七年级一元一次方程培优(自己整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册《一元一次方程》培优
专题一:一元一次方程概念的理解: 例:若(
)
2
2
1
9203
m x x m --+=+是关于x 的一元一次方程,则方程的解是 。 练习: 1.
()()2
21180m
x m x --+-=是关于x 的一元一次方程,则代数式
()()199231101m m m +-++的值为
2.若方程()()321x k x -=+与
62
k x
k -=的解互为相反数,则k= 。 3.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( ) A.4个 B.8个 C.12个 D.16个 专题二:一元一次方程的解法 (一)利用一元一次方程的巧解:
例: (1)0.2•
表示无限循环小数,你能运用方程的方法将0.2•
化成分数吗?
(2)0.23••
表示无限循环小数,你能运用方程的方法将0.23••
化成分数吗?
(二)方程的解的分类讨论: 当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以华为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论。 (1)当0a ≠时,方程有唯一解b x a
=
; (2)当0,0a b =≠时,方程无解; (3)当0,0a b ==时,方程有无数个解。
例:已知关于x 的方程()2132a x x -=-无解,试求a 的值。
练习:
1.如果a ,b 为定值,关于x 的方程2236
kx a x bk
+-=+
,无论k 为何值,它的根总是1,求a ,b 的值。 2.解方程11x x a b
a b ab
--+-=
3.对于任何a 值,关于x ,y 的方程()11ax a y a +-=+有一个与a 无关的解,这个解是( ) A.2,x y ==-1 B.2,1x y == C.2,1x y =-= D.2,1x y =-=-
4.问:当a 、b 满足什么条件时,方程251x a bx +-=-;(1)有唯一解;(2)有无数解; (3)无解
5.(1)a 为何值时,方程()1
12326
x x a x +=--有无数多个解?(2)a 为何值时,该方程无解?
6.若关于x 的方程()()311x x k x -+=-无解,则k= 。 专题四:绝对值方程:
例4:解方程:(1)35x -= (2)30x -= (3)235x -=
例5:解方程:
(1)215x x -++= (2)213x x -++= (3)212x x -++=
练习:19.解方程:(1)2313x x -=- (2)2313x x -=-
20.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m 、n 、k 的大小关系是( )
A.m >n >k
B.n >k >m
C.k >m >n
D.m >k >n 专题三. 一元一次方程的应用 1.行程问题
基本量及关系:路程=速度×时间 时间路程速度=
时间=速度
路程
[典型问题]
相遇问题追及问题中的相等关系: 各段路程之和=总路程
顺(逆)风(水)行驶问题 顺速=V 静+风(水)速 逆速=V 静-风(水)速 2.销售问题
基本量:成本(进价)、售价(实售价)、 利润(亏损额)、利润率(亏损率) 基本关系:
利润=售价-进价、利润=进价×利润率 相等关系:利润相等 3.工程问题
基本量及关系:
工作总量=工作效率×工作时间 相等关系:各部分工作量之和=工作总量 4.配套问题
相等关系:配套数量的比的等式 (一)工程问题
例.一个水池有两个注水管,两个水管同时注水,10小时可以住满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时后,关掉甲管,乙管单独注水,还需几个小时能注满水池?
(二)行程问题
例.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:
(1)他下山时的速度比上山时的速度每小时快1千米;
(2)他上山2小时到达的位置,离山顶还有1千米;
(3)抄近路下山,下山路程比上山路程近2千米;
(4)下山用1个小时;
根据上面信息,他作出如下计划:
(1)在山顶游览1个小时;
(2)中午12:00回到家吃中餐.
若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
(三)经济问题
例.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:
例.农夫锄草问题(俄国,公元十五世纪)
一个农场有两块草地,大块是小块的两倍,上半天农夫们在大块地上锄草,午后分成两组一半人继续留在大快地上,到下工时恰好锄完.另一半人到小块地上去锄,到晚上还剩一小块,这一小块次日由一个农夫去锄,恰好用一天工夫,问这个农场有几个农夫?
练习:
1.某车间有26名工人,每人每天能生产螺栓12个或螺母18个,每天生产的螺栓和螺母按1:2配套安装,问应该怎样安排生产才能使螺母与螺栓正好配套?
2.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时x张用A方法,其余用B方法。
(1)用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
3.8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机),其中一辆小汽车在距离火车站10km的地方出现故障,此时距停止检票的时间还有28分钟,这时惟一可利用的交通工具是另一辆汽车,已知包括司机在内这辆车限乘5人,且这辆车的平均速度