解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出a,b的值,是解题的关键.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.15.lg0.01+log216的值是 2 .【考点】对数的运算性质.【专题】函数的性质及应用.【分析】直接利用对数的运算法则化简求解即可.【解答】解:lg0.01+log216=﹣2+4=2.故答案为:2.【点评】本题考查对数的运算法则的应用,考查计算能力.16.设变量x,y满足约束条件,则目标函数z=3x+y的最大值为9 .【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,得,即A(2,3)此时z的最大值为z=3×2+3=9,故答案为:9【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,要熟练掌握目标函数的几何意义.17.若不等式x2﹣ax﹣b<0的解集为{x|2<x<3},则a+b= ﹣1 .【考点】一元二次不等式的应用.【专题】计算题.【分析】不等式x2﹣ax﹣b<0的解集是{x|2<x<3},故3,2是方程x2﹣ax﹣b=0的两个根,由根与系数的关系求出a,b可得.【解答】解:由题意不等式x2﹣ax﹣b<0的解集是{x|2<x<3},故3,2是方程x2﹣ax﹣b=0的两个根,∴3+2=a,3×2=﹣b∴a=5,b=﹣6∴a+b=5﹣6=﹣1故答案为:﹣1【点评】本题考查一元二次不等式与一元二次方程的关系,解答本题的关键是根据不等式的解集得出不等式相应方程的根,再由根与系数的关系求参数的值.注意总结方程,函数,不等式三者之间的联系.18.给出下列命题:①“x2=1”是“x=1”的充分不必要条件;②“x=﹣1”是“x2﹣3x+2=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题;其中真命题有③④.(把你认为正确的命题序号都填上)【考点】命题的真假判断与应用.【专题】转化思想;定义法;简易逻辑.【分析】①由x2=1,解得x=±1,即可判断出关系;②由x2﹣3x+2=0,解得x=1,2,即可判断出关系;③利用命题的否定定义即可判断出正误;④利用原命题与其逆否命题等价性即可判断出正误.【解答】解:①由x2=1,解得x=±1,∴“x2=1”是“x=1”的必要不充分条件,不正确;②由x2﹣3x+2=0,解得x=1,2,∴“x=﹣1”是“x2﹣3x+2=0”的既不必要也不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1≥0”,正确;④命题“若x=y,则sinx=siny”是真命题,其逆否命题也为真命题,正确.其中真命题有③④.故答案为:③④.【点评】本题考查了简易逻辑的判定方法、方程与不等式的性质,考查了推理能力与计算能力,属于中档题.三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤.19.已知数列{a n}是的通项公式为a n=e n(e为自然对数的底数);(Ⅰ)证明数列{a n}为等比数列;(Ⅱ)若b n=lna n,求数列{}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(Ⅰ)a n=e n,只要证明=非0常数即可.(Ⅱ)由(Ⅰ)知:b n=lna n=n,可得==,利用“裂项求和”即可得出.【解答】(Ⅰ)证明:∵a n=e n,a1=e,且==e,∴数列{a n}是首项为e,公比为e的等比数列.(Ⅱ)解:由(Ⅰ)知:b n=lna n=lne n=n,∴==,其前n项和T n=++…+=1﹣=.【点评】本题考查了等比数列的通项公式、“裂项求和”方法,考查了变形推理能力与计算能力,属于中档题.20.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD.【考点】解三角形.【专题】数形结合;数形结合法;解三角形.【分析】在△ABC中由正弦定理解出BC,在Rt△BCD中由正切的定义求出CD.【解答】解:在△ABC中,∠BAC=30°,AB=600,∠ABC=180°﹣75°=105°,∴∠ACB=45°,∵,即,解得BC=300.又在Rt△BCD中,∠CBD=30°,∴CD=BC•tan∠CBD=300×=100,即山高CD为100m.【点评】本题考查了正弦定理在解三角形中的应用,属于基础题.21.某企业招聘大学生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为A等,小于80分者为B等.(Ⅰ)求女生成绩的中位数及男生成绩的平均数;(Ⅱ)如果用分层抽样的方法从A等和B等中共抽取5人组成“创新团队”,现从该“创新团队”中随机抽取2人,求至少有1人是A等的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)由茎叶图可得女生成绩的中位数为75.5,男生的平均成绩为81;(Ⅱ)用分层抽样可得A、B分别抽取到的人数为2人、3人,分别记为a、b,和1、2、3,列举可得总的基本事件共10个,其中至少有1人是A等有7个,由概率公式可得.【解答】解:(Ⅰ)由茎叶图可知,女生共14人,中间两个的成绩为75和76,故女生成绩的中位数为75.5,男生的平均成绩为=(69+76+78+85+87+91)=81;(Ⅱ)用分层抽样的方法从A等和B等中共抽取5人,每个人被抽到的概率为=,由茎叶图可知A等有8人,B等有12人,故A、B分别抽取到的人数为2人、3人,记A等的两人为a、b,B等的3人为1、2、3,则从中抽取2人所有可能的结果为(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(1,2),(1,3),(2,3)共10个,其中至少有1人是A等的为(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7个,∴所求概率为P=.【点评】本题考查列举法计算基本事件数及事件发生的概率,涉及茎叶图和数字特征,属基础题.22.已知函数f(x)=ax2﹣blnx在点(1,f(1))处的切线方程为y=1;(Ⅰ)求实数a,b的值;(Ⅱ)求f(x)的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】方程思想;转化法;导数的综合应用.【分析】(Ⅰ)求出函数f(x)的导数f′(x),根据题意列出方程组,解方程组求出a、b的值;(Ⅱ)利用导数判断函数f(x)的单调性,求出f(x)在定义域上的最小值f(x)min.【解答】解:(Ⅰ)∵函数f(x)=ax2﹣blnx,∴x>0,f′(x)=2ax﹣;又∵函数f(x)在点(1,f(1))处的切线方程为y=1,∴,即,解得;(Ⅱ)由(Ⅰ)知,f(x)=x2﹣2lnx,f′(x)=2x﹣,由f′(x)=2x﹣=2•=0,解得x=±1(负值舍去),∴当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴f(x)min=f(1)=1.【点评】本题考查了利用导数研究函数的单调性以及求函数的最值问题,也考查了导数的几何意义与应用问题,是综合性题目.23.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】综合题;空间位置关系与距离.【分析】(Ⅰ)证明BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即可得出结论;(Ⅱ)由已知,PD是阳马P﹣ABCD的高,所以V1==.由(Ⅰ)知,DE是鳖臑D﹣BCE的高,BC⊥CE,所以V2==.即可求的值.【解答】(Ⅰ)证明:因为PD⊥底面ABCD,所以PD⊥BC,因为ABCD为正方形,所以BC⊥CD,因为PD∩CD=D,所以BC⊥平面PCD,因为DE⊂平面PCD,所以BC⊥DE,因为PD=CD,点E是PC的中点,所以DE⊥PC,因为PC∩BC=C,所以DE⊥平面PBC,由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB;(Ⅱ)由已知,PD是阳马P﹣ABCD的高,所以V1==.由(Ⅰ)知,DE是鳖臑D﹣BCE的高,BC⊥CE,所以V2==.因为PD=CD,点E是PC的中点,所以DE=CE=CD,所以===4【点评】本题考查线面垂直的判定与性质,考查体积的计算,考查学生分析解决问题的能力,属于中档题.24.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.。
高职单招数学模拟题押题试卷附答案
高职单招数学模拟题押题试卷附答案(一)一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选答案中,选出一个正确答案)1、A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定2、若f(x)=a2+bx(ab≠0),且f(2) = f(3),则f(5)等于( )A.1B.-1C.0D.23、己知|x-3|<a的解集是{x|-3<x<9},则a=()A.-6B.6C.±6D.04、对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列5、若a0.6<a0.4,则a的取值范围为()A.a>1B.0C.a>0D.无法确定6、在△ABC中,“x2 =1”是“x =1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是( )A.30°B.60°C.45°D.90°8、设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数9、己知向量a = (2,1),b =(-1,2),则a,b之间的位置关系为( )A.平行B.不平行也不垂直C.垂直D.以上都不对10、若函数f(x) = kx + b,在R上是增函数,则( )A.k>0B.k<0C.b<0D.b>1-5、ACBDB 6-10、BCBCA 11、2/12、2x+3y+1=0 13、6 14、2 15、x2+2 16、1417、20 18、919、22、23、24、。
2020年高职单招考试数学模拟试卷
2020年高职单招考试模拟试题(长线备考、每周一套题,助你成功!多省份适用!有答案解析!)一、选择题(共10小题;共50分)1. 若集合,,则A. B. C. D.2. 不等式的解集为3. 若,则等于A. B. C. D.4. 函数的零点是A. C.5. 若直线过圆的圆心,则的值为B. C.6. 设数列的前项和,则的值为A. B. C. D.7. 设,用二分法求方程在内近似解的过程中得,,,,则方程的根落在区间A. B. D.8. 执行如图所示的程序框图,则输出的值为A. B. C. D.9. 已知函数,则A. 是偶函数,且在上是增函数B. 是奇函数,且在上是增函数C. 是偶函数,且在上是减函数D. 是奇函数,且在上是减函数10. 某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每千米平均耗油量为A. 升B. 升C. 升D. 升二、填空题(共3小题;共15分)11. 现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是.12. 若,则.13. 设双曲线的两个焦点为,,一个顶点是,则的方程为.三、解答题(共3小题;共35分)14. 在中,内角,,所对的边分别是,,,已知,,.(1)求;(2)求的值.15. 如图,在四棱锥中,底面是矩形,,,,、分别是、的中点.(1)证明:;(2)求三棱锥的体积.16. 已知椭圆.(1)求椭圆的离心率;(2)设为原点,若点在直线上,点在椭圆上,且,求线段长度的最小值.答案第一部分1. C2. A 【解析】不等式可化为:,所以,所以,所以不等式的解集为.注:先保证x2前的系数为正,才有“大于取两边,小于取中间的规律”3. D4. A 【解析】令得,或 .5. B【解析】圆化为标准方程为,所以圆心为,代入直线得.6. C 【解析】.(想想S4表示什么?前4项的和!所以S4=a1+a2+a3+a4 ,S3=a1+a2+a3)7. C8. C9. B 【解析】,所以,即函数为奇函数,又由函数为增函数,为减函数,故函数为增函数.10. B【解析】汽车每次加油时把油箱加满,第二次加油升,说明这段时间总消耗油量为升,这段时间内汽车行驶的里程为千米,所以每千米平均耗油量为升.第二部分12.13.第三部分14. (1)因为,,,所以由余弦定理得:则.(2)由正弦定理得,,所以,,所以.15. (1)在中,、分别是、的中点,所以.因为四边形为矩形,所以,所以,又因为,,所以.(2)连接,,,过作交于点,则,且.在中,,,,所以所以所以16. (1)由题意,椭圆的标准方程为所以,,从而因此故椭圆的离心率(2)设点,的坐标分别为,,其中,因为,所以即,解得又,所以因为且当时等号成立,所以,故线段长度的最小值为.。
河北省高职单招考试数学模拟卷(答案解析)
河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。
2020年单招考试 数学真题+解析答案
机密★启用前2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.已知集合{|410}A x x =<<,2{|,}B x x n n N ==∈.则(A B = )A .∅B .{3}C .{9}D .{4,9}2.1,3的等差中项是( ) A .1B .2C .3D .43.函数2()sin cos 2f x x x =+的最小正周期是( )A .2πB .32πC .πD .2π4.函数()f x 的定义域是( )A .RB .[1,3]C .(,1][3,)-∞+∞D .[0,1]5.函数()f x =图象的对称轴是( )A .1x =B .12x =C .12x =-D .1x =-6.已知1tan 3x =-,则sin 2x =( )A .35B .310C .310-D .35-7.函数2()ln(31)f x x =-+单调递减区间为( )A .B .(C .(D .( 8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为( ) A .16B .13C .12D .239.双曲线22221(0,0)x y a b a b -=>>的两条渐近线的倾斜角分别为α和β,则cos (2αβ+= )A .1BC .12D .010.已知0.30.2a =,0.30.3b =,0.20.2a -=,则( ) A .a b c <<B .b a c <<C .b c a <<D .a c b <<二、填空题:本题共6小题,每小题6分,共36分.11.从1,2,3,4,5中任取3个不同数字,这3个数字之和是偶数的概率为 . 12.已知向量a ,b 满足||2a =,||1a b +=,且a 与b 的夹角为150︒,则||b = . 13.不等式12log 2x >的解集是 .14.等比数列{}n a 中,若1232a a +=,4512a a +=,则3=a . 15.5(3)x y -的展开式中23x y 的系数为 .(用数字作答) 16.若平面α,β,γ,满足αγ⊥,a αγ=,βγ⊥,b βγ=,有下列四个判断:①//αβ;②当//αβ时,//a b ;③a β⊥;④当c αβ=时,c γ⊥;其中,正确的是 .(填写所有正确判断的序号)三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分18分)ABC ∆的内角A ,B ,C 的对边分别是a ,b ,c ,30B =︒,1b c =+. (1)若2c =,求sin C ; (2)若1sin 4C =,求ABC ∆的面积.18.(本小题满分18分)已知抛物线C的顶点在原点,焦点为(1,0)F .(1)求C的方程;(2)设P为C的准线上一点,Q为直线PF与C的一个交点且F为PQ的中点,求Q的坐标及直线PQ的方程.19.(本小题满分18分)如图,正三棱柱111ABC A B C -中,P 为1BB 上一点,1APC ∆为等腰直角三角形. (1)证明:P 为1BB 的中点;(2)证明:平面1APC ⊥平面11ACC A ; (3)求直线PA 与平面ABC 所成角的正弦值.2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学参考答案与试题解析【选择题&填空题答案速查】一、选择题:本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.已知集合{|410}A x x =<<,2{|,}B x x n n N ==∈.则(A B = )A .∅B .{3}C .{9}D .{4,9}【解析】集合{|410}A x x =<<,2{|,}{0,1,4,9,16,}B x x n n N ==∈=,{9}AB ∴=,故选:C .2.1,3的等差中项是( ) A .1B .2C .3D .4【解析】设1,3的等差中项为x ,则132x +=,解得2x =,∴1,3的等差中项是2,故选:B .3.函数2()sin cos 2f x x x =+的最小正周期是( )2π32ππ2π4.函数()f x 的定义域是( )A .RB .[1,3]C .(,1][3,)-∞+∞D .[0,1]即函数()f x 的定义域为(,1][3,)-∞+∞.故选:C .5.函数()f x =图象的对称轴是( )A .1x =B .12x =C .12x =-D .1x =-6.已知1tan 3x =-,则sin 2x =( )A .3B .3 C .3-D .3-7.函数2()ln(31)f xx =-+单调递减区间为()A .B .(C .(D .( 【解析】2()ln(31)f x x =-+是一个复合函数,复合函数求单调递减区间同增异减,()ln f x x =为单调递增函8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为( ) A .1B .1C .1 D .29.双曲线221(0,0)x y a b a b -=>>的两条渐近线的倾斜角分别为α和β,则cos (2αβ+= )A .1B C .1 D .010.已知0.30.2a =,0.30.3b =,0.20.2c -=,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b <<【解析】已知0.30.2a =,0.30.3b =,0.20.2c -=,而0.2x y =是R 上的减函数,0.300.2>>,所以1a c <<.因为0.3y x =是R 上的增函数,10.30.20>>>,所以1b a >>.综上,c b a >>.故选:A . 二、填空题:本题共6小题,每小题6分,共36分.11.从1,2,3,4,5中任取3个不同数字,这3个数字之和是偶数的概率为 .【解析】从5个数字中挑3个不同的数字,总共3510C =种挑法,其中3个数字之和是偶数需满足有两个奇数一个偶数,则共有21326C C =种挑法,故从1,2,3,4,5这5个数中任取3个不同数字且这3个数字之12.已知向量a ,b 满足||2a =,||1a b +=,且a 与b 的夹角为150︒,则||b = .【解析】由||2a =,||1a b +=,得2222||2421a b a b a b b a b +=++=++=,所以2230b a b ++=,即2||2||||cos150b a b +︒+2||23||30b b ++=,解得||3b =.故答案为:13.不等式12log 2x >的解集是 .法一:因114.等比数列{}n a 中,若1232a a +=,4512a a +=,则3=a . 15.5(3)x y -的展开式中23x y 的系数为 .(用数字作答)【解析】设5(3)x y -的展开式中第1r +项为1r T +,则55155(3)(3)r r r r r r r r T C x y C x y --+=-=-,要求23x y 的系数,只需523r r -=⎧⎨=⎩,解得3r =,所以33232345(3)270T C x y x y =-=-,故5(3)x y -的展开式中23x y 的系数为270-.故答案为:270-.16.若平面α,β,γ,满足αγ⊥,a αγ=,βγ⊥,b βγ=,有下列四个判断:①//αβ;②当//αβ时,//a b ;③a β⊥;④当c αβ=时,c γ⊥;其中,正确的是 .(填写所有正确判断的序号)【解析】垂直于同一平面的两平面相互平行,则其交线也平行;垂直于同一平面的两平面相交于同一条直线,则该直线与平面也垂直,故正确的为②④.故答案为:②④.三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分18分)ABC ∆的内角A ,B ,C 的对边分别是a ,b ,c ,30B =︒,1b c =+. (1)若2c =,求sin C ; (2)若1sin 4C =,求ABC ∆的面积. ,又2c =,∴,又1sin 4C =,c ∴)sin C B =1153sin sin()2bc A bc B C +=+=.18.(本小题满分18分)已知抛物线C 的顶点在原点,焦点为(1,0)F -. (1)求C 的方程;(2)设P 为C 的准线上一点,Q 为直线PF 与C 的一个交点且F 为PQ 的中点,求Q 的坐标及直线PQ 的方程.19.(本小题满分18分)如图,正三棱柱111ABC A B C-中,P为1BB上一点,1APC∆为等腰直角三角形.(1)证明:P为1BB的中点;(2)证明:平面1APC⊥平面11ACC A;(3)求直线PA与平面ABC所成角的正弦值.【解析】(1)证明:1APC∆为等腰直角三角形,1AP PC∴=,又111ABC A B C-为正三棱柱,222AB BP AP∴+=,2221111B C B P PC+=,而11AB B C=,1AP PC=,1BP B P∴=,即P为1BB的中点;,1APC ∆为等腰直角三角形,上的投影,又ABC ∆为正三角形,,又1,AC AC 1ACAC A =平面11ACC A ,又PQ ⊂平面平面1ACC A ,1AA b =,22AP a b =+,1AC =又1APC ∆为等腰直角三角形,,即222142a ab b ++,解得2a =,ABC A -为正三棱柱,则PAB ∠为直线2233aBPA A Pa P B ==,即直线PA 与平面。
2023年陕西省高职单招数学考前押题试题及答案解析word版
2023年陕西省高职单招数学考前押题试题及答案解析毕业院校:__________ 姓名:__________ 考场:__________ 考号:__________一、选择题1.A.AB.BC.CD.D答案:C2.A.AB.BC.CD.D答案:C3.A.AB.BC.CD.D答案:A4.A.AB.BC.CD.D答案:A 5.B.BC.CD.D答案:D6.A.AB.BC.CD.D答案:B7.A.AB.BC.C答案:B8.A.AB.BC.CD.D答案:C9.A.AB.BC.CD.D答案:A10.A.AB.BC.CD.D答案:B11.A.AB.BC.CD.D答案:C 12.B.BC.CD.D答案:A13.A.AB.BC.CD.D答案:C14.A.AC.CD.D答案:C15.A.AB.BC.CD.D答案:C16.A.AB.BC.C答案:B17.A.AB.BC.C答案:A18.A.AB.BC.C答案:A19.A.AC.CD.D答案:C20.A.AB.BC.CD.D答案:A21.A.AB.BC.C答案:C22.A.AB.BC.CD.D答案:A23.A.AB.BC.CD.D答案:C24.A.AB.BC.CD.D答案:C25.A.AB.BC.CD.D答案:C26.A.AC.CD.D答案:D27.A.AB.BC.CD.D答案:A28.A.AB.BC.C答案:C29.A.AB.BC.CD.D答案:B30.A.AB.BD.D答案:C31.A.AB.BC.C答案:B 32.A.AB.BC.CD.D答案:B33.A.AB.BC.CD.D答案:D34.A.AB.BC.CD.D答案:D 35.B.BC.CD.D答案:A36.A.AB.BC.CD.D答案:A37.A.AB.BD.D38.A.AB.BC.CD.D答案:A39.A.AB.BC.CD.D答案:B40.A.AB.BC.CD.D答案:D二、填空题41.答案:λ=1,μ =442.答案:45 43.答案:-2i 44.答案:16 45.答案:a 46.答案:(-7,±2) 47.答案:5n-10 48.答案:1 49.答案:75 50.答案:外心51.答案:-2/352.答案:-1/253.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____. 答案:三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2√354.答案:55.答案:三、解答题56.在△ABC中,角A,B,C 的对边分别为a,b,c,且 bcosC= (3a-c)cosB.(1) 求cosB 的值;(2)答案:57.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.答案:(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1(2)因为f(x)的定义域为x|-1(3)设-158.答案:59.答案:60.答案:。
单招模拟试题数学及答案详解
单招模拟试题数学及答案详解一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B解析:最小的正整数是1,因为正整数是大于0的整数。
2. 如果函数f(x) = 2x^2 + 3x + 5的图像关于直线x = -3/4对称,那么二次函数的对称轴是什么?A. x = -3/4B. x = 0C. f(x) = 0D. x = 3/4答案:A解析:二次函数的对称轴是x = -b/2a,其中a和b分别是二次项和一次项的系数。
在这个函数中,a = 2,b = 3,所以对称轴是x = -3/4。
3. 以下哪个数是无理数?A. 3B. πC. 1/2D. 0.5答案:B解析:π是一个无限不循环小数,因此是无理数。
其他选项都是有理数。
4. 解方程2x - 1 = 7,x的值是多少?A. 4B. 3C. 2D. 5答案:A解析:将方程2x - 1 = 7进行移项,得到2x = 8,然后除以2,得到x = 4。
5. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A解析:长方体的体积计算公式是V = 长× 宽× 高,所以体积是8cm × 6cm × 5cm = 240立方厘米。
6. 下列哪个选项是不等式2x + 3 > 9的解集?A. x > 3B. x > 1C. x > 6D. x < 3答案:B解析:首先将不等式2x + 3 > 9中的常数项移项,得到2x > 6,然后除以2,得到x > 3。
7. 一个数的75%是150,那么这个数是多少?A. 200B. 300C. 400D. 500答案:B解析:如果一个数的75%是150,那么这个数可以通过150除以75%来计算,即150 ÷ 0.75 = 200。
2020江苏对口单招 数学考前60天押题卷
胜券在握数学考前60天押题卷一、单项选择题(本大题共10小题,每小题4分,共40分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂㊁多涂或未涂均无分.1.已知集合A ={1,2,3,4},B =x y =12x ,y ɪA {},则A ɘB 等于( )A.{2}B .{1,2}C .{2,4} D.{1,4}2. 向量a ,b 的夹角为锐角 是 a ㊃b >0的( )A.必要不充分条件B .充分不必要条件C .充要条件 D.既不充分也不必要条件3.角α的终边上一点A 的坐标为2s i n 5π3,-2s i n 5π6æèçöø÷,则c o s α等于( )A.12B .-12C .32D.-324.已知偶函数f (x )在[0,3]内单调递增,则f (-3),f 32æèçöø÷,f l o g 214æèçöø÷之间的大小关系是( )A.f (-3)>f l o g 214æèçöø÷>f 32æèçöø÷B .f (-3)>f 32æèçöø÷>f l o g 214æèçöø÷C .f 32æèçöø÷>f l o g 214æèçöø÷>f (-3) D.f l o g 214æèçöø÷>f 32æèçöø÷>f (-3)5.已知x >0,y >0,l g 2x +l g 8y=l g 2,则1x +13y的最小值为( )A.2B .22C .4 D.236.若直线y =k x +1与圆x 2+y 2=1相交于P ,Q 两点,且øP O Q =120ʎ(其中O 为原点),则k 的值为( )A.-3或3B .3C .-2或2 D.27.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( )A.75ʎB .60ʎC .45ʎ D.30ʎ8.将6个毕业生平均分配到3所不同的学校,不同的分法种数共有( )A.90种B .540种C .720种D.180种9.5x 2-1x æèçöø÷n的展开式中各项系数和为1024,则常数项为( )A.50B .-50C .-25 D.2510.设函数f (x )=|l g x |(0<x ɤ10),-12x +6(x >10),ìîíïïïa ,b ,c 互不相等,且f (a )=f (b )=f (c ),则实数a b c 的取值范围是( )A.(1,10)B .(5,6)C .(10,12) D.(20,24)二㊁填空题(本大题共5小题,每小题4分,共20分)11.化简:A +A B C +AB C +B C +B C =.第12题图12.若执行如图所示的程序框图,则输出的S =.13.若a =(2,1,-1),b =(1,0,3),c =(1,-2,3),则c ㊃(b ㊃a )=.14.某项工作的各项安排如下.工作代码紧前工作工期/天A 无1B A 2C B 5D B 2E B 4FC ㊁D ㊁E7则完成该工作的总工期为天.15.直线l 经过中心为原点的椭圆的一个顶点和一个焦点,若椭圆的中心到l 的距离为其短轴的14,则该椭圆的离心率为.三㊁解答题(本大题共8小题,共90分)解答应写出必要的文字说明及演算步骤.16.(本小题满分8分)已知向量a =(2,3x ),b =(l o g 12(x -1),0),a ㊃b >0,求x 的取值范围.17.(本小题满分10分)已知函数f (x )=a x 2+2x +c (a ,c ɪN +)满足条件:f (1)=5,6<f (2)<11.(1)求a ,c 的值;(2)已知对任意实数x 都有f (x )-2m x ȡ1成立,求实数m 的取值范围.18.(本小题满分12分)一只口袋中共有大小㊁质地相同的2个白球,3个红球,如果连续地抽取2次,每次取一个.(1)在不放回的情况下,求两次都取到白球的概率;(2)在放回的情况下,求至少取得1个白球的概率;(3) 第二次取到白球 在放回和不放回的情况下,哪种概率更大?请通过计算说明.19.(本小题满分12分)已知әA B C的内角A,B,C的对边分别为a,b,c,且满足s i n(2A+B)s i n A =2+2c o s(A+B).(1)求b a的值;(2)若a=1,c=7,求әA B C的面积.20.(本小题满分12分)如图所示,已知O,A,B三点(O为坐标原点)在二次函数f(x)的图象上.(1)求函数f(x)的解析式;(2)若S n是数列{a n}的前n项和,且S n=f(n)(nɪN+),证明:数列{a n}为等差数列;(3)求1S1+1S2+1S3+ +1S n.第20题图21.(本小题满分12分)某人有楼房一幢,室内面积共计180平方米,拟分隔成两类房间作为旅游客房,大房间每间面积18平方米,可住游客4名,每名游客每天的住宿费为70元,小房间每间面积为15平方米,可住游客2名,每名游客每天的住宿费为100元.装修大房间每间需要3000元,装修小房间每间需要2000元.如果他只能筹款27000元用于装修,且游客能住满客房,问:隔出大房间和小房间各多少间时,才能获得最大的效益?最大效益是多少元?22.(本小题满分10分)某商品每件的成本为9元,售价为30元,每星期卖出136件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元)成正比.已知商品单价降低3元时,一星期多卖出去24件.(1)将一个星期的商品销售利润f(x)表示成x的函数;(2)如何定价才能使一个星期的的商品销售利润最大?最大为多少?23.(本小题满分14分)已知点M(1,y)在抛物线C上,抛物线C的焦点F在x轴上,点M到焦点F的距离为2.(1)求抛物线C的标准方程;(2)已知斜率为-12的直线交抛物线C于A,B两点,若以A B为直径的圆与x轴相切,求该圆的标准方程.。
最新单招数学考前押题含答案
对口单招考前数学模拟题选择题:1. 若集合}03|{},2|||{2=-=≤=x x x N x x M ,则=⋂N M ( )A .}0{B .}3{C .}2,0{D .}3,0{2.设p :直线l 垂直于平面α内的无数条直线,q :l ⊥α,则p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知向量)21,(),,2(+-==x x b x a r r.若a 与b 平行,则||a 等于( )A . B .3 C .5 D .25 4. 复数z 满足i i i z (5)2)((=--为虚数单位),则=z ( ) A .i 22-- B .i 22+- C .i 22-D .i 22+5. 设)(x f 是定义域在R 上的偶函数,且)()4(x f x f =+,若20≤≤x 时,)1(lo g )(2+=x x f , 则)5(-f 的值为 ( )A .2-B .1C .1-D .2 6三数20.3,2log 5、2log 5.0的大小关系为( )A . 2log 5<2log 5.0<20.3B . 2log 5.0<2log 5<20.3C . 2log 5.0<20.3<2log 5D . 2log 5.0<20.3<2log 5 7.已知sin (π+2α)=-54,cos (-2α)=-53,则角α为( )A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角8.5本不同的书,全部分给四位学生,每个学生至少1本,不同分发的种数为 ( )A . 480 B .240 C .120 D .96 9.若△ABC 的内角A 、B 、C 所对的边c b a 、、满足22()4a b c +-=,且C=60°, 则ab 的值为( )A .34B .8-.1 D .3210.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,离心率e =25,则此双曲线的渐近线方程为( )A .y =B .2y x =±C .2y x =±D .12y x =± 11.二项式62⎪⎭⎫ ⎝⎛-x x 展开式中不出现x 的项为( )A .24B .24-C .60D .60- 12.将直线x y 33=绕原点按逆时针方向旋转6π后,所得直线与圆3)2(22=+-y x 的位置关系是( )A .直线过圆心B .直线与圆相交但不过圆心C .直线与圆相切D .直线与圆没有公共点 1-5 ABCDB 6-10 BCBAD 11-12 CC填空题:解析:2.=+12coslog 12sinlog 22ππ-2 。