第1.1讲 12个函数的图像及性质
数学分析讲义

f (x)
-x
o
偶函数
x
x
数学分析讲义
§1.2 四类具有特殊性质的函数
数学分析讲义
§1.2 四类具有特殊性质的函数
四、周期函数
定义 设函数 f ( x ) 定义在数集 A .若 ∃l > 0, ∀x ∈ A ,有 x + l ∈ A ,且
f (x ± l ) = f (x )
则称函数 f (x ) 是周期函数, l 称为函数 f (x ) 的一个周期 周期. 周期
数学分析讲义
§1.2 四类具有特殊性质的函数
y=sin(x)
1
0.5
10 -0.5
20
30
40
50
-1
数学分析讲义
§1.2 四类具有特殊性质的函数
1 + ( −1) n n + 1 例 2 数列 有界. 与 2 n
例 3 反正切函数 y = arctgx 与反余切函数 y = arc ctgx 在 R 有界(如下图). 事实上, ∃Μ = 与
3l − 3l −2 2
l − l − 2 2
l l 2 2
3l 3l 2 2
数学分析讲义
§1.2 四类具有特殊性质的函数
数学分析讲义
§1.3 复合函数与反函数
一、复合函数
G 定义 设函数 z = f ( y ) 定义在数集 B , 函数 y = ϕ ( x ) 定义在数集 A , 是
A 中 使 y = ϕ (x ) ∈ B 的 x 的 非 空 子 集 ( 如 图 1.19 ), 即
y = ϕ ( x ) 与 z = f ( y ) 的复合函数,即 ( f ϕ )( x ) = f [ϕ ( x )], x ∈ G, y 称为中 的复合函数,
大一高数知识点总结

大一高数知识点总结大一高数知识点总结篇一:大一高数知识点,重难点整理第一章基础知识部分1.1初等函数一、函数的概念1、函数的定义函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。
设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f(x),其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。
2、函数的表示方法(1)解析法即用解析式(或称数学式)表示函数。
如y=2x+1, y=︱x︱,y=lg(x+1),y=sin3x等。
便于对函数进行精确地计算和深入分析。
(2)列表法即用表格形式给出两个变量之间函数关系的方法。
便于差的某一处的函数值。
(3)图像法即用图像来表示函数关系的方法非常形象直观,能从图像上看出函数的某些特性。
分段函数——即当自变量取不同值时,函数的表达式不一样,如 1??2x?1, x?0?xsin,f?xy??x ?2x?1,x?00 x?0 x?0 隐函数——相对于显函数而言的一种函数形式。
所谓显函数,即直接用含自变量的式子表示的函数,如y=x2+2x+3,这是常见的函数形式。
而隐函数是指变量x、y之间的函数关系式是由一个含x,y的方程F(x,y)=0给出的,如2x+y-3=0,e可得y=3-2x,即该隐函数可化为显函数。
参数式函数——若变量x,y之间的函数关系是通过参数式方程? x?y 而由2x+y-3=0?x?y?0等。
?xt?, ?t?T?给出的,??y??t? 这样的函数称为由参数方程确定的函数,简称参数式方程,t称为参数。
反函数——如果在已给的函数y=f(x)中,把y看作自变量,x也是y的函数,则所确定的函数x=∮(y)叫做y=f(x)的反函数,记作x=fˉ1(y)或y= fˉ1(x)(以x表示自变量).二、函数常见的性质1、单调性(单调增加、单调减少)2、奇偶性(偶:关于原点对称,f(-x)=f(x);奇:关于y轴对称,f(-x)=-f(x).)3、周期性(T为不为零的常数,f(x+T)=f(x),T为周期)4、有界性(设存在常数M>0,对任意x∈D,有f∣(x)∣≤M,则称f(x)在D上有界,如果不存在这样的常数M,则称f(x)在D上无界。
初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
1.1 函数医学高等数学课件

高等数学教研室
尹玲
课程介绍
33学时,考查课 授课内容:前三章 考试内容:前三章 成绩计算:30%平时成绩(作业、 出勤)70%卷面成绩
参考资料
医用高等数学学习指导与习题全解 (第二版) 马建忠主编 科学出版 社出版 高等数学(第五版)上册 同济大学 应用数学系主编 高等教育出版社出 版
1. y u , u sin( x 2)
3 2
3 2
2. u sin v , v x 2
y u , u sin v , v x 2
解二:
3 2
y u , u v , v sin s , s x 2
3
1 2
1 x 例12 解: y tan u , u 1 x
反三角函数 y=arcsinx,y=arccosx,
y=arctanx,y=arccotx
常数函数
y=C (C为常数)
幂函数
(1,1)
(1,1)
指数函数
a >1 0< a <1
(0,1)
(0,1)
y
对数函数
a >1
y ln x y lg x
(1,0)
O
0< a <1
x
y log0.2 x y log0.4 x
函数 y=tan x , x n ± /2 是一个 T = 的周期函数。
三、 初等函数
基本初等函数 复合函数
初等函数
1.六类基本初等函数
幂函数
指数函数
y= x
(为常数)
y= ax (a > 0 , a 1 )
幂函数、指数函数和对数函数·对数及其运算法则·教案

教案:幂函数、指数函数和对数函数·对数及其运算法则第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为f(x) = x^a,其中a 是实数。
性质:幂函数的图像是一条曲线,随着a 的不同取值,曲线的形状也会发生变化。
当a > 1 时,函数在x > 0 的区间上是增函数;当0 < a < 1 时,函数在x > 0 的区间上是减函数;当a = 0 时,函数是常数函数;当a < 0 时,函数在x >0 的区间上是增函数。
1.2 幂函数的图像与性质图像:通过绘制不同a 值的幂函数图像,观察曲线的形状和变化趋势。
性质:当a > 0 时,函数在x = 0 时无定义,但在x > 0 的区间上有定义;当a < 0 时,函数在x = 0 时无定义,但在x < 0 的区间上有定义;当a 为正整数时,函数在x > 0 的区间上是增函数;当a 为负整数时,函数在x < 0 的区间上是增函数。
第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为f(x) = a^x,其中a 是正实数。
性质:指数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。
指数函数的图像经过点(0, 1),并且随着a 的增大,曲线的斜率也会增大。
2.2 指数函数的图像与性质图像:通过绘制不同a 值的指数函数图像,观察曲线的形状和变化趋势。
性质:当a > 1 时,函数在整个实数域上是增函数;当0 < a < 1 时,函数在整个实数域上是减函数;指数函数的图像具有反射性,即f(x) = a^x 和f(x) = a^(-x) 的图像关于y 轴对称。
第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为f(x) = log_a(x),其中a 是正实数。
性质:对数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。
大学高数第一章函数和极限

x1
x1
x1
x1
3lim x2 2 lim x 1
x1
x1
312 2 11 2
可见,上例求极限,可以直接用定理 1.1 中的(1).
只须将 x x0 之 x0 代入函数中的 x 处运算即可。
例 求 limx(x 2) x2 x2 1
解:lx im 2 x(xx2 12)
limx(x2) xl i2m (x2 1)
必经过点(0,1)
f(x)log2 x
f (x)log0.5 x
正弦、余弦函数基本性质
解析式: ysinx/cosx
基本特征:定义域为实数集R,值域为[-1,1],最小正
周期T为 2
正切、余切函数基本性质
解析式: ytanx/cotx
基本性质:正切函数定义域为 {x|x2k,,余kZ}
医用高等数学
第1章 函数和极限
1.1 函数 1.1.1函数的概念
定义 1.1 设 X ,Y 是非空数集,对于集合 X 中的任意一个数 x , 在集合 Y 中均有确定值 y 与其对应,则称 y 是 x 的函数,记为:
y f (x) ,其中 x 称为自变量, y 称为因变量,
其中,集合 X 称为定义域,集合 Y 称为值域。
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是 变量 x 的函数,即: y f (u), u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
例 讨论函数 f (x) | x | 当 x 0 时的极限. x
浙教版数学九年级下册1.1《锐角三角函数》教学设计

浙教版数学九年级下册1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。
本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
通过本节课的学习,学生能够理解锐角三角函数的概念,掌握各函数的定义及性质,并能运用其解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但锐角三角函数的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,教师需要注重引导学生通过实例来理解抽象的锐角三角函数概念,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质。
2.过程与方法:通过实例分析,引导学生运用锐角三角函数解决实际问题。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念及其性质。
2.难点:正弦、余弦、正切函数的定义及性质。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,引导学生理解其应用。
2.讲授法:讲解锐角三角函数的定义及性质,引导学生进行思考。
3.实践操作法:让学生通过实际操作,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及性质。
2.实例材料:准备相关的生活实例,用于引入锐角三角函数的概念。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、航海员测定方向等,引导学生思考如何利用三角函数解决问题。
通过实例引入锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
利用课件展示各函数的图像,帮助学生理解其性质。
3.操练(15分钟)让学生分组进行实践操作,运用锐角三角函数解决实际问题。
一次函数的图像和性质

图象上,则y1,y2,0的大小关系是( B )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
[解析]∵当x=-1时,得y1=-5;当x=4时,得y2=10, ∴y1<0<y2.故选B
2.已知一次函数y=(k-2)x-3k2+12.
(1)k为何值时,y随x增大而减小? (2)若k=3,且点(-1,y1),(-2,y2)在该函数图象上,试比较y1与y2的大小.
1.2 一次函数的性质
k>0 一次函数y=kx+b(k≠0)
k<0
左右平移:y=kx+b
平移规律 上下平移:y=kx+b
y随x的增大而增大 y随x的增大而减小
__y_=_k_(x_±__m__)+_b__ __y_=_k_x_+_b_±_m____
考向精析
1. [2017·温州]已知点(-1,y1),(4,y2)在一次函数y=3x-2的
∴l1∥l3 或 l2∥l3 或 l3 过点 C. 当 l3 过点 C 时,4=2k+1,∴k=32,∴k 的值为-12或 2 或32.
图10-7
小结
1、y=kx+b (k≠0)的图象和性质:
2、用待定系数法求一次函数表达式 3、一次函数与一次方程、一元一次不等式、方程组 4、综合性问题
考向精析
1 D 例11、、3 一次函数 y=43x-b 与 y=43x-1 的图象之间的距离等于 3,则 b 的值为(
)
A.-2 或 4
B.2 或-4
C.4 或-6
D.-4 或 6解析Leabharlann l1∥l2⇔k1=k2且b1≠b2;
《高等数学(上)》函数、极限与连续

26
四、 反函数
定理1.1
调函数必有反函数,且单调增加(减少)的函
数的反函数也是单调增加(减少)的.
27
本讲内容
01
预备知识
02
函数的概念
03
函数的性质及四则运算
04
反函数
05
复合函数
06
初等函数
07
建立函数关系举例
五、复合函数
定义1.5 设有函数链
y f (u ), u D f ,
(1.1)
3.双曲函数与反双曲函数
函数名称
函数的表达式
函数的图形
函数的性质
e − e−
双曲正弦 sh =
2
定义域 −∞, +∞ ;
奇函数;
单调增加.
e + e−
双曲余弦 ch =
2
定义域 −∞, +∞ ;
偶函数;
图像过点(0,1).
e + e−
双曲正切 th =
e + e−
定义域 −∞, +∞ ;
的开区间,记作(a, b),如图1.1 a 所示.
即(a, b) x a x b.
O
a
b
x
(a)
2 满足不等式a x b 的所有实数x 的集合,称为以a、b为端点
的闭区间,记作[a, b],如图1.1b 所示.
即[a, b] x a x b.
a
x 10,
1.6x,
即y
2.8x 12,x 10.
35
高等数学(上册)(慕课版)
第一章
函数、极限与连续
第二讲 极限的概念与性质
幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。
2. 掌握对数的定义及其运算法则。
3. 能够运用幂函数、指数函数和对数函数解决实际问题。
教学内容:第一章:幂函数1.1 幂函数的定义与性质1.2 幂函数图像的特点1.3 幂函数的应用第二章:指数函数2.1 指数函数的定义与性质2.2 指数函数图像的特点2.3 指数函数的应用第三章:对数函数3.1 对数的定义与性质3.2 对数函数图像的特点3.3 对数函数的应用第四章:对数及其运算法则4.1 对数的换底公式4.2 对数的运算法则4.3 对数函数的图像与性质第五章:实际问题中的应用5.1 利用幂函数、指数函数和对数函数解决实际问题5.2 练习题及解答教学方法:1. 采用讲授法,讲解幂函数、指数函数和对数函数的定义、性质及应用。
2. 利用数形结合法,引导学生观察函数图像,加深对函数性质的理解。
3. 通过例题和实际问题,培养学生的应用能力。
教学评估:1. 课堂提问,检查学生对幂函数、指数函数和对数函数的理解程度。
2. 布置课后作业,巩固所学知识。
3. 进行单元测试,评估学生的掌握情况。
教学资源:1. 教学PPT,展示幂函数、指数函数和对数函数的图像及性质。
2. 教材和辅导书,提供相关知识点的详细讲解和例题。
3. 网络资源,查阅实际问题中的应用案例。
教学时间安排:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时幂函数、指数函数和对数函数·对数及其运算法则·教案(续)教学内容:第六章:指数与对数的互化6.1 指数与对数的关系6.2 指数与对数的互化方法6.3 指数与对数互化在实际问题中的应用第七章:对数函数的图像与性质7.1 对数函数的图像特点7.2 对数函数的性质7.3 对数函数图像与性质的应用第八章:对数函数在实际问题中的应用8.1 对数函数解决生长、衰减问题8.2 对数函数在几何问题中的应用8.3 对数函数在其他领域的应用第九章:对数方程与对数不等式9.1 对数方程的解法9.2 对数不等式的解法9.3 对数方程与对数不等式的应用第十章:总结与拓展10.1 幂函数、指数函数和对数函数的总结10.2 数学思想与方法的拓展10.3 课后习题与思考题教学方法:1. 采用讲授法,讲解指数与对数的关系、互化方法及其应用。
数学函数图像知识点总结

数学函数图像知识点总结函数是数学中的一个重要概念,通过函数可以描述各种现象和规律。
函数图像是函数的图形表示,通过函数图像可以直观地理解函数的性质和行为。
在学习数学函数图像时,我们需要掌握一些重要的知识点,包括函数的定义、基本函数图像、函数的性质、函数图像的变换等内容。
本文将围绕这些知识点展开详细的介绍。
一、函数的定义1.1 函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
通俗的讲,函数就是一种映射关系,将自变量映射到因变量。
函数的定义可以用一个公式、图形或者文字描述。
函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。
函数的一般表示形式为y=f(x),其中f表示函数名,x表示自变量,y表示因变量。
1.2 函数的性质函数有许多重要的性质,包括定义域、值域、奇偶性、周期性等。
在图像中,这些性质通常能够直观地表现出来。
- 定义域:函数的自变量的取值范围称为函数的定义域。
在函数图像上,定义域通常可以通过图形的横坐标范围来表示。
- 值域:函数的因变量的取值范围称为函数的值域。
在函数图像上,值域通常可以通过图形的纵坐标范围来表示。
- 奇偶性:函数的奇偶性是指函数图像关于y轴对称还是关于原点对称。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
- 周期性:具有周期性的函数在一定的距离内重复出现相似的图像。
周期函数的图像通常具有明显的重复性特征。
1.3 常见的基本函数在函数图像中,一些基本函数的图像具有重要的参考意义,这些函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
- 线性函数:线性函数的图像是一条直线,具有固定的斜率和截距。
- 二次函数:二次函数的图像是一个抛物线,具有一个顶点。
- 指数函数:指数函数的图像是以底数为底的指数幂函数,具有快速增长或者快速衰减的特点。
- 对数函数:对数函数的图像是以底数为底的对数函数,具有反映增长速度缓慢的特点。
新编高等数学第一章

1.1 函数及其性质
当自变量x遍取D的所有数值时,对应的函数值f(x)的全体构成的集合称为函数f的值域, 记为M,即M={y|y=f(x),x∈D},由函数的定义可以看出,函数的定义域与对应法则是确定 函数的两个必不可少的要素.也就是说,如果两个函数的对应法则和定义域都相同,那么这两个 函数就是相同的函数. 【例】 f(x)=sin2x+cos2x与g(x)=1是相同的函数;而f(x)=lnx2与g(x)=2lnx不是相同的函数.
1.1 函数及其性质
下面给出反函数的具体定义: 定义1.2 设函数y=f(x),其定义域为D,值域为M,如果对于任意 y∈M,由函数关系式y=f(x)恰好唯一确定出一个x∈D与之对应,那么 认为x是y的函数,记作x=g(y),我们称上述的y=f(x)与x=g(y)互 为反函数,习惯上将x=g(y)记作x=f-¹(y),习惯上常用x表示自变量, y表示因变量,故常把y=f(x)的反函数写作y=f-¹(x),由反函数的定 义知,在定义区间上单调的函数必有反函数.
1.1 函数及其性质
对函数y=f(x)(x∈D),若取自变量x为横坐标,因 变量y为纵坐标,则在平面直角坐标系xOy中就确定了 一个点x,y.当x遍取定义域D中的每一个数值时,平面上 的点集C={(x,y)y=f(x),x∈D},称为函数y=f(x) 的图像(见图1-1). 若自变量在定义域内任取一个数值,对应的函数值总是 唯一的,这种函数称为单值函数,否则称为多值函数.
1.2.1基本初等函数 中学学过的常量函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称 为基本初等函数.这些函数中的多数函数我们比较熟悉,这里只做简要复习.
(1)常量函数.y=C(C为常数),该函数的定义域为 (-∞,+∞),图像为过点(0,C)且平行于x轴的直线.
教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 教学目标了解正弦型函数的定义及标准形式掌握正弦型函数的周期性、奇偶性及对称性理解正弦型函数的相位变换1.2 教学内容正弦型函数的定义:y = A sin(Bx + C) + D标准形式:y = A sin(B(x α))周期性:T = 2π/B奇偶性:f(-x) = ±f(x)对称性:关于y轴对称或原点对称相位变换:通过平移、伸缩、翻折等变换1.3 教学活动引入正弦型函数的概念,引导学生从实际问题中抽象出正弦型函数讲解正弦型函数的标准形式,让学生理解各个参数的含义引导学生通过作图观察正弦型函数的周期性、奇偶性和对称性讲解相位变换,让学生了解如何通过变换得到不同的正弦型函数图像1.4 作业与练习练习1:根据给定的参数,画出正弦型函数的图像练习2:判断给定的正弦型函数的奇偶性和对称性练习3:通过相位变换,将一个正弦型函数变换为另一个正弦型函数第二章:正弦型函数的图像2.1 教学目标学会绘制正弦型函数的图像掌握正弦型函数图像的局部特征理解正弦型函数图像的物理意义2.2 教学内容正弦型函数图像的基本特点:波形、峰值、零点、相位局部特征:波峰、波谷、拐点物理意义:正弦型函数在工程、物理等领域的应用2.3 教学活动引导学生通过作图掌握正弦型函数图像的基本特点讲解波峰、波谷、拐点的形成原因,让学生理解正弦型函数的局部特征结合实际问题,让学生了解正弦型函数图像的物理意义2.4 作业与练习练习4:绘制给定参数的正弦型函数图像练习5:找出正弦型函数图像的波峰、波谷、拐点练习6:分析实际问题中正弦型函数图像的物理意义第三章:正弦型函数的性质3.1 教学目标理解正弦型函数的单调性、奇偶性、周期性、对称性学会利用正弦型函数的性质解决实际问题3.2 教学内容单调性:了解正弦型函数的单调递增、单调递减区间奇偶性:f(-x) = ±f(x)周期性:T = 2π/B对称性:关于y轴对称或原点对称3.3 教学活动引导学生通过观察正弦型函数图像理解单调性、奇偶性、周期性、对称性讲解如何利用正弦型函数的性质解决实际问题3.4 作业与练习练习7:判断给定的正弦型函数的单调性、奇偶性、周期性、对称性练习8:利用正弦型函数的性质解决实际问题第四章:正弦型函数的应用4.1 教学目标学会利用正弦型函数解决工程、物理等领域的实际问题了解正弦型函数在其他领域的应用4.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等4.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用4.4 作业与练习练习9:利用正弦型函数解决给定的工程、物理问题练习10:了解正弦型函数在其他领域的应用第五章:正弦型函数的导数与积分5.1 教学目标掌握正弦型函数的导数和积分公式学会运用导数和积分解决相关问题5.2 教学内容正弦型函数的导数:y' = A B cos(Bx + C)正弦型函数的积分:∫sin(Bx + C) dx = -A B/B cos(Bx + C) + D 应用:求解最大值、最小值、曲线长度、曲线下的面积等5.3 教学活动引导学生运用导数求解正弦型函数的极值、拐点等讲解如何利用积分求解曲线长度、曲线下的面积等5.4 作业与练习练习11:求解给定正弦型函数的导数和积分练习12:运用导数和积分解决实际问题第六章:正弦型函数的复合函数6.1 教学目标理解正弦型函数与其他类型函数的复合关系学会分析复合函数的图像和性质6.2 教学内容复合函数的定义:y = f(g(x))正弦型函数与其他函数的复合:y = A sin(Bf(x) + C) + D分析复合函数的图像和性质:周期性、奇偶性、对称性等6.3 教学活动引导学生理解复合函数的概念,观察复合函数的图像讲解如何分析复合函数的性质6.4 作业与练习练习13:分析给定复合函数的图像和性质练习14:将一个正弦型函数与其他函数进行复合,观察图像和性质的变化第七章:正弦型函数在实际问题中的应用7.1 教学目标学会运用正弦型函数解决实际问题了解正弦型函数在工程、物理等领域的应用7.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等7.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用7.4 作业与练习练习15:利用正弦型函数解决给定的工程、物理问题练习16:了解正弦型函数在其他领域的应用第八章:正弦型函数的综合应用8.1 教学目标掌握正弦型函数的基本概念、图像、性质及应用提高解决实际问题的能力8.2 教学内容综合运用正弦型函数的知识解决实际问题分析正弦型函数在各个领域的应用8.3 教学活动引导学生将正弦型函数的知识运用到实际问题中分析正弦型函数在不同领域的应用案例8.4 作业与练习练习17:综合运用正弦型函数的知识解决实际问题练习18:分析正弦型函数在各个领域的应用第九章:正弦型函数的拓展与研究9.1 教学目标了解正弦型函数的拓展知识培养学生的研究能力和创新意识9.2 教学内容正弦型函数的变形式:y = A sin(Bx + C) + D正弦型函数的推广:y = A sin(Bx + C) cos(Dx) 等研究正弦型函数的新性质、新应用9.3 教学活动引导学生了解正弦型函数的变形式和推广鼓励学生研究正弦型函数的新性质、新应用9.4 作业与练习练习19:研究正弦型函数的拓展知识练习20:探索正弦型函数的新性质、新应用10.1 教学目标评价学生的学习成果10.2 教学内容评价学生的学习效果,提出改进意见10.3 教学活动-重点和难点解析1. 正弦型函数的定义与基本性质难点解析:正弦型函数的相位变换的理解和应用。
经典数学函数图像(大全)

经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。
当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。
2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。
正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。
正切函数图像是一条周期性振荡的曲线。
4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。
当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。
5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。
当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。
6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。
双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。
7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。
当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。
8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。
当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。
经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。
第1.1讲12个函数的图像及性质.docx

对称轴:
增
减
3.反比例函数
和
为减函数
无最值
奇函数
原点
中心对称
渐近线: 轴
和
为增函数
名称
解析式
图象
定义域
值域
单调性
最值或极值
奇偶性
对称性
其他
4.常函数
无
无最值
偶函数
当 时是奇、
偶函数。
5.三次函数
和
为增;
在 为减函数
极大值:
极小值:
为
奇函数
一般无
和
为减;
在 为增函数
极小值:
极大值:
6.指数函数
1. 偶数
为偶函数
2. 奇数为偶函数
过定点(1,1)
9.对勾函数
1.增: 和 ;
2.减: 和 ;
1.当 时, ;
2.当 时, ;
奇函数
渐近线: 轴和 ;
10.正弦函数
1.增区间:
2.减区间:
1.当 时, ;
2.当 时, ;
奇函数
对称中心
对称轴:
11.余弦函数
1.增区间:
2.减区间:
1.当 时, ;
2.当 时, ;
在 上为增
无
非奇非偶
与 关于 轴对称;
过定点(0,1)
在 上为减
7.对数函数
在 上为增
无
非奇非偶
与 关于 轴对称;
过定点(1,0)
在 上为减
名称
解析式
图象
定义域
值域
单调性
最值或极值
奇偶性
对称性
其他
8.幂函数
只讨论
医用高等数学》考点归纳

医用高等数学》考点归纳医用高等数学》第1章介绍了函数与极限的基本概念。
其中,1.1节介绍了基本初等函数的图像和性质,而1.2节则重点讲解了极限的定义和四则运算。
该节还介绍了两种重要的极限形式,即sinx/x和(1+x)^(1/x),以及无穷大与无穷小量的定义和基本性质。
最后,1.3节讲解了函数的连续性的定义和判定方法。
在第2章中,§2.1介绍了导数的概念。
导数的定义是指函数在某一点处的变化率,其计算方法是求函数在该点处的斜率。
该节还介绍了导数的几何意义和物理意义,以及导数的基本性质。
除了以上内容之外,本章还包括了§2.2导数的计算方法、§2.3高阶导数和§2.4微分的概念和计算方法等内容。
这些知识点对于医学专业的学生来说,具有重要的理论和实际意义。
因此,学生在研究本章内容时,应该认真对待,多做练,掌握好基本概念和计算方法。
如果在区间I上每一点都存在导数,那么我们称该函数在该区间上可导,导函数简称为导数,通常表示为y'、dy/dx或f'(x)。
判断函数在x点是否可导的方法是从导数定义出发,判断lim(Δy/Δx)是否存在,若存在,则可导;否则不可导。
函数y=f(x)在x点的导数值实际上就是曲线y=f(x)在x点处的切线斜率。
函数在某点可导和该点存在切线的关系为:可导必有切线,有切线未必可导。
函数连续与可导的关系为:函数在某点可导必连续,连续未必可导。
函数四则运算和基本初等函数的求导法则如下:u±v)'=u'±v'ku)'=ku'(k为常数)uv)'=u'v+v'u复合函数的求导法则为:设y=f(u),u=φ(x),则(dy/dx)=(dy/du)(du/dx)。
隐函数求导法则的基本方法是等号两侧分别对x求导,且将y视为x的函数,利用复合函数求导法则求导。
对数求导法的基本方法是等式两侧分别取自然对数,化简后再求导。
教案正弦型函数的图像和性质

正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 引入正弦型函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的周期性:sin(x + 2π) = sin(x)1.2 探究正弦函数的图像分析正弦函数在0≤x≤2π的图像特征总结正弦函数的振幅、周期、相位、对称性等基本性质1.3 引出正弦型函数的一般形式介绍正弦型函数的一般形式:y = A sin(Bx + C) + D解释各参数A、B、C、D对函数图像的影响第二章:正弦型函数的图像变换2.1 纵坐标变换:伸缩与平移分析纵坐标变换对正弦型函数图像的影响探究如何通过纵坐标变换实现图像的伸缩和平移2.2 横坐标变换:伸缩与平移分析横坐标变换对正弦型函数图像的影响探究如何通过横坐标变换实现图像的伸缩和平移2.3 综合图像变换结合纵坐标和横坐标变换,探究正弦型函数图像的综合变换方法第三章:正弦型函数的性质探究3.1 单调性分析正弦型函数的单调性:在单调增区间和单调减区间内举例说明单调性的应用3.2 奇偶性探究正弦型函数的奇偶性:sin(-x) = -sin(x)分析奇偶性在函数图像上的表现3.3 极值与拐点求解正弦型函数的极值与拐点分析极值与拐点在函数图像上的特征第四章:正弦型函数的应用4.1 振动问题应用正弦型函数描述简谐振动:x = A sin(ωt + φ)分析振动过程中的位移、速度、加速度等物理量的变化规律4.2 波动问题应用正弦型函数描述波动:u = A sin(kx ωt + φ)分析波动过程中的波长、周期、波速等物理量的关系第五章:案例分析与拓展5.1 分析实际问题中的正弦型函数模型举例分析正弦型函数在实际问题中的应用:温度变化、电流强度等5.2 探究正弦型函数的周期性分析正弦型函数在不同周期下的图像特征探究周期性在实际问题中的应用5.3 总结与拓展总结正弦型函数的图像和性质及其应用提出拓展问题,引导学生深入研究正弦型函数的相关领域第六章:正弦型函数的积分与级数6.1 不定积分介绍正弦型函数的不定积分:∫sin(x)dx = -cos(x) + C讲解基本积分技巧,如分部积分法、换元积分法等6.2 定积分解释正弦型函数的定积分:∫[a, b] sin(x)dx = -cos(b) + cos(a)分析定积分的性质,如对称性、周期性等6.3 级数展开探究正弦型函数的级数展开:sin(x) = Σ(-1)^(n+1) (x^(2n+1))/(2n+1)! 讲解泰勒级数展开的概念及应用第七章:正弦型函数的三角恒等式7.1 和差化积介绍和差化积公式:sin(A ±B) = sin(A)cos(B) ±cos(A)sin(B)讲解如何利用和差化积公式简化正弦型函数的表达式7.2 积化和差讲解积化和差公式:sin(A)cos(B) + cos(A)sin(B) = sin(A + B)分析积化和差公式在函数求解中的应用7.3 二倍角公式与半角公式介绍二倍角公式:sin(2A) = 2sin(A)cos(A), cos(2A) = cos^2(A) sin^2(A) 讲解半角公式:sin(A/2), cos(A/2)的求解方法及应用第八章:正弦型函数的解法与应用8.1 解正弦型方程讲解如何利用正弦函数的性质解正弦型方程:sin(x) = A, cos(x) = B等分析正弦型方程的解法技巧,如相位法、图像法等8.2 正弦型函数在物理中的应用介绍正弦型函数在电磁学、波动光学等物理领域的应用分析正弦型函数在物理问题中的作用及意义第九章:正弦型函数与现代数学方法9.1 傅里叶级数介绍傅里叶级数:将周期函数展开为正弦、余弦函数的和分析傅里叶级数在信号处理、热传导等领域的应用9.2 最小二乘法讲解最小二乘法在正弦型函数拟合中的应用举例说明最小二乘法在实际问题中的作用及意义第十章:总结与拓展10.1 总结正弦型函数的图像与性质回顾正弦型函数的图像变换、性质探究、应用等方面的重要知识点强调正弦型函数在数学及自然科学领域中的重要性10.2 提出拓展问题与研究建议针对正弦型函数的图像与性质提出拓展问题,引导学生深入研究鼓励学生探索正弦型函数在其他领域中的应用,如机器学习、生物信息学等第十一章:正弦型函数的数值方法11.1 数值解法概述介绍数值解法在求解正弦型函数相关问题中的应用讲解数值解法的基本概念和分类11.2 数值积分探究数值积分方法:梯形法则、辛普森法则等分析数值积分在正弦型函数应用中的实例11.3 数值微分介绍数值微分方法:中心差分法、向前差分法等讲解数值微分在正弦型函数应用中的实例第十二章:正弦型函数的编程实践12.1 编程基础介绍编程语言的选择(如Python、MATLAB等)讲解编程基本语法和数据结构12.2 正弦型函数的图像绘制展示如何使用编程语言绘制正弦型函数的图像分析图像绘制过程中的关键参数和技巧12.3 正弦型函数的数值计算讲解如何使用编程语言进行正弦型函数的数值计算分析数值计算过程中的误差和稳定性问题第十三章:正弦型函数在工程中的应用13.1 信号处理介绍正弦型函数在信号处理领域的应用:调制、解调等分析正弦型函数在信号处理中的优势和局限性13.2 机械振动探究正弦型函数在机械振动分析中的应用讲解振动系统的周期性、对称性等特性第十四章:正弦型函数在现代科学研究中的应用14.1 量子力学介绍正弦型函数在量子力学中的应用:波函数、能级等分析正弦型函数在量子力学中的基本作用14.2 天体物理探究正弦型函数在天体物理中的应用:星体运动、引力波等讲解正弦型函数在天体物理中的关键作用第十五章:总结与展望15.1 总结正弦型函数的图像与性质回顾本教程中正弦型函数的图像变换、性质探究、应用等方面的重要知识点强调正弦型函数在数学及自然科学领域中的重要性15.2 展望正弦型函数的发展趋势分析正弦型函数在科技、工程等领域的前景和挑战鼓励学生继续探究正弦型函数的奥秘,为相关领域的发展做出贡献重点和难点解析本文主要介绍了正弦型函数的图像和性质,涵盖了正弦型函数的定义、图像变换、性质探究、应用、积分与级数、三角恒等式、解法与现代数学方法、数值方法、编程实践、工程应用以及现代科学研究等领域。
高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
其图像的画法是按定义域的划分分别作图。
高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

[规律方法] 1.本题逆用函数单调性,将函数值的不等关系,转 化为与之等价的代数不等式组,但一定注意定义域.
2.设x1,x2∈D,且x1<x2: (1)f(x1)<f(x2)⇔f(x)在D上是增函数; (2)f(x1)>f(x2)⇔f(x)在D上是减函数.
【活学活用 3】 已知函数 f(x)的定义域为[-2,2],且 f(x)在区 间[-2,2]上是增函数,f(1-m)<f(m),求实数 m 的取值范围. 解 ∵f(x)在[-2,2]上是增函数,且 f(1-m)<f(m),
类型二 求函数的单调区间 【例 2】 画出函数 y=-x2+2|x|+1 的图象并写出函数的单调 区间. [ 思 路 探 索 ] 去绝对值 → 化为分段函数 → 作图象 → 求单调区间
解 y=--xx22+-22xx++11,,xx≥<00,, 即 y=- -xx- +1122+ +22, ,xx≥ <00,. 函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1], 单调减区间为[-1,0],[1,+∞).
高一数学必修一
第一章 集合与函数概念 1.3 函数的基本性质
1.3.1 单调性与最大(小)值 第1课时 函数的单调性
【课标要求】 1.理解函数的单调性的概念. 2.掌握判断函数单调性的一般方法. 【核心扫描】 1.单调性的概念.(重点、难点) 2.判断函数的单调性及函数单调性的应用.(重点)
新知导学 1.定义域为I的函数f(x)的增减性
探究点3 若函数f(x)在定义域内的两个区间A、B上都是减(增) 函数,你能认为f(x)在区间A∪B上是减(增)函数吗? 提示 不能.如f(x)=在(-∞,0)上是减函数,在(0,+∞)上 也是减函数,但不能说它在定义域(-∞,0)∪(0,+∞)上是 减函数,如取x1=-1<1=x2,有f(-1)=-1<1=f(1),不 满足减函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名称
解析式
图象
定义域
值域
单调性
最值或极值
奇偶性
对称性
其他
1.一次函数
在 上为增函数
无最值
当 为
奇函数。
无
在 上为减函数
2.二次函数
减
增
当 为
偶函数。
对称轴:
增
减
3.反比例函数
和
为减函数
无最值
奇函数
原点
中心对称
渐近线: 轴
和
为增函数
名称
解析式
图象
定义域
值域
单调性
渐近线: 轴和 ;
10.正弦函数
1.增区间:
2.减区间:
1.当 时, ;
2.当 时, ;
奇函数
对称中心
对称轴:
11.余弦函数
1.增区间:
2.减区间:
1.当 时, ;
2.当 时, ;
偶函数
对称中心
对称轴:
12.正切函数
无最值
奇函数
在 上为减
名称
解析式
图象
定义域
值域
单调性
最值或极值
奇偶性
对称性
其他
8.幂函数
只讨论
1. 时为增;
2. 时为减;
3. ,递增,越来越平缓;
4. ,递增,但越来越陡峭;
不确定
1. 偶数
为偶函数
2. 奇数为偶函数
过定点(1,1)
9.对勾函数
1.增: 和 ;
2.减: 和 ;
1.当 时, ;
2.当 时, ;
奇函数
最值或极值
奇偶性
对称性
其他
4.常函数
无
无最值
偶函数
当 时是奇、
偶函数。
5.三次函数
和
为增;
在 为减函数
极大值:;
在 为增函数
极小值:
极大值:
6.指数函数
在 上为增
无
非奇非偶
与 关于 轴对称;
过定点(0,1)
在 上为减
7.对数函数
在 上为增
无
非奇非偶
与 关于 轴对称;
过定点(1,0)