107504-概率统计随机过程课件-第三章(第一,二节)

合集下载

随机过程第三课件PPT资料(正式版)

随机过程第三课件PPT资料(正式版)

2
为止已发生的“事件A”的总数,且N 泊松过程的基本性质
分布又称为爱尔兰分布,它是n个相互独立且服从指数分布的随机变量之和的概率密度。
(t)满足下列条件:
3 泊松过程的应用举例
(1) N (t) 0 ; 设 {X (t), t 0 }是泊松过程,令X (t)表示时刻事件A发生(顾客出现)的次数,
(2) 时间间隔与等待时间的分布
<
n
,求在
[
0
,
s
]
内事件A发生
k
次的概率。
F(t)P{Tt} 则随机变量X 服从参数为 的泊松分布,简记为 ( Tn )。
n
0, t0 Wn —— 第n次事件A发生的时刻,或称等待时间
随机过程第三课件
引言
[泊松分布] 随机变量X 的所有可能取值为0, 1, 2, … ,
而取各个值的概率为
P {Xk}ke, k0,1 ,2, (0 为常 ) 数
k! 则随机变量X 服从参数为 的泊松分布,简记为 ()。
E (X ) , D (X )
3.1 泊松过程的定义
已知仪器在 [ 0 , t ] 内发生振动的次数 X(t) 是具有参数 的泊松过程。
(2) 时间间隔与等待时间的分布
设 {X (t), t 0 }是泊松过程,令X (t)表示时刻事件A 发生(顾客出现)的次数,
T1 T2 T3
Tn
t
0 W1 W2 W3
Wn-1 Wn
Wn —— 第n次事件A发生的时刻,或称等待时间
Tn —— 从第n-1次事件A发生到第n次事件A发生的 时间间隔,或称第n个时间间隔
(3) 到达时间的条件分布 分布又称为爱尔兰分布,它是n个相互独立且服从指数分布的随机变量之和的概率密度。

随机过程第三章

随机过程第三章

随机过程的概率密度函数
概率密度函数
对于连续随机过程,其概率密度函数描述了随机过程在各个时间点或位置上的取值的可能性密度。
联合概率密度函数
对于多个连续随机过程的组合,其联合概率密度函数描述了这些随机过程在各个时间点或位置上的取 值的联合可能性密度。
03
随机过程的数字特征
均值函数
总结词
描述随机过程中心趋势的数字特征
泊松过程
定义
泊松过程是一种随机过程,其中事件的 发生是相互独立的,且以恒定的平均速
率在时间上均匀地发生。
应用
在物理学、工程学、生物学等领域都 有应用,如放射性衰变、电话呼叫等。
性质
泊松过程具有无记忆性,即两次事件 发生的时间间隔与它们是否同时发生 无关。
扩展
泊松过程可以推广为更复杂的过程, 如非齐次泊松过程和条件泊松过程。
随机过程第三章
目录
• 随机过程的基本概念 • 随机过程的概率分布 • 随机过程的数字特征 • 随机过程的平稳性和遍历性 • 马尔科夫链和泊松过程 • 随机过程的应用
01
随机过程的基本概念
随机过程的定义
01
随机过程:一个随机过程是一个定义在概率空间上的
参数集的集合,这个集合的元素是随机变量。
02
马尔科夫链和泊松过程的比较
关联性
马尔科夫链和泊松过程都是随机过程,但它们的 性质和应用场景有所不同。
时间连续性
马尔科夫链可以适用于连续时间,而泊松过程通 常适用于离散时间。
ABCD
状态转移
马尔科夫链关注的是状态之间的转移,而泊松过 程关注的是事件的发生。
应用领域
马尔科夫链在社会科学和生物科学中应用广泛, 而泊松过程在物理学和工程学中更为常见。

107521-概率统计随机过程课件-第一章(第二节)古典概率

107521-概率统计随机过程课件-第一章(第二节)古典概率

第一章随机事件的概率第二节概率的定义及性质所谓随机事件的概率,概括地说就是用来描述随机事件出现(或发生)的可能性大小的数量指标.其实概率的思想术语在我们日常生活中经常出现.对未来的不确定事件,我们经说有把握、希望、机会有多大,高考上线率,各种升学率等.“不怕一万,就怕万一”,就是人们对确定事件和不确定事件的认识,为此提前作出的思想准备,表明人类的智慧与先见之明。

古代智人(周文王,姜子牙,诸葛亮,刘伯温等)的掐指一算,就是算的样本空间和随机事件的概率。

数学上只能对简单的随机现象进行概率定义,复杂的随机现象有待于研究.随机事件在一次试验中既可能发生,也可能不发生,似乎无什么规律。

如果在相同的条件下,把一个试验重复做许多次,我们一定会发现,某些事件发生的次数多一些,而另一些事件发生的次数少一些。

表现出一定的规律性。

例如买彩票时投注号码,有极少一部分人能预感到中奖号码的规律。

例如,将一颗骰子重复投掷100次,毫无疑问,事件“出现奇数点”比事件“出现1点”发生的次数会多得多。

那么,发生次数多的事件在每次试验中发生的可能性大一些,而发生次数少的事件在每次试验中发生的可能性小一些。

问题是:如何度量事件发生可能性的大小?对于事件A ,如果实数)(A P 满足:(1)数)(A P 的大小表示事件A 发生可能性的大小;(2))(A P 是事件A 所固有的,不随人们主观意志而改变的一种度量。

那么数)(A P 称为事件A 的概率。

它是事件A 发生可能性的度量。

在本节中,我们首先介绍一类最简单的概率模型,然后逐步引出概率的一般定义。

一、 概率的古典定义古典型随机试验:如果试验E 的样本空间S 只包含有限个基本事件,设},,,{21n e e e S ,并且每个基本事件发生的可能性相等,即)()()(21n e P e P e P === ,则称这种试验为古典型随机试验,简称古典概型。

下面我们来讨论古典概型中事件A 的概率)(A P 。

随机过程课件

随机过程课件

。每个可能取的值称为一个状态。
对随机过程 {X (t) , t T} 进行一次试验 (即在 T 上进行一次全程观测) , 其结果是 t 的函数, 记为
x(t) , t T , 称它为随机过程的一个 样 本 函 数 或 样本曲线 .
所有不同的试验结果构成一族样本函数.
随机过程 总体
样本函数 个体
(4)连续参数、连续状态的随机过程。如例3,T=[0,∞], 状态空间为[-∞,∞]。
离散参数的随机过程亦称为随机序列。
四、随机过程的分布函数族
给定随机过程 {X (t),t T}.
对固定的 t T, 随机变量 X (t) 的分布函数一 般与 t 有关, 记为 FX (x,t) P{X (t) x}, x R.
1 0.5
-4
-2
-0.5
2
4
-1
当t固定时,X(t)是随机变量,故{X(t), t>0}是一族随机变量。
另一方面,对随机变量 做一φ次试验得一个试验值 ,
就是一条样本曲线。X (t) a cos(0t )
二、随机过程的概念
1 定义 参数集:设T是实数轴 (, )上的一个子集,且包含无限多
个数。随机过程是一族随机变量,可用 {X (t),t T} 来表示。T称为 随机过程的参数集。
在次概数率是论一中个曾随指机出变,量在,单记位X时(t间)为内[0一,t]电内话的站呼接叫到次的数呼唤 次数可用一离散型随机变量 X()表示,且有
P{X() k} k e , k 0, 1,2, ,( 0)
k! 在[0,t]时间内接到的呼唤次数,这一随机变量可记为X(t)。
P{X(t) k} (t)k et , k 0, 1,2, ,( 0)

《概率论与数理统计》课件-随机过程

《概率论与数理统计》课件-随机过程
《概率论与数理统计》经典课件 -随机过程
目录
• 随机过程基础 • 随机过程的基本类型 • 随机过程的分析与变换 • 随机过程的应用 • 随机过程的计算机模拟 • 随机过程的未来发展与挑战
01
随机过程基础
随机过程的定义与分类
定义
随机过程是由随机变量构成的数 学结构,每个随机变量对应一个 时间点或位置。
分类
根据不同的特性,随机过程可以 分为离散随机过程和连续随机过 程,平稳随机过程和非平稳随机 过程等。
随机过程的统计特性
均值函数
方差函数
自相关函数
谱密度函数
描述随机过程的平均行 为。
描述随机过程的波动程 度。
描述随机过程在不同时 间点的相关性。
描述随机过程的频率特 性。
随机过程的概率模型
01
02
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,通过模 拟离散事件的发生和影响来逼 近真实系统。
离散事件模拟方法适用于描述 离散状态变化的过程,如交通 流模拟、排队系统模拟等。
离散事件模拟方法的关键在于 事件的时间点和顺序的确定, 以及事件影响的计算。
连续时间模拟方法
连续时间模拟方法是一种基于时间连 续变化的模拟方法,通过模拟时间连 续变化的过程来逼近真实系统。
连续时间模拟方法的关键在于时间步 长的选择和状态变化的计算,需要保 证模拟结果的准确性和稳定性。
连续时间模拟方法适用于描述连续状 态变化的过程,如人口增长模拟、生 态系统模拟等。
06
随机过程的未来发展与挑战
控制系统
利用随机过程理论,分析和设计 控制系统,提高系统的稳定性和

第3章_随机过程

第3章_随机过程
偶函数
2013-8-1
通信原理
19
第3章 随机过程
3.2 平稳随机过程
3.2.1定义
1.狭义平稳随机过程
假设一个随机过程ξ(t),如果它的任何n维分布或概率密 度函数与时间起点无关,即对于任意的t 和τ,随机过程ξ(t) 的n 维概率密度函数满足 fn(x1,x2,...,xn;t1,t2,...,tn) =fn(x1,x2,...,xn;t1+τ,t2+τ,...,tn+τ) 则称ξ(t)是严平稳随机过程或狭义平稳随机过程。


记为 (t) 2

x 2 f1 ( x,t )dx [a (t )]2
称为随机过程ξ(t)的方差。 --相对于均值的振动程度 。
2013-8-1
通信原理
13
第3章 随机过程
4.协方差与相关函数--随机过程不同时刻取值之间的相 互关系 衡量随机过程ξ(t)在任意两个时刻t1和t2上获得的随机变量 ξ(t1)和ξ(t2)的统计相关特性时,常用协方差函数B(t1,t2)和相 关函数R(t1,t2)来表示。 (1)相关函数 ξ(t1)和ξ(t2)的二阶原点混合矩
概率论:随机变量分析--分布函数和概率密度
2013-8-1
通信原理
6
第3章 随机过程
3.1.1 随机过程的分布函数
1. 分布函数和概率密度 (1)一维描述 ●一维分布函数 随机过程ξ(t)任一时刻 t1 的取值是随机变量ξ(t1),则随机 变量ξ(t1)小于等于某一数 值 x1的概率 F1(x1,t1)=P[ξ(t1) ≤x1] 叫做随机过程ξ(t)的一维分布函数。 (3.1.1)
2013-8-1
通信原理
7

《随机过程》课件

《随机过程》课件

泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。

随机过程第三章-PPT

随机过程第三章-PPT
对于左边,若随机过程均方连续,则随机过程得自相关 函数,在上也处处连续。
总之,若随机过程处处均方连续,则它得自相关函数所 在上也处处连续,反之也成立。
性质3、1 若随机过程X(t)就m是 s 则它得数学期望也必定连续,即:
lim E[ X (t t)] E[ X (t)]
t 0
连续得,
E [| X (t t) X (t) |2 ]≥ E2[ X (t t) X (t)]≥ 0
性质3、2 如果自关函数RX (t1,t2 ) 在 t1 t2 时连 续,且存在二阶偏导数
2R t1t2 t1 t2
则随机过程在均方意义下存在导数(证明略)
应当指出,随机过程有导数,首先过程必须就是连
续得,但随机过程得连续性不能保证过程一定有
导数。
2、 随机过程得均方导数X (t) 得数学期望
E
lim
t1 0
X
(t1
t1 )
Y (t2 ) t1
X
(t1 )Y
(t2
)
lim E[ X (t1 t1)Y (t2 )] E[ X (t1)Y (t2 )]
t1 0
t1
lim RXY (t1 t1, t2 ) RXY (t1, t2 )
t1 0
t1
RXY (t1, t2 ) t1
x满足
lim E
n
xn x 2
0
则称随机变量序列xn依均方收敛于随机变量x,并记

lim
n
xn
x
或 xn m s (xm·s——就是英文Mean—Square缩写)
1、 两个均方收敛性判据
里斯—菲希尔定理:对随机变量序列
构造柯西序列
如果满足

随机过程课件

随机过程课件

3.2 随机过程的数字特征
为Ft x ,密度函数为t x , f 则
t T,随机过程 X t , t T 的一维分布函数

2 Xt
二、方差函数
Var X t E X t EX t
称为随机过程X t , t T 的方差函数 .
若E X t x dFt x , 则称随机
5
1 e 2
2 t
1 e 2
2 t
e
2 t
P X P X P X P X
3.3 离散事件和离散型随机过程
P X t1 X t 2 1
t1
t1
t1 t1
1, X 1 P X 1, X 1 1, X 1 P X 1, X 1 1P X 1 P X 1P X 1

3.3 离散事件和离散型随机过程
E X i p 1 p 2 p 1
E X i p 1 p 1
2

Var X i E X i EX i 1 2 p 1
2 2

2
E Yn E
n2 p 1

Ft1 ,,tn x1 ,, xn P X t1 x1 ,, X t n xn


称为随机过程X t , t T n维分布函数 的 .
4 Ft1 ,,tn x1 , , xn : n 1, t1 , , t n T
0
称为X t , t T 的有穷维分布函数族.
3.3 离散事件和离散型随机过程
Y Y P X t 1 P t 1 t 3

概率论与随机过程第3章

概率论与随机过程第3章

平稳随机过程X(t)的统计特性不随时间平移而变化, X(t)与X(t+Δt)具有相同的概率分布及数字特征, 但X(t) ≠X(t+ Δt) 尽管 PX ( x; t1 ) = PX ( x; t2 ) ,但 X (t1 ) ≠ X (t2 ) 。 X(t)=Y←只是个平稳随机过程的一个特例。
14
上 海 大 学 通 信 学 院
所以X1(t)是平稳过程。
E[ X 2 (t )] = E[t ⋅ Y ] = t ⋅ mY RX 2 (t , t + τ ) = E[ X 2 (t ) X 2 (t + τ )] = E[tY ⋅ (t + τ )Y ]
2 = t (t + τ )ψ Y
所以X2(t)是非平稳过程。
13
上 海 大 学 通 信 学 院
+∞ 2 ( x1 − m X )2 pX ( x1 )dx1 = σ X
+∞ +∞
−∞
RX (t1, t2 ) = ∫−∞ ∫−∞ x1 x2 pX (x1, x2;t1, t2 )dxdx = ∫−∞ ∫−∞ x1 x2 pX (x1, x2;τ )dxdx 1 2 1 2
+∞ +∞
= RX (τ ), τ = t2 − t1
19
上 海 大 学 通 信 学 院
各态历经 的平稳过 mx+σ 程
X
mx mx-σ
Xi(t) t1 Xi(t) t
不是各态 历经的平 稳过程
mx+σ mx mx-σ
t1
20
上 海 大 学 通 信 学 院
判断各态历经性的准则:
1、必须是平稳过程。 必要条件,各态历经过程一定是平稳过程; 反之,不成立。 2、时间平均等于集合平均。(充要条件)

概率论与随机过程第3章

概率论与随机过程第3章

令 t1
注意t1的任意性! 物理含义: 平稳随机过程的任一时刻的随机变量 的概率密度都是相同的。
(2)二维概率密度只与时间差 t 2 t 1 有 关,而与时间起点无关:
pX ( x1 , x2 ; t1 , t 2 ) pX ( x1 , x2 ; t1 , t 2 ) (令 t1 ) pX ( x1 , x2 ;0, t 2 t1 ) pX ( x1 , x2 ; ), t 2 t1
X X 1 2 2 X 2 1

E X ( t ) R ( 0 ) 表示随机过程平均功率有限。
2 X
宽(广义)平稳随机过程的定义是从统计平均的意义 上考察随机过程的平稳性。
3.1.3 严(狭义)平稳与宽(广义) 平稳间关系

严平稳必定是宽平稳的,但反之则不一定。
因为:严平稳的定义条件本身包含了宽平稳的条件。 (由严平稳的推论结果可知)。但满足宽平稳条件的 随机过程,它的n维概率密度函数却不一定能满足严 平稳的条件要求, 因此它未必是严平稳随机过程。
X X
m , R ( ) 能分别代替 m X , RX ( ) 的条件是:
X X

1. 所涉及的随机过程是平稳的;
∵ 时间平均要能够代替所有不同时刻随机变量 的集合平均或统计平均,则要求X ( t ) 必须为常数, E 即 E X ( t ) m ; 同理:EX ( t ) X ( t ) R ( ) ,即自相关函数只与时 间差有关。 2. ( t ) 在不同时刻的取值,要能够充分反映任 x
1. 它们不仅都是时间的函数,而且相关函数及协方差函数还 取决于不同的时刻点。 2 2. 由 mX ( t ) , X ( t ) 和 X ( t ) 所对应的物理量都是瞬时平均值。 工程上和实际应用中,经常遇到一类广泛存在的所谓“平 稳”随机过程,或在研究相对稳定状态下的物理过程中,其 所 涉及的随机量也都属于“平稳”随机过程。 同样,平稳随机过程是通信系统和各种信号处理中最常遇 到也是最重要的一种特殊类型的随机过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章二维随机变量引入二维随机变量目的、用处: 在第二章中,我们讨论了用一个随机变量描述试验结果以及随机变量的概率分布问题.但在实际和理论研究中,有许多随机试验,仅用一个随机变量描述不够用.需要引入二维、三维、n维随机变量描述其规律性.例如,对平面上的点目标进行射击,弹着点A的位置需要用横坐标X和纵坐标Y才能确定.由于X和Y 的取值都是随着试验结果而变化.因此X和Y都是随机变量, 弹着点A 的位置是)X.,(Y又如空中飞行的飞机(其重心)需要用三个随机变量Z,才能确X,Y定它的位置.等等.因此需要考虑多个随机变量及其取值规律问题.定义:设试验E 的样本空间为}{e S =,而)(e X X i i =是定义在}{e S =上的随机变量,n i ,,2,1⋅⋅⋅=,把n 个随机变量n X X X ,,,21⋅⋅⋅构成的有序随机变量组),,,(21n X X X ⋅⋅⋅称为n 维随机变量(或n维随机向量);对任意实数n x x x ,,,21⋅⋅⋅,函数),,,(21nx x x F ⋅⋅⋅},,,{2211nn x X x X x X P ≤⋅⋅⋅≤≤= 称为n 维随机变量),,,(21n X X X ⋅⋅⋅的分布函数或称为n 个随机变量nX X X ,,,21⋅⋅⋅的联合分布函数.第一节 随机向量与联合分布一. 定义和基本性质定义1 设试验E 的样本空间为}{e S =,而)(),(e Y Y e X X ==是定义在}{e S =上的两个随机变量.称由这两个随机变量组成的向量),(Y X 为二维随机变量或二维随机向量.例如 掷两颗骰子,观察出现的点数.设X 为第一颗骰子出现的点数,Y 为第二颗骰子出现的点数,Y X ,为定义在}6,,2,1,|),{(⋅⋅⋅==j i j i S上的两个随机变量,),(Y X 为二维随机变量,它描述了掷两颗骰子出现的点数情况.对任意实数y x ,,随机事件})(,)(|{},{y e Y x e X S e y Y x X ≤≤∈=≤≤有概率.定义 2 设),(Y X 为二维随机变量, 对任意实数y x ,,二元函数},{),(y Y x X P y x F ≤≤=})(,)(|{y e Y x e X S e P ≤≤∈=,称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数.记},|),{(y v x u v u D ≤≤=,则},{),(y Y x X P y x F ≤≤=}),{(D Y X P ∈=分布函数},{),(y Y x X P y x F ≤≤=的性质:),(y x F 的定义域+∞<<∞-x ,+∞<<∞-y ;(1)1),(0≤≤y x F ,且},{lim ),(lim ),(y Y x X P y x F x F y y ≤≤==-∞-∞→-∞→ 0)(==φP ,0},{lim ),(lim ),(=≤≤==-∞-∞→-∞→y Y x X P y x F y F x x 0},{lim ),(lim ),(=≤≤==-∞-∞-∞→-∞→-∞→-∞→y Y x X P y x F F y x y x },{lim ),(lim ),(y Y x X P y x F F y x y x ≤≤==+∞+∞+∞→+∞→+∞→+∞→ 1)(==S P ;(2)),(y x F 对x 或对y 单调不减,即 ),(),(2121y x F y x F x x ≤⇒<,(由},{},{21y Y x X y Y x X ≤≤⊂≤≤及概率的单调性),),(),(2121y x F y x F y y ≤⇒<;(3)),(y x F 对x 或对y 右连续,即有),(),(lim ),(0y x F y x x F y x F x =∆+=+→∆+,),(),(lim ),(0y x F y y x F y x F y =∆+=+→∆+; (4)对任意实数2121,y y x x <<有},{02121y Y y x X x P ≤<≤<≤ ),(),(),(),(12211122y x F y x F y x F y x F --+=, 事实上},{2121y Y y x X x ≤<≤<},{22y Y x X ≤≤= },({21y Y x X ≤≤-}),{121y Y x X x ≤≤<+,},{2121y Y y x X x P ≤<≤< },{22y Y x X P ≤≤= },{(21y Y x X P ≤≤-}),{121y Y x X x P ≤≤<+ )),(),((),(),(11122122y x F y x F y x F y x F ---= ),(),(),(),(12211122y x F y x F y x F y x F --+=.可以证明:凡满足上述性质)4(~)1(的二元函数),(y x F 必定是某个二维随机变量的分布函数.例1 设二维随机变量),(Y X 的分布函数为)2arctan )(arctan (),(y c x b a y x F ++=, (1) 确定常数c b a ,,;(2) 求}0,0{>>Y X P .解(1) 利用分布函数的性质)2)(2(),(1ππ++=+∞+∞=c b a F , )2)(arctan (),(0π-+=-∞=c x b a x F ,由x 的任意性得,0)2(=-πc , 2π=c , )2arctan )(2(),(0y c b a y F +-=-∞=π,由y 的任意性得,0)2(=-πb , ,2π=b 从而21π=a ,2π=b ;(2) }0,0{}0,0{+∞<<+∞<<=>>Y X P Y X P)0,(),0()0,0(),(+∞-+∞-++∞+∞=F F F F4121212211222=⋅⋅-⋅⋅-⋅⋅+=πππππππππ. 例2设二维随机变量),(Y X 的分布函数为⎩⎨⎧>>--=--其它,00,0),)((),(2y x e b e a y x F y x , (1) 确定常数b a ,;(2) 求}2,0{≤>Y X P .解 (1) 利用分布函数的性质b a F ⋅=+∞+∞=),(1,))(1(),(lim ),0(00y x e b a y x F y F -→--===+, 由0>y 的任意性,得 1,01==-a a ,所以 1,1==b a ;(2)}2,0{}2,0{≤<-∞+∞<<=≤>Y X P Y X P),()2,0(),0()2,(-∞+∞---∞++∞=F F F F000)1(12----⋅=-e 21--=e .二. 二维离散型随机变量定义 3 若二维随机变量()Y X ,的所有取值为有限对或可列对⋅⋅⋅=,2,1,),,(j i y x j i ,则称()Y X ,是离散型随机变量.记{},,2,1,,, ====j i p y Y x X P ijj i 称它为二维离散型随机变量()Y X ,的(概率)分布律,或称为X 和Y 的联合(概率)分布律.分布律的表示法:(1)公式法,(2)列表法.例如 随机变量()Y X ,的分布律为二维离散型随机变量()Y X ,的(概率)分布律具有下列基本性质:(1){},,2,1,,0, =≥===j i y Y x X P p ji ij (2)1,=∑j i ijp .利用分布律可计算概率定理 设()Y X ,的分布律为{},,2,1,,, ====j i p y Y x X P ij j i则随机点()Y X ,落在平面上任一区域D 内的概率为∑∈=∈D y x ijj i p D Y X P ),(}),{(, 其中和式是对所有使D y x ji ∈),(的j i ,求和;特别有},{),(y Y x X P y x F ≤≤= }),{(D Y X P ∈=∑∈=D y x ijj i p ),(∑≤≤=y y x x ij j i p.例1 甲、乙两盒内均有3只晶体管,其中甲盒内有1只正品,2只次品; 乙盒内有2只正品,1只次品.第一次从甲盒内随机取出2只管子放入乙盒内; 第二次从乙盒内随机取出2只管子.以Y X ,分别表示第一、二次取出的正品管子的数目. 试求),(Y X 的分布律以及},),{(D Y X P ∈其中}2|),{(:22≥+y x y x D .解 根据题意知,X 的可能取值为0,1;Y 的可能取值为0,1,2.因此, ),(Y X 的可能取值为(0,0),(0,1),(0,2),(1,0),(1,1),(1,2).),(Y X 是离散型随机变量.}0{=X 表示从甲盒内取出2只次品管子放入乙盒内,此时乙盒内有2只正品,3只次品,利用乘法公式可得}0|0{}0{}0,0{==⋅====X Y P X P Y X P30325232322=⋅=C C C C , }0|1{}0{}1,0{==⋅====X Y P X P Y X P3062513122322=⋅=C C C C C , }0|2{}0{}2,0{==⋅====X Y P X P Y X P30125222322=⋅=C C C C , }1{=X 表示从甲盒内取出1只正品和1只次品管子放入乙盒内,此时乙盒内有3只正品,2只次品,利用乘法公式可得}1|0{}1{}0,1{==⋅====X Y P X P Y X P3022522231211=⋅=C C C C C , }1|1{}1{}1,1{==⋅====X Y P X P Y X P3012251312231211=⋅=C C C C C C , }1|2{}1{}2,1{==⋅====X Y P X P Y X P3062523231211=⋅=C C C C C , 于是得),(Y X 的分布律为}),{(D Y X P ∈}2,0{===Y X P}2,1{}1,1{==+==+Y X P Y X P30193063012301=++= . 例2 某射手在射击中,每次击中目标的概率为)10(<<p p ,射击进行到第二次击中目标为止,X 表示第一次击中目标时所进行的射击次数, Y 表示第二次击中目标时所进行的射击次数,试求二维随机变量),(Y X 的分布律.解 设=kA 第k 次射击时击中目标, 根据题意,p A P k=)(,⋅⋅⋅=,2,1k , 且⋅⋅⋅⋅⋅⋅,,,,21kA A A 相互独立, jj i i i A A A A A A j Y i X 1111},{-+-⋅⋅⋅⋅⋅⋅===, 所以),(Y X 的分布律为},{j Y i X P ==)()()()()()(1111j j i i i A P A P A P A P A P A P -+-⋅⋅⋅⋅⋅⋅=22)1(--=j p p ,1,,2,1-⋅⋅⋅=j i ;⋅⋅⋅=,3,2j .例 3 接连不断地掷一颗匀称的骰子,直到出现点数大于2为止, 以X 表示掷骰子的次数.以Y 表示最后一次掷出的点数.求二维随机变量),(Y X 的分布律.解 依题意知,X 的可能取值为⋅⋅⋅,3,2,1;Y 的可能取值为3,4,5,6 设=kB 第k 次掷时出1点或2点,=kj A 第k 次掷时出j 点, 则62)(=kB P ,61)(=kj A P , S A A A A B k k k k k =++++6543,===},{j Y i X “掷骰子i 次,最后一次掷出j 点,前)1(-i 次掷出1点或2点”ij i A B B 11-⋅⋅⋅=,(各次掷骰子出现的点数相互独立)于是),(Y X 的分布律为11)31(6161)62(},{--⋅=⋅===i i j Y i X P , ⋅⋅⋅=,2,1i ,6,5,4,3=j .(例如11)31(6161)62(}3,{--⋅=⋅===i j Y i X P )三. 二维连续型随机变量定义 4 设二维随机变量()Y X ,的分布函数为()y x F ,,若有非负可积函数()y x f ,,使得对任意实数y x ,,恒有()dudv v u f y x F y x⎰⎰∞-∞-=,),( ⎰⎰≤≤=yv x u dudv v u f ),( ,则称()Y X ,是二维连续型随机变量,称函数()y x f ,为连续型随机变量()Y X ,的概率密度, 或称为随机变量X 和Y 的联合概率密度.()Y X ,的概率密度()y x f ,具有下列基本性质:(1) ()0,≥y x f , +∞<<∞-y x , ;(2) ()1),(,=+∞+∞=⎰⎰+∞∞-+∞∞-F dxdy y x f . 反之,可以证明,若二元函数()y x f ,满足上面两条基本性质,那么它一定是某个二维随机变量()Y X ,的概率密度.显然,如果概率密度()y x f ,在点()y x ,处连续,则有()y x f y x F ,2=∂∂∂ . 利用概率密度计算概率定理 设()Y X ,的概率密度为()y x f ,,则有(1)⎰⎰=≤<≤<b a d cdydx y x f d Y c b X a P ),(},{,(2)设D 为平面上任一区域, ⎰⎰=∈Ddxdy y x f D Y X P ),(}),{( .例 3 设二维随机变量()Y X ,具有概率密度⎩⎨⎧>≤≤=-其它,00,20,),(2y x ae y x f y, (1)确定常数a ;(2)求分布函数),(y x F ;(3)求}{X Y P ≤解(1)由概率密度的性质()dy ae dx dxdy y x f y⎰⎰⎰⎰+∞-+∞∞-+∞∞-==0220,1a a e a y =⋅=-=∞+-212|)21(202, 即得1=a ;(2)()dudv v u f y x F y x⎰⎰∞-∞-=,),( , (A )当0,20>≤≤y x 时,dv e du y x F y vx ⎰⎰-=020),()1(2|)21(202yy v e x e x ---=-= , (B )当0,2>>y x 时dv e du y x F y v⎰⎰-=0220),( )1(|)21(2202yy v e e ---=-=, (C )当0<x 或0≤y 时,对y v x u ≤≤,有0),(=v u f ,()0,),(==⎰⎰∞-∞-dudv v u f y x F y x于是得所求分布函数⎪⎪⎩⎪⎪⎨⎧>>->≤≤-=--其它,00,2),1(0,20),1(2),(22y x e y x e x y x F yy ;(3)设}|),{(x y y x D ≤=,}0,20|),{(1x y x y x D ≤≤≤≤=, }),{(}{D Y X P X Y P ∈=≤⎰⎰=D dxdy y x f ),(⎰⎰=1),(D dxdy y x f dx e dy e dx xx y )1(212200220---==⎰⎰⎰ )21212(21|)21(214202-+=+=--e e x x )3(414-+=e . 四. 常用的二维连续型随机变量有下面两种:(1)均匀分布若随机变量()Y X ,概率密度为()⎪⎩⎪⎨⎧∈=其它,0),(,1,D y x A y x f ,其中A 为有界区域D 的面积.则称()Y X ,在区域D 上服从均匀分布. 记为())(~,D U Y X .(2)二维正态分布若随机变量()Y X ,概率密度为),(y x f 221121ρσπσ-=2112[)1(21exp{⎪⎪⎭⎫ ⎝⎛---⋅σμρx 22112σμσμρ---y x ]}222⎪⎪⎭⎫ ⎝⎛-+σμy 其中ρσσμμ,,,,2121均为常数,且 +∞<<∞-1μ,+∞<<∞-2μ 1||,0,021<>>ρσσ,则称随机变量()Y X ,服从参数为ρσσμμ,,,,2121的二维正态分布,记作 );,;,(~),(222211ρσμσμN Y X . 上述五个参数的意义将在第五章中说明.第二节 边沿分布函数(或边缘分布函数)概念:设随机变量()Y X ,的分布函数为),(y x F ,分量X 的分布函数记为)(x F X ,称)(x F X 为()Y X ,关于X 的边沿分布函数; 分量Y 的分布函数记为)(y F Y , 称)(y F Y 为()Y X ,关于Y 的边沿分布函数.边沿分布函数的计算公式:},{}{)(+∞<≤=≤=Y x X P x X P x F X},{lim y Y x X P y ≤≤=+∞→ ),(lim y x F y +∞→=),(+∞=x F , },{}{)(y Y X P y Y P y F Y≤+∞<=≤= },{lim y Y x X P x ≤≤=+∞→),(lim y x F x +∞→= ),(y F +∞=.已知联合分布函数),(y x F ,可以计算出边沿分布函数)(),(y F x F Y X ;但由Y X ,的分布函数)(),(y F x F YX ,一般无法确定联合分布函数),(y x F .例1设二维随机变量()Y X ,的分布函数为 ⎪⎪⎩⎪⎪⎨⎧>>->≤≤-=--其它,00,2),1(0,20),1(2),(22y x e y x e xy x F yy , 求()Y X ,关于X 和关于Y 的边沿分布函数.解 ()Y X ,关于X 的边沿分布函数)(x F X ),(lim ),(y x F x F y +∞→=+∞= ⎪⎪⎩⎪⎪⎨⎧>=-≤≤=-<==-+∞→-+∞→+∞→2,1)1(lim 20,2)1(2lim 0,00lim 22x e x x e x x yy y y y⎪⎪⎩⎪⎪⎨⎧>≤≤<=2,120,2,0x x x x ;()Y X ,关于Y 的边沿分布函数)(y F Y ),(lim ),(y x F y F x +∞→=+∞= ⎩⎨⎧>-=-≤==--+∞→+∞→0,1)1(lim 0,00lim 22y e e y y y x x ⎩⎨⎧>-≤=-0,10,02y e y y.。

相关文档
最新文档