5分析化学第五篇配位滴定法
分析化学第五章 配位滴定法PPT
NaOH 无蓝色沉淀Cu(OH)2生成
NaS 有黑色沉淀CuS生成
无Cu2+??
有Cu2+??
解离
[Cu(NH3 )4 ] 2
Cu2 4NH3
配合
2022/10/18
四、 配位平衡常数
1. 稳定常数
Cu2 4NH3
[Cu(NH3 )4 ] 2
K0 MY
c([Cu(NH 3
)2 4
])
c(Cu2 ) c4 (NH3 )
(2)配位比简单,EDTA与大多数金属离子形成 配合物的配位比为1:1
(3)反应速率快,符合滴定要求 (4)与无色金属离子配位形成的配合物是无色的,与
有色金属离子配位形成的配合物颜色加深
2022/10/18
例: Cu2+显浅蓝色而CuY2-为深蓝色, Ni2+显浅绿色, 而NiY2-为蓝绿色, Mn2+显粉红色,而MnY2-为紫红色 Fe3+显棕黄色,而FeY-为黄色
2.在一定反应条件下,只形成一种配位数的配合物; 3.配位反应速度要快; 4.有适当的方法确定反应的等量点。
2022/10/18
三、配位剂的分类 无机配位剂(不适合用于配位滴定)
有机配位剂 (易形成具有环状结构的 螯合物,非常稳定。使用最多的是氨羧配 位剂,其中应用最广泛的是EDTA)
2022/10/18
4. 指示剂与金属离子配合物应易溶于水,指示剂比 较稳定,便于贮藏和使用
2022/10/18
三、 常用的金属指示剂
1. 铬黑T(BET)
铬黑T是弱酸性偶氮染料
1-(1-羟基-2萘偶氮)-6硝基-2-萘酚-4-磺酸钠
H
H
H 2 In
(分析化学)第五章配位滴定法
≥12
Y4-
二 EDTA的酸效应及酸效应系数αY(H)
定义: αY(H) = [Y']/[Y] 一定 pH的溶液中,EDTA各种存在形式的总浓度
[Y’],与能参加配位反应的有效存在形式Y4-的平衡浓 度[Y]的比值。
EDTA的各种存在形式共有几种? 7种 —— 总浓度[Y’]
酸效应系数αY(H) ——用来衡量酸效应大小的值。
B 1 = K 1=
[M L ] [M ][L ]
B 2= K 1K 2= [M L 2] [M ][L ]2
B n = K 1K 2...K n =
[M L n ] [M ][L ]n
最后一级累积稳定常数为各级络合物的总的 稳定常数.
在分析化学中,列出的经常是各级稳定常数 或累积稳定常数或是它们的对数值,使用时,不 要混淆。
K稳
1 K不稳
2 MLn(1:n)型配合物
M+L=ML
第一级稳定常数
K1
[ML] [M][L]
ML+L=ML2 第二级稳定常数
.
K2 =
ML2 ML L
.
MLn-1 +L=MLn 第n级稳定常数
K不稳
1 K n稳
Kn =
MLn MLn-1 L
若将逐级稳定常数依次相乘,就得到各级累积稳 定常数( B n )
ΔpM= 2.39
当pH=9.0时,用0.01mol/LEDTA溶液滴定0.01mol/L 的20.00mlCa2+溶液,考察pM值的变化范围。 注意:当pH=9.0时, EDTA有酸效应
a KCaY'= KCaY Y(H)
=
1010.69 101.28
=109.41
分析化学 第五章 配位滴定法
11010.7 0.01 108.7
Y Y (Ca) Y (H ) 1 108.7 106.45 1 108.7
lgY 8.7
2019/11/30
二、金属离子的副反应系数:用M 表示
M+L=ML
ML+L=ML2 MLn-1+L=MLn
M
(
L
=[M ) [M
'] ]
[M ](1
i[L]i )
[M ]
1
i[L]i
1
M
金属离子的羟基络合物
M
(OH
=[M ) [M
'] ]
[M ] [M (OH )] [M (OH )2 ] [M (OH )n ] [M ]
1 1[OH ] 2[OH ]2 n[OH ]n 1 i[OH ]i
Ka2 101.6
Ka3 102.0
Ka4 102.67
K稳H 6 100.9
K H 101.6 稳5
K稳H 4 102.0
K
H 稳3
102.67
Ka5 106.16
K H 106.16 稳2
HY 3 Y 4 H
Ka6 1010.26
K H 1010.26 稳1
K
' MY
为条件稳定常数,有副反应发生
[M ' ] M [M ] [Y ' ] Y [Y ] [(MY )'] MY [MY ]
K
' MY
[MY '] [M' ][Y ' ]
MY [MY ] M [M ]Y [Y ]
第五章配位滴定法分析化学
4) 计量点后 加入EDTA的体积为20.02ml。
[Y ] 0.02 0.01000 5106 mol L1 20.00 20.02
[CaY ] 20.00 0.01000 5103 mol L1 20.00 20.02
NH4
H NH3
Zn
+
OH-
Zn(NH3) Zn(OH)
Y
H+
HY
ZnY
····· ·
····· ·
···· ·
lgY(H)=1.4
Zn = Zn(NH3) + Zn(OH) -1 = 103.2 + 100.2 - 1= 103.2
lg KZnY = lg KZnY - lg Zn - lg Y = 16.50 - 3.2 - 1.4 = 11.9
=
[Y]+[N1Y]+[N2Y]+…+[NnY] [Y]
= 1+KN1Y[N1]+KN2Y[N2]+…+KNnY[Nn]
=Y(N1)+Y(N2)+…+Y(Nn)-(n-1)
Y的总副反应系数 Y
[Y] Y= [Y]
= [Y]+[HY]+[H2Y]+ ···+[NY] [Y]
= Y(H) + Y(N) -1
EDTA: -pH图
1.0
0.8
0.6
0.4
0.2
0.0
0
H6Y2+
H2Y2-
HY3-
Y4-
H5Y+ H3Y-
H4Y
2
4
6
8 10 12 14
分析化学课件: 第五章 配位滴定法
5
• 3.EDTA:结构式
• 水溶液:
• 从结构上看EDTA为四元酸,常用H4Y表示,在 水溶液中,两个羧基上的氢原子转移到氮原子 上,形成双偶极离子。它的六个配位原子,能 与金属离子形成稳定的“螯合物”。
分析化学
第五章 配位滴定法
6
• EDTA一般用H4Y表示,当它溶于水时,若溶液 的酸度很高,可形成H6Y2+,相当于六元酸,有 六级解离平衡。记录时省略电荷:H6Y, H5Y,…,Y。
金属离子配位能力降低的现象称为酸效应,其
影响程度可用EDTA的酸效应系数αY(H)来表示:
Y
H
=
Y'
Y
分析化学
第五章 配位滴定法
17
• 酸效应系数表示在一定酸度下,反应达到平衡时, 未参加配位反应的EDTA总浓度[Y´]与能参加配 位反应的Y4-离子的平衡浓度[Y4-](有效浓度) 之比。
• 酸效应系数等于Y4-的分布系数δY的倒数:
H+ 4
+
Ka6
K K K K K K K K K a6 a5
a6 a5 a4
a6 a5 a4 a3
H+ 5
+
H+ 6
K K K K K K K K K K K a6 a5 a4 a3 a2
a6 a5 a4 a3 a2 a1
分析化学
第五章 配位滴定法
19
• 由上式可知,溶液的H+浓度越大,酸效应系数αY(H)
• ③反应必须迅速。
• ④要有适当的方法确定滴定终点。
• ⑤反应产物最好是可溶的。
分析化学
第五章 配位滴定法
2
三、配合物分类
第五章 配位滴定法
第五章 配位滴定法§5-1概述配位滴定法是以配位反应为基础的一种滴定分析方法。
在配位滴定中,一般用配位剂做标准溶液来滴定金属离子。
当金属离子M 与配位剂L 形成MLn 型配合物时,MLn 型配合物是逐级形成的,其逐级形成产物的逐级稳定常数为:ML L M ⇔+第一级稳定常数[][][]L M ML K 1= (均略去电荷)2ML L ML ⇔+第二级稳定常数[][][]L ML ML 22K =……….n 1ML L ML ⇔+-n第n 级稳定常数[][]LML ML 1n n K -n =将逐级稳定常数依次相乘,就可得到各级累积稳定常数β。
[][][]L M ML K 11==β[][][][][][][][]2222212L M ML L ML ML [L]M ML K K ===β[][][]nn K L M ML ...n21nK K ==β最后一级累积稳定常数又叫配合物的总稳定常数。
各种配合物的总稳定常数及各级的累积稳定常数见P416, 附录四,注意是对数值。
配位剂分为无机配位剂和有机配位剂。
无机配位剂应用于滴定分析的不多,其主要原因是许多无机配位化合物不够稳定,不符合滴定反应的要求,在形成配合物时,有逐级配位现象,容易形成配位数不同的配合物,无法定量计算。
例如:Cu 2+与NH 3形成的配合物,存在[Cu(NH 3)2]2+、[Cu(NH 3)3]2+、[Cu(NH 3)3]2+、[Cu(NH 3)4]2+等几种配合物,因而无机配位剂的应用受到了限制。
有机配位剂在分析化学中应用非常广泛,特别是氨羧类配位剂,与金属离子形成稳定的、而且组成一定的配合物,是目前配位滴定中应用最多的配位剂。
氨羧配位剂大部分含有氨基二乙酸基团: CH 2COOH NCH 2COOH其中氨氮和羧氧是具有很强配位能力的原子,它们能与多数金属离子形成稳定的配合物。
其中最主要应用最广泛的是乙二胺四乙酸,简称EDTA 。
第五章配位滴定法
22:13:27
3、 配合物的稳定常数与各级分布分数 、 配合物的稳定常数( ( 1) EDTA配合物的稳定常数 ( 形成常数 ) ) 配合物的稳定常数 形成常数)
M+Y
MY
稳定常数
[MY] KMY = [M][Y]
讨论: 讨论: KMY↑大,配合物稳定性 高,配合反应 完全 大 配合物稳定性↑高 配合反应↑完全
(1)K
H
HF
Hale Waihona Puke 1 = = 103.18 Ka 1 Kb = = = 109.37 Ka Kw
(2)K
H
NH4+
1 1 1 1 14.15 H (3)K 1 = = −14.15 = 10 , 2 = K = −6.88 = 106.88 Ka2 10 Ka1 10
H
22:13:27
(5)各级配合物的分布分数(或摩尔分数) )各级配合物的分布分数(或摩尔分数) 多元配合物
22:13:27
(1)EDTA的性质 ) 的性质 EDTA的离解平衡: 的离解平衡 H6Y2+ H5Y+ H4Y H3YH2Y2HY3H+ + H+ + H+ + H+ + H+ + H+ + 水溶液中七种存在型体
1.0 0.8 分布系数 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 14 pH
∏Kj
j =1
i
……
ML
n -1
+ L = ML
n
Kn
[ML n ] = [ML n -1 ][L]
K −1
= 1 Kn
βn =
配位滴定法
主反应:
M
+
Y
MY
副反应:
L
OH - H +
N
H+
OH -
ML
MOH HY
NY
ML2
M(OH)2? H2Y
MHY
M(OH)Y
MLn
辅助配 位效应
M(OH)n H6Y
羟基配 酸效应 位效应
干扰离 子效应
E、溶解度大; F、EDTA 与无色金属离子生成无色螯合物。与有色金属
离子生成颜色更为深的螯合物。
★ EDTA与金属离子的配合性,在分析化学中得到广泛应用。
络合滴定法就是以 EDTA 为络合滴定剂的分析方法。
二、配位反应的副反应系数(难点)
在配位主反应体系中,配合物所解离出来的各组分,往往会 与溶剂或溶剂中其它的共存组分发生化学反应。从而影响配合主 反应的进行程度。
混合配位效应
1、EDTA与金属离子的主反应
在分析化学中,我们将 EDTA(Y4-)与被测金属离 子(Mn+)之间的配位反应,称为络合滴定的主反应。
Mn+ + Y4- = MYn-4
K MY
[ MY n4 ] [ M n ][ Y 4 ]
(P 432 附录,附录五)
EDTA 与不同的金属离子配合,其配离子的稳定性各不
10 -10.26
2、EDTA 的分步曲线
★ 在一定的酸度及PH下,各种存在形式都有其相应的分布系数。 当 PH>10.3 时,Y4-的分布系数约等于1。(P105,图 5-1)
4、EDTA 与金属离子螯合物的特点
分析化学第5章思考题习题答案
第五章配位滴定法思考题答案1.EDTA与金属离子的配合物有哪些特点?答:(1)EDTA与多数金属离子形成1︰1配合物;(2)多数EDTA-金属离子配合物稳定性较强(可形成五个五原子环); (3)EDTA与金属配合物大多数带有电荷,水溶性好,反应速率快;(4)EDTA与无色金属离子形成的配合物仍为无色,与有色金属离子形成的配合物颜色加深。
2.配合物的稳定常数与条件稳定常数有何不同?为什么要引用条件稳定常数?答:配合物的稳定常数只与温度有关,不受其它反应条件如介质浓度、溶液pH值等的影响;条件稳定常数就是以各物质总浓度表示的稳定常数,受具体反应条件的影响,其大小反映了金属离子,配位体与产物等发生副反应因素对配合物实际稳定程度的影响。
3.在配位滴定中控制适当的酸度有什么重要意义?实际应用时应如何全面考虑选择滴定时的pH?答:在配位滴定中控制适当的酸度可以有效消除干扰离子的影响,防止被测离子水解,提高滴定准确度。
具体控制溶液pH值范围时主要考虑两点:(1)溶液酸度应足够强以消去干扰离子的影响,并能准确滴定的最低pH值;(2)pH值不能太大以防被滴定离子产生沉淀的最高pH值。
4.金属指示剂的作用原理如何?它应该具备那些条件?答:金属指示剂就是一类有机配位剂,能与金属形成有色配合物,当被EDTA等滴定剂置换出来时,颜色发生变化,指示终点。
金属指示剂应具备如下条件:(1)在滴定的pH范围内,指示剂游离状态的颜色与配位状态的颜色有较明显的区别;(2)指示剂与金属离子配合物的稳定性适中,既要有一定的稳定性K’MIn >104,又要容易被滴定剂置换出来,要求K’MY/K’MIn≥104(个别102);(3)指示剂与金属离子生成的配合物应易溶于水;(4)指示剂与金属离子的显色反应要灵敏、迅速,有良好的可逆性。
5.为什么使用金属指示剂时要限定适宜的pH?为什么同一种指示剂用于不同金属离子滴定时,适宜的pH条件不一定相同?答:金属指示剂就是一类有机弱酸碱,存在着酸效应,不同pH时指示剂颜色可能不同,K’MIn不同,所以需要控制一定的pH值范围。
分析化学第五章配位滴定法PPT
滴定曲线与滴定终点
滴定曲线是指滴定过程中溶液的pH 值随滴定剂加入量的变化曲线。
滴定终点是指滴定过程中指示剂颜色 突变的位置,是滴定的关键点,其准 确判断对于保证滴定结果的准确性至 关重要。
滴定误差与准确度
01
滴定误差是指由于多种因素导致的滴定结果与真实值之间的偏 差。
02
准确度是指滴定结果的可靠性,即多次重复测定结果的平均值
配位滴定法的应用
01
02
03
金属离子分析
配位滴定法广泛应用于金 属离子分析,如铁、钴、 镍、铜、锌等离子的测定。
环境监测
在环境监测中,配位滴定 法可用于测定水体中重金 属离子的含量,评估环境 质量。
食品分析
在食品分析中,配位滴定 法可用于检测食品中微量 元素和重金属离子的含量, 确保食品安全。
配位滴定法的历史与发展
绿色化学在配位滴定法中的应用
无毒或低毒试剂的使用
开发无毒或低毒的配位剂和辅助试剂,减少对环境和人体的危害。
高效分离技术的研发
研究和发展高效、环保的样品前处理和分离技术,降低实验过程中 废液的产生。
循环利用和减少废弃物
优化实验流程,实现试剂和仪器的循环利用,减少废弃物的产生。
THANKS
感谢观看
配制标准溶液和待测溶液
根据实验需要,准确配制标准溶液和 待测溶液。
滴定操作
将待测溶液放入烧杯中,加入缓冲溶 液和指示剂,用标准溶液进行滴定, 并观察颜色变化。
数据记录
记录滴定过程中的数据,如滴定管读 数、实验时间等。
实验数据处理与分析
数据整理
将实验数据整理成表格, 列出各项数据。
数据分析
根据实验数据,计算待测 溶液的浓度、相对误差和 不确定度等。
分析化学 第五章 配位滴定法
[MLn] = Kn[MLn-1][L] = K1…Kn[M][L]n
βn
逐级稳定常数:Kn;K越大,表明该级络合物越稳定。
累积稳定常数:βn = K1K2⋅⋅⋅Kn
[MLi ] = βi[M][L]i
11
2. 络合剂的质子化常数
络合剂
金属离子
H+
酸效应
Y + H+ HY + H + H5 Y+ H+
(OH )2 ]+ .... + [M (OH )n ]
[M ]
副反应系数α数值上 ≥ 1
α=1 没有副反应发生
α越大,副反应越严重
19
5.3.1 EDTA的酸效应与酸效应系数αY(H)
酸效应:因酸度的影响,使EDTA参加主反应 能力降低的现象
酸效应系数:
αY(H) =
—未—参—与—主—反—应—E—DT—A—总—浓—度 游离EDTA浓度
18
M+ Y
MY
H+
N
.H.Y. NY
H6Y
副反应系数的求法
αY
=
[Y '] [Y ]
αY(H )
=
[Y ] + [HY ] + [H2Y ]+ .... + [H6Y ]
[Y ]
[Y]+[NY]
αY(N) = ——[Y—] ——
αM
= [M '] [M ]
α M (OH )
=
[M
] + [MOH ] + [M
Y
OH-
L
H+
N
MY
H+
第五章_配位滴定法(人卫版分析化学)
第五章配位滴定法1.基本概念稳定常数:为一定温度时金属离子与EDTA配合物的形成常数,以KMY表示,此值越大,配合物越稳定。
逐级稳定常数和累积稳定常数:逐级稳定常数是指金属离子与其它配位剂L逐级形成MLn型配位化合物的各级形成常数。
将逐级稳定常数相乘,得到累积稳定常数。
副反应系数:表示各种型体的总浓度与能参加主反应的平衡浓度之比。
它是分布系数的倒数。
配位剂的副反应系数主要表现为酸效应系数αY(H)和共存离子效应αY(N)系数。
金属离子的副反应系数以αM表示,主要是溶液中除EDTA外的其他配位剂和羟基的影响。
金属指示剂:一种能与金属离子生成有色配合物的有机染料显色剂,来指示滴定过程中金属离子浓度的变化。
金属指示剂必须具备的条件:金属指示剂与金属离子生成的配合物颜色应与指示剂本身的颜色有明显区别。
金属指示剂与金属配合物(MIn)的稳定性应比金属-EDTA配合物(MY)的稳定性低。
一般要求K MY'>K MIn'>102。
最高酸度:在配位滴定的条件下,溶液酸度的最高限度。
最低酸度:金属离子发生水解的酸度。
封闭现象:某些金属离子与指示剂生成极稳定的配合物,过量的EDTA不能将其从MIn中夺取出来,以致于在计量点附近指示剂也不变色或变色不敏锐的现象。
2.基本原理(1)配位滴定法:EDTA与大多数金属离子能形成稳定配位化合物,此类配合物不仅稳定性高,且反应速度快,一般情况下,其配位比为1:1,配合物多为无色。
所以目前常用的配位滴定法就是EDTA滴定,常被用于金属离子的定量分析。
(2)准确滴定的条件:在配位滴定中,若化学计量点和指示剂的变色点ΔpM'=±0.2,将lgC×K MY'≥6 或C×K MY'≥106作为能进行准确滴定的条件,此时的终点误差在0.1%左右。
(3)酸度的控制:在配位滴定中,由于酸度对金属离子、EDTA和指示剂都可能产生影响,所以必须控制溶液的酸度,需要考虑的有:满足条件稳定常数38时的最高酸度;金属离子水解最低酸度;指示剂所处的最佳酸度等。
分析化学课件-配位滴定法
例2 计算pH = 11, [NH3] = 0.1 时的lgZn
解
Zn2+ + Y
ZnY
Zn(NH3)42+ 的lg 1~lg4分
OH-
NH3
别为2.27, 4.61, 7.01, 9.06
Zn(OH) Zn(NH3 )
Zn(NH3) 1 i[NH3]i
Zn
Zn(NH3) 1 102.271.0 104.612.0 107.013.0 109.064.0
(一)配位剂的副反应系数αY
配位剂的副反应系数αY是αY=[Y’]/[Y] 它表示未与M离子配位的配位剂各型体的总浓度[Y’]是游离 配位剂[Y]的多少倍。
1. 滴定剂的副反应系数- Y(H)
Y(H)
[Y] [Y]
[Y]
[HY]
[H2Y] [Y]
[H6Y]
[Y] [Y][H ]1 [Y][H ]2 2 [Y][H ]6 6
KHMHY=[MHY]/[MY][H] KHMHY是MY和H+形成MHY的稳定常数,副反应系数 αMY(H)=([MY]+[MHY])/[MY]=1+[H] KHMHY
(四)配合物的条件稳定常数
当有副反应发生时,应用条件常数K’MY来衡量配合物 的稳定性,即
5.2 配合物的稳定性
K’MY = [(MY)’]/[M’][Y’] = KMY( αMY / αM αY )
Zn(NH3 ) 105.10
查附录五表:pH = 11.0
lg Zn(OH) 5.4
Zn Zn(NH 3 ) Zn(OH) 1 105.10 105.40
105.6
lgZn 5.6
5.2 配合物的稳定性
分析化学5.第五章配位滴定法2
亮绿
蓝
粉红
无色
蓝紫 色
褐色
5.2 络合物的平衡常数
[Cu(NH3)4]SO4在水溶液中 配合物的外界和内界完全解离
[Cu(NH3)4]SO4 [Cu(NH3)4]2+ + SO42配离子部分解离
[Cu(NH3)4]2+
Cu2+ + 4NH3
[Cu(NH3)4]2+
Cu2+ + 4NH3
(
解离常数
Vb
(3) 计算
0.2g钙羧酸指示剂干粉
开始滴定时速度宜稍快, 接近终点时应稍慢, 最好每滴间隔2~3秒, 并充分振摇,
整个过程应在5min内完成。
又如,用AgNO3标准溶液滴定氰化物: Ag+ + 2CN- = Ag[(CN)2]-
Ag+与CN-配位,形成难离解的[Ag(CN)2]-络离子 当滴定达到计量点时,稍过量的Ag+就与
逐级稳定常数依次相乘,称各级累积稳定常数,用 符号β表示:
累积形成常数
cumulative stability constant
Cu2+ + NH3 = Cu(NH3)2+
β1
Cu2+ + 2NH3 = Cu(NH3)22+
β2
Cu2+ + 3NH3 = Cu(NH3)32+
β3
Cu2+ + 4NH3 = Cu(NH3)42+
0.6
0.4
H5Y
H3Y
0.2
H4Y
0.0
0246
<0.9
H6Y
HY
分析化学 第5章 配位滴定法
HOOCH2C
CH2COOH
在高酸度的溶液中,两个氨氮还可各接受一个H+
形成六元酸 故表示为: H6Y(为方便, 略去电荷)
因与金属离子配位的是其酸根 Y4-, 只有 pH > 10.3 时主要存在型体是 Y4所以:
EDTA 在碱性溶液中配位能力较强 即平衡向生成配合物的方向进行得较完全 亦即配合物的稳定性强。
cr,e (Y)
0.01000 0.02 20.00 20.02
5.00 106
1.74 1010
5.00 10-3 cr,e (Ca 2+ ) 5.00 10-6
cr,e(Ca2+) = 5.75×10-8
pCa = 7.2
根据 可知,
Er = -0.1% 时 pCa = 5.3 化学计量点时 pCa = 6.3
称为绝对稳定常数 即无副反应时的稳
以下用
定常数
K 表示
当有副反应(如酸效应或配位效应)时, 绝对稳定常数的数值已不能说明配合物的 稳定性,应该用条件稳定常数:
K (MY) cr,e (MY) cr,e (M)cr,e (Y)
cr,e (MY)
M(L) cr,e (M) Y(H) cr,e (Y)
离
水
配酸
子
解
位效
干
效
效应
扰
应
应
效
应
MHY
酸 式 配 合 物
M(OH)Y
碱
式 配 合
副 反 应
物
二、酸效应和酸效应系数 如上式所示, 由于 H+ 存在而使 EDTA 参加主反应的 能力降低的作用称为酸效应。
为表示酸效应程度的大小, 提出了酸效应系数:
分析化学第5章中文
log αY4-(H)
2.25
1.27
0.44
0.07
0
0
0
例: Fe(EDTA)- 的形成常数为 1025.1=1.3×1025.
计算pH值为 8.00 和 2.00时,在0.10 mol/L Fe(EDTA)- 溶液中 Fe3+ 的浓度. 解: 初浓度: 平衡浓度: Fe(EDTA)0.10 0.10 – x Fe3+ + EDTA 0 0 x x
K’MY 是经副反应校正后的实际稳定常数,它考 虑了酸效应、络合效应的影响,真实地反映 了溶液中的实际情况。常用对数表示:
log K ' MY log K MY log M [ L] logY [ H ]
计算方法: (1) 查表求lgKMY (2) 查表求lgαY(H) (3) 查表β求lgαM(L) lgβn→βn→αM(L)=1+β1[L]+ ……+βn[L]n
[ M ]总
络合效应[M]=
M (L)
K MY [MY ] K ' MY 整理得: M [ L] Y [ H ] [Y ' ]总 [M ' ]总
称为条件稳定常数。
对于 EDTA 配合物,同时考虑酸效应系数和 络合效应系数 :
[ MY n4] [ MY n4] Kf n 4 n Y 4 ( H ) M ( L ) [ M ][Y ] [ M ]total [ EDTA]
HO2C HO2C CH2 CH2 CH2COOH N CH2 CH2 N CH2COOH
HO2C HO2C
CH2 CH2
CH2COOH N CH2 CH2 N CH2COOH
分析化学 第五章 配位滴定法
1+
H+ Ka2
+
H+ 2 K K a1 a2
1 10-1011.6 +10-2011.66.3 101.6
pMgt lg KMgIn- lgInH 7.0-1.6 5.4
分析化学
第五章 配位滴定法
3
• (三)常用金属指示剂
• 常用的有:铬黑T(EBT)、二甲酚橙(XO)、 1-(2-吡啶-偶氮)-2-萘酚(PAN)和钙指 示剂(NN)等。
• 铬黑T:2-羟基-1-(1-羟基-2-萘偶氮基) -6-萘酚-4-磺酸钠
分析化学
第五章 配位滴定法
4
• 铬黑T与金属离子形成的配合物呈红色,使用 时的最适pH值范围是7~10,终点时溶液颜色 由红色变为蓝色。在pH=10的缓冲溶液中,用 EDTA可直接滴定Mg2+、Zn2+、Cd2+、Pb2+、 Hg2+等离子。但对于Al3+、Fe3+、Co2+、Ni2+、 Cu2+等离子,由于它们对指示剂有封闭作用, 因此需用三乙醇胺、NH4F等加以掩蔽。
分析化学
第五章 配位滴定法
9
• (2)标定:精密量取锌溶液25ml,加甲基红 指示剂1滴,滴加氨试液至溶液呈微黄色,再 加蒸馏水25ml, NH3·H2O-NH4Cl缓冲溶液 10ml和EBT指示剂数滴,用EDTA溶液滴定至 溶液由紫红色变为纯蓝色即为终点。
• 也可选用二甲酚橙为指示剂进行滴定。
分析化学
• 注意:铬黑T固体比较稳定,但其水溶液不稳 定,一般只能保存几天。由于水溶液中铬黑T 分子易发生聚合反应,聚合后不能与金属离子 显色,常将其粉末与氯化钠混合进行保存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨羧类配位剂代表:乙二胺四乙酸,简称EDTA
2020年8月11日4时1分
氨羧配位剂
以氨基二乙酸基团[—N(CH2COOH)2]为基体的 有机配位剂(或称螯合剂(chelant))。 最常见: 乙二胺四乙酸
简称: EDTA ( H4Y)
( ethylene diamine tetraacetic acid,EDTA或EDTA酸) 环己烷二胺四乙酸(CyDTA) 乙二醇二乙醚二胺四乙酸 (EGTA) 乙二胺四丙酸(EDTP)
8.73
Zn2+
16.50
Th4+
23.2
Be2+
9.20
Pb2+
18.04
Cr3+
23.4
Ca2+
10.69
Y3+
18.09
Fe3+
25.1
Mn2+ Fe2+
13.87 14.33
VO2+ Ni2+
18.1 18.60
U4+
25.8
Bi3+
27.94
La3+
15.50
VO2+
18.8
Co3+
36.0
计算 pH = 2.0 和 pH = 5.0 时 的条件稳定常数 lgK'ZnY 。 解:查表得:lgKZnY = 16.5
pH = 2.0 时, lgαY(H) = 13.51 pH = 5.0 时, lgαY(H) = 6.6
由公式:
lgK
' MY
=
lgKMY
- lgαY(H)
得:
pH
=
2.0
时,
lgY(H) lgc lgKMY 6 = lg0.01+10.69 - 6 = 2.69
查表5-2,用内插法求得 pHmin>7.6。 所以,用 EDTA滴定 0.01mol·L-1Ca2+溶液允许的最低 pH为7.6。
2020年8月11日4时1分
§5.4 滴定曲线
当溶液中金属离子浓度较小 时,通常用金属离子浓度的负对 数 pM (-lg[M] ) 来表示。8.8Fra bibliotek1.48
9.0
1.28
9.5
0.83
10.0
0.45
11.0
0.07
12.0
0.01
13.0
0.00
讨论:
a. 酸效应系数随溶液酸度增加而增大,随溶液pH增 大而减小
b. αY(H)的数值大,表示酸效应引起的副反应严重
c. 通常αY(H) >1, [Y' ] > [Y]。 当αY(H) = 1时,表示总浓度[Y' ] = [Y];
即 最高pH。 不同金属离子有不同的最低pH及最高pH。
2020年8月11日4时1分
最小pH的计算:
最小pH取决于允许的误差和检测终点的准确度: 配位滴定的终点与化学计量点的 pM差值一般为
±0.2,若允许的相对误差为0.1%,由终点误差公式: K'MY = [MY] /([M][Y' ]) = c / (c 0.1% c 0.1%)=1/(c 10-6) lgcK'MY ≥ 6 ;
(1) 在滴定的pH范围内,游离指示剂与其金属配合物之 间应有明显的颜色差别 (2) 指示剂与金属离子生成的配合物应有适当的稳定性
2020年8月11日4时1分
注意金属指示剂适用 pH 范围:
金属指示剂也是多元弱酸或多元弱碱; 能随溶液 pH 变化而显示不同的颜色; 使用时应注意金属指示剂的适用 pH 范围。 铬黑T在不同 pH 时的颜色变化。使用范围pH 8 ~11
2020年8月11日4时1分
5.5.2 金属指示剂应具备的条件
第五章 配位滴定法
Complexometry
§5.1 概述
§5.2 EDTA与金属离子的配合 物及其稳定性
§5.3 外界条件对EDTA与金属 离子配合物稳定性的影响
§5.4 滴定曲线
§5.5 金属指示剂及其他指示终 点的方法
§5.6 混合离子的分别滴定 §5.7 配位滴定的方式和应用
2020年8月11日4时1分
2020年8月11日4时1分
胺羧试剂的特点: (动画)
1. 配位能力强;氨氮和羧氧两种配位 原子;
2. 多元弱酸;EDTA可获得两个质子, 生成六元弱酸;
3. 配合物的稳定性高; 与金属离子能形 成多个多元环 ;
4. 1∶1配位;计算方便; 5. 配合物水溶性好(大多带电荷)。 右下图为 NiY 结构模型
2020年8月11日4时1分
表5-2 不同pH时的 lgαY(H)
pH
lg Y(H)
pH
lg Y(H)
0.0
23.64
3.8
8.85
0.4
21.32
4.0
8.44
0.8
19.08
4.4
7.64
1.0
18.01
4.8
6.84
1.4
16.02
5.0
6.45
1.8
14.27
5.4
5.69
2.0
13.51
2020年8月11日4时1分
M
[M' ] [M]
[MY] KMY
[M' ][Y' ] Y(H) M
K M'Y'
K
' MY
条件稳定常数: K'MY
在配位滴定中,酸效应对配合物的稳定性影响较大, 一般近似用KMY’ 代替K'MY 。
2020年8月11日4时1分
5.3.5 配位滴定中适宜pH条件的控制
M M(L) M(OH) 1
5.3.4 条件稳定常数
滴定反应: M + Y = MY
KMY =[MY] / ([M][Y]) [Y]为平衡时的浓度(未知),已知EDTA总浓度[Y'] 。
由
[Y ] [Y' ]
Y(H)
得
[MY] [M][Y' ]
K MY
Y(H)
K
' MY
lgK'MY = lgKMY - lgαY(H) 同理, 对滴定时, 金属离子发生的副反应也进行处理 。
(1) 溶液 pH↑,酸效应系数↓, KMY'↑,有利于滴定; (2) 溶液 pH↑,金属离子易发生水解反应, 使KM'Y↓,不 有利于滴定。
两种因素相互制约,具有:最佳点(或范围)。
当某pH时, K'MY能满足滴定最低要求,则此时
的 pH 即 最低pH。 金属离子不发生水解时的 pH 可以近似认作允许的
lg c lgKMY lg Y(H) 6
lg Y(H) lgc lgKMY 6
2020年8月11日4时1分
lg Y(H) lgc lgKMY 6
当: c = 10-2 mol/L lgαY(H) ≤ lgKMY - 8
算出 lgαY(H) ,再查表5-2,用内插法可求得配位滴 定允许的最低pH (pHmin)。
配合物的稳定性受两方面的影响:金属离子自身 性质和外界条件。 需要引入:条件稳定常数
2020年8月11日4时1分
§5.3 外界条件对EDTA与金属 离子配合物稳定性的影响
5. 3.1 配位滴定中的副反应
有利于和不利于MY配合物生成的副反应? 如何控制不利的副反应?控制酸度;掩蔽; 外界影响如何量化?
2020年8月11日4时1分
稳定常数具有以下规律:
a .碱金属离子的配合物最不稳定,lg KMY<3; b.碱土金属离子的 lgKMY = 8~11; c.过渡金属、稀土金属离子和Al3+的lgKMY=15~19 d.三价,四价金属离子及Hg2+的lgKMY>20.
表中数据是指无副反应的情况下的数据, 不能反映 实际滴定过程中的真实状况。
将各种金属离子的lgKMY 与其最小pH绘成曲线,称 为EDTA的酸效应曲线或林旁曲线。
2020年8月11日4时1分
酸效应曲线(林旁曲线)
2020年8月11日4时1分
例:
试计算 EDTA滴定 0.01mol·L-1Ca2+溶液允许的最低 pH(lgKCaY = 10.68)。 解:已知 c = 0.01 mol·L-1
阳离子
lgKMY
阳离子
lgKMY
阳离子
lgKMY
Na+
1.66
Ce4+
15.98
Cu2+
18.80
Li+
2.79
Al3+
16.3
Ga2+
20.3
Ag+
7.32
Co2+
16.31
Ti3+
21.3
Ba2+
7.86
Pt2+
16.31
Hg2+
21.8
Mg2+
8.69
Cd2+
16.46
Sn2+
22.1
Sr2+
5.2.2 EDTA与金属离子的配合物
金属离子与EDTA的配位反应,略去电荷,可简写成: M + Y = MY
稳定常数: KMY = [MY]/[M][Y]
表中数据有何规律?
2020年8月11日4时1分
表5-1 EDTA与一些常见金属离子配合物的稳定常数
( 溶液离子强度 I = 0.1 mol·L-1,温度 293 K )
lgK
' ZnY
= 16.5-13.5 = 3.0