高中数学竞赛讲义()

合集下载

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

(完整版)高中数学竞赛讲义(五)──数列

(完整版)高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五)──数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。

其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。

定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。

若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。

定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。

定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛教案讲义

高中数学竞赛教案讲义

高中数学竞赛教案讲义主题:高中数学竞赛备考一、课程目标:1. 提高学生数学逻辑思维能力和解题能力;2. 增强学生对数学知识的理解和应用能力;3. 培养学生团队合作意识和竞赛意识;4. 培养学生学习数学的兴趣和信心。

二、教学内容:1. 数论知识与解题方法;2. 代数知识与解题方法;3. 几何知识与解题方法;4. 概率与统计知识与解题方法。

三、教学重点:1. 突出数学问题解题的逻辑思维;2. 突出数学知识运用的方法;3. 突出解题过程中的技巧与技法。

四、课堂教学安排:第一节课:数论知识与解题方法1. 介绍数论基础知识;2. 讲解数论解题方法;3. 练习数论题目。

第二节课:代数知识与解题方法1. 复习代数基础知识;2. 讲解代数解题方法;3. 练习代数题目。

第三节课:几何知识与解题方法1. 复习几何基础知识;2. 讲解几何解题方法;3. 练习几何题目。

第四节课:概率与统计知识与解题方法1. 介绍概率与统计基础知识;2. 讲解概率与统计解题方法;3. 练习概率与统计题目。

五、课后作业:1. 每节课的课后习题;2. 复习本节课的知识点;3. 复习前几节课的知识点;4. 组织小组讨论解题方法。

六、教学评估:1. 每节课的课堂练习成绩;2. 期中考试成绩;3. 期末考试成绩;4. 学生综合表现与进步情况。

七、教学心得与总结:数学竞赛备考是一个长期的过程,需要坚持不懈和不断努力。

教师要引导学生找到解题的方法,培养学生的数学思维和解题能力。

同时,学生也要积极主动,多加练习,不断提高自己的数学水平。

希望通过我们的共同努力,可以在数学竞赛中获得好的成绩。

高中数学竞赛讲义(常考知识点归纳汇总)

高中数学竞赛讲义(常考知识点归纳汇总)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛讲义

高中数学竞赛讲义

高中数学竞赛讲义一、数学竞赛概述数学竞赛作为一种普及数学知识、培养学生动手能力和思维能力的形式越来越受到人们的重视。

在学生们的数学学习道路上,参加数学竞赛既可以拓宽数学视野,又可以激发学习兴趣,提高解决问题的能力。

因此,掌握数学竞赛的解题技巧和方法显得尤为重要。

二、常见数学竞赛题型1. 判断题:对错难定,需要严密地逻辑推理,做题时要仔细阅读题目和选项,理清思路,做出准确判断。

2. 选择题:包括单选和多选,需要理解题意,分析选项并选择正确答案。

在解答多选题时,尤其要注意排除干扰项。

3. 填空题:填空题要求对知识点有深入理解,准确地计算并填写答案。

解答填空题时要注意精确计算,不出现大的误差。

4. 解答题:解答题难度较大,需要考生具备深厚的数学基础和解题技巧。

解答题时要逻辑清晰、表述准确,给出详细的解题过程和答案。

5. 证明题:证明题是数学竞赛中的重头戏,要求考生深入理解数学原理,熟练运用推理方法,严密地推演证明过程,确保证明的准确性和完整性。

三、数学竞赛的备考建议1. 熟练掌握基础知识:数学竞赛离不开扎实的基础知识,要多练习经典题目,熟悉各种解题方法,打牢基础。

2. 注重思维训练:数学竞赛考验的不仅是知识面,更重要的是解题思维和方法。

锻炼逻辑思维,注重推理能力的培养。

3. 多做题多练习:多参加数学竞赛训练营、题解讨论会,多做模拟题和历年真题,积累解题经验,提高解题速度和准确度。

4. 态度决定成败:对待数学竞赛要积极认真,保持良好的心态,相信自己的能力,不断学习进步。

四、数学竞赛的意义参加数学竞赛可以拓宽学生的视野,激发学习兴趣,培养学生的自信心和解决问题的能力。

数学竞赛不仅仅是一种知识技能的检验,更是一种学习态度和思维方式的养成。

通过参加数学竞赛,学生可以更深入地了解数学学科,提高自身的综合素质,为未来的学习和发展打下坚实的基础。

五、结语高中数学竞赛虽然挑战性较大,但是只要有充分的准备和信心,相信每一位学生都能在竞赛中取得优异的成绩。

高中数学竞赛讲义六

高中数学竞赛讲义六

高中数学竞赛讲义六高中数学竞赛讲义(六)──三角函数一、基础知识定义了一个角度。

将光线围绕其端点旋转得到的图形称为角度。

如果旋转方向为逆时针,则角度为正;如果旋转方向为顺时针,则角度为负;如果不是,则为零。

角度的大小是任意的。

定义2角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为l,则其弧度数的绝对值|α|=其中R是圆的半径。

定义3三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点p,设它的坐标为(x,y),到原点的距离为r、然后正弦函数sinα=、余弦函数cosα=、切线函数Tanα=、Cot函数α=、割线函数secα=,余割函数cscα=定理1等角三角函数的基本关系,倒数关系:Tanα=,sinα=,cosα=;商数关系:tanα=;乘积关系:tanα×cosα=sinα,cotα×sinα=cosα;平方关系:sin2α+cos2α=1,tan2α+1=sec2α,cot2α+1=csc2α。

定理2诱导公式(ⅰ)sin(α+π)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα;(ⅱ)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=cotα;(ⅲ)sin(π-α)=sinα,cos(π-α)=-cosα,tan=(π-α)=-tanα,cot(π-α)=-cotα;(ⅳ)sin=cosα,cos=sinα,tan=cotα(奇变偶不变,符号看象限)。

定理3正弦函数的性质。

根据图像,y=SiNx(x)的性质∈ R)具体如下。

单调区间:区域内间上为增函数,在区间上为减函数,最小正周周期为2奇偶有界:当且仅当x=2kx+,y取最大值1;当且仅当x=3K-,y取最小值-1。

高中数学竞赛讲义_免费_

高中数学竞赛讲义_免费_
仅证 1
4
C1 A I C1 B = C1 ( A U B).
证明
3 , 余 读者自 完成
则 x ∈ A, 且 x ∈ B 或 x ∈C , 所 1 若 x ∈ A I (B U C ) ,
x ∈ ( A I B) 或 x ∈ ( A I C ) ,
x ∈ ( A I B) U ( A I C )
之,x ∈ ( A I B ) U ( A I C ) , 则 x ∈ ( A I B) 或 x ∈ ( A I C ) ,
k 个子集中
,否则,若 在 k 个子
A,并设 A I A1 = ∅ ,则 A1 ⊆ C1 A , 而可
集中再添加 C1 A ,
知矛盾,所
k ≥ 2 n −1
综 , k = 2 n −1
6.竞赛常用方法 例 题 定理 4 容斥原理 用 A 表示集合 A 的元素个数,则 A U B = A + B − A I B ,
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次 等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组 4 函数 次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数 5 几何 角形中的边角之间的 等关系 面 等 换 角形中的边角之间的 等关系 面 等 换 角形的心 内心 外心 垂心 心 性质 相似形的概念和性质 圆,四点共圆,圆幂定理 四种命题 关系 6 逻 推理 题 抽屉原理 简单 用 简单的组合 题简单的逻 推理 题, 证法 极端原理的简 单 用 枚举法 简单 用
A U B = A, A I C = C ,求 a, m.
解 依题设, A = {1,2} ,再 因 因
x 2 − ax + a − 1 = 0 解得 x = a − 1 或 x = 1 ,

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五)──数列

⾼中数学竞赛讲义(五)──数列⾼中数学竞赛讲义(五)──数列⼀、基础知识定义1 数列,按顺序给出的⼀列数,例如1,2,3,…,n,…. 数列分有穷数列和⽆穷数列两种,数列{a n}的⼀般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。

其中a1叫做数列的⾸项,a n是关于n的具体表达式,称为数列的通项。

定理1 若S n表⽰{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。

若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a-q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B⾄少有⼀个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等⽐数列,若对任意的正整数n,都有,则{a n}称为等⽐数列,q叫做公⽐。

定理3 等⽐数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等⽐数列,即b2=ac(b0),则b叫做a, c的等⽐中项;4)若m+n=p+q,则a m a n=a p a q。

定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 ⽆穷递缩等⽐数列,若等⽐数列{a n}的公⽐q满⾜|q|<1,则称之为⽆穷递增等⽐数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。

高中数学竞赛讲义(九)不等式

高中数学竞赛讲义(九)不等式

高中数学竞赛讲义(九)──不等式一、基础知识不等式的基本性质:(1)a>b a-b>0;(2)a>b, b>c a>c;(3)a>b a+c>b+c;(4)a>b, c>0ac>bc;(5)a>b, c<0ac<bc; (6)a>b>0, c>d>0ac>bd;(7)a>b>0, n∈N+a n>b n; (8)a>b>0, n∈N+;(9)a>0, |x|<a-a<x<a, |x|>a x>a或x<-a;(10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a, b∈R,则(a-b)2≥0a2+b2≥2ab;(12)x, y, z∈R+,则x+y≥2, x+y+z前五条是显然的,以下从第六条开始给出证明。

(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)=(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当且仅当x=y=z 时成立。

(2021年整理)高中数学竞赛讲义(免费)

(2021年整理)高中数学竞赛讲义(免费)

高中数学竞赛讲义(免费)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学竞赛讲义(免费))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学竞赛讲义(免费)的全部内容。

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1。

平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题.几何中的变换:对称、平移、旋转。

圆的幂和根轴.面积方法,复数方法,向量方法,解析几何方法。

2。

代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3。

初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

最新高中数学竞赛全套精品讲义

最新高中数学竞赛全套精品讲义

竞赛讲座01-奇数和偶数整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇数偶;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.1.代数式中的奇偶问题例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□□÷□=□.解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组是整数,那么(A)p、q都是偶数. (B)p、q都是奇数.(C)p是偶数,q是奇数(D)p是奇数,q是偶数分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.2.与整除有关的问题例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?解设70个数依次为a1,a2,a3据题意有a1=0, 偶a2=1 奇a3=3a2-a1, 奇a4=3a3-a2, 偶a5=3a4-a3, 奇a6=3a5-a4, 奇………………由此可知:当n被3除余1时,a n是偶数;当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则a70=3k+1=3(2n+1)+1=6n+4.解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.故所求的十位数是9876524130.例6(1990年日本高考数学试题)设a、b是自然数,且有关系式123456789=(11111+a)(11111-b),①证明a-b是4的倍数.证明由①式可知11111(a-b)=ab+4×617②∵a>0,b>0,∴a-b>0首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b 都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.3.图表中奇与偶例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.解按题设程序,这是不可能做到的,考察下面填法:在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.证明不论分点如何选取,标准线段的条路总是奇数.分析 n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必为奇数.4.有趣的应用题例 10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点在岸上还是在水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋垢次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于 A点在水中,氢不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有10a+15b+25c+40d=100k,(k为正整数)即 2a+3b+5c+8d=20k显然b、c有相同的奇偶性.若同为偶数,b-c=10 和a=b=5,不是整数;若同为奇数,b=c=5和a=d=10,k=7.例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A 是有理数.证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.而无穷小数A的各位数字有如下的奇偶性规律:A=0.奇偶奇奇偶奇奇偶奇……又a是奇数可取1,3,5,7,9;b是偶数可取0,2,4,6,8.所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.练习1.填空题(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?练习参考答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。

高中数学联赛讲义

高中数学联赛讲义

高中数学联赛培训讲义全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高。

第一讲 集合、函数、方程例1.集合{x|-1≤log x110<-21,1<x ∈N}的真子集个数为 。

(96年全国高中联赛) 【分析】先求出所给集合的元素个数,那么真子集的个数为2n -1 【解】【小结】运用对数运算法则和解不等式,掌握集合、真子集、换底、同底法、分数性质。

练习①.已知集合A ={y|2<y<3},x =31log 121+31log 151,则x 与A 的关系是 。

(83年)②(93年)若M ={(x,y)||tg πy|+sin 2πx =0},N ={(x,y)|x 2+y 2≤2},则|M ∩N|= 。

A. 4 B. 5 C. 8 D. 9 附:|A|表示A 的元素个数 (93年)③若非空集合A ={x|2a +1≤x ≤3a -5},B ={x|3≤x ≤22},则能使A A ∩B 成立的所有a 的集合是 。

(98年)例2.f(x) (x ∈R )是以2为周期的偶函数,当x ∈[0,1]时,f(x)=x 19981,则:f(1998)、 f(17101)、f(15104)由小到大的排列是 。

(98年全国高中联赛) 【分析】利用周期函数、偶函数的性质,将函数自变量转化到区间[0,1],再比大小。

【解】【小结】周期函数的性质、偶函数性质、幂函数单调性;转化思想。

练习①设f(x)是定义在实数集上的周期为2的周期函数,且是偶函数,已知当x ∈[2,3]时,f(x)=x ,则当x ∈[-2,0]时,f(x)的解析式是 。

(90年)A. f(x)=x +4B. f(x)=2-xC. f(x)=3-|x +1|D. f(x)=2+|x +1|②若a>1,b>1,且lg(a +b)=lga +lgb ,则lg(a -1)+lg(b -1)的值 。

(完整word版)高中数学竞赛讲义(三)函数

(完整word版)高中数学竞赛讲义(三)函数

高中数学竞赛讲义(三)──函数一、基础知识定义 1照射,关于任意两个会集A, B,依对应法规 f,若对 A 中的任意一个元素 x,在 B 中都有唯一一个元素与之对应,则称f: A→ B 为一个照射。

定义 2单射,若 f: A→ B 是一个照射且对任意 x, y∈ A, x y, 都有 f(x) f(y)则称之为单射。

定义 3满射,若 f: A→B 是照射且对任意 y∈ B,都有一个 x∈ A 使得 f(x)=y,则称 f: A→B 是 A 到 B 上的满射。

定义 4一一照射,若 f: A→ B 既是单射又是满射,则叫做一一照射,只有一一照射存在逆照射,即从 B 到 A 由相反的对应法规f-1构成的照射,记作 f-1 : A→B。

定义 5函数,照射 f: A→ B 中,若 A, B 都是非空数集,则这个照射为函数。

A 称为它的定义域,若 x∈ A, y∈ B,且 f(x)= y(即 x 对应 B 中的 y),则 y 叫做 x 的象, x 叫 y 的原象。

会集 { f(x)|x∈ A} 叫函数的值域。

平时函数由剖析式给出,此时函数定义域就是使剖析式有意义的未知数的取值范围,如函数y=3-1 的定义域为 { x|x≥ 0,x∈ R}.定义 6 反函数,若函数f: A→B(平时记作 y=f(x))是一一照射,则它的逆照射f-1: A→B 叫原函数的反函数,平时写作y=f-1 (x). 这里求反函数的过程是:在剖析式y=f(x)中反解x 得 x=f-1 (y) ,尔后将x, y 互换得 y=f-1 (x),最后指出反函数的定义域即原函数的值域。

比方:函数y=的反函数是y=1-(x0).定理 1互为反函数的两个函数的图象关于直线y=x 对称。

定理 2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。

定义 7函数的性质。

( 1)单调性:设函数 f(x)在区间 I 上满足对任意的x121212-, x ∈ I 并且 x< x,总有 f(x )<f(x )(f(x )>f(x2)),则称 f(x)在区间 I 上是增(减)函数,区间I 称为单调增(减)区间。

高中数学竞赛标准讲义

高中数学竞赛标准讲义

高中数学竞赛标准讲义高中数学竞赛是对学生数学知识和解题能力的一次全面考验,也是培养学生逻辑思维和数学兴趣的重要途径。

在参加数学竞赛的过程中,学生需要掌握一定的数学知识和解题技巧,才能取得好成绩。

本讲义将从高中数学竞赛的题型、考点和解题技巧等方面进行详细介绍,希望能够帮助广大学生更好地备战数学竞赛。

一、高中数学竞赛题型。

高中数学竞赛的题型主要包括选择题、填空题、解答题和证明题。

选择题是考查学生对基本概念和定理的理解和掌握程度,填空题则更加注重学生对知识的灵活运用能力,解答题和证明题则需要学生具备较强的逻辑思维和解题技巧。

在备战数学竞赛的过程中,学生需要根据不同题型的特点有针对性地进行练习和训练,做到对各种题型都能够熟练应对。

二、高中数学竞赛考点。

高中数学竞赛的考点主要包括数列、函数、方程不等式、三角函数、数学归纳法、排列组合、数论等内容。

这些考点是数学竞赛中经常出现的题型,也是学生备战竞赛时需要重点关注和加强练习的内容。

在备战数学竞赛的过程中,学生需要对这些考点进行系统性的学习和掌握,做到能够熟练运用于解题中。

三、高中数学竞赛解题技巧。

在解高中数学竞赛的题目时,学生需要具备一定的解题技巧。

首先,要注意审题,理清题意,明确问题所求;其次,要善于归纳总结,发现问题的规律,找到解题的突破口;再次,要注重细节,避免粗心导致的错误;最后,要善于思考,灵活运用所学知识,多角度思考问题,找到解题的最佳方法。

通过不断的练习和总结,学生可以逐渐提高解题的能力和技巧,取得更好的成绩。

四、高中数学竞赛备考建议。

在备战高中数学竞赛时,学生需要有计划地进行复习和练习。

首先,要对各个考点进行系统性的复习,巩固基础知识;其次,要针对不同题型进行有针对性的练习,提高解题能力;再次,要多参加模拟考试,检验备考效果,发现问题并及时调整学习计划;最后,要保持良好的心态,相信自己的能力,不断提升自己的数学水平。

通过科学合理的备考方法,相信每位学生都能够在数学竞赛中取得优异的成绩。

高中数学竞赛讲义十

高中数学竞赛讲义十

高中数学竞赛讲义(十)──直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。

解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。

如x2+y2=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。

规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。

根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;(6)法线式方程:xcosθ+ysinθ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:(其中θ为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。

5.到角与夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。

若记到角为θ,夹角为α,则tanθ=,tanα=.6.平行与垂直:若直线l1与l2的斜率分别为k1, k2。

且两者不重合,则l1//l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。

7.两点P1(x1, y1)与P2(x2, y2)间的距离公式:|P1P2|=。

2023年高中数学竞赛教案讲义排列组合与概率

2023年高中数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率一、基础知识1. 加法原理: 做一件事有n 类措施, 在第1类措施中有m1种不一样旳措施, 在第2类措施中有m2种不一样旳措施, ……, 在第n 类措施中有mn 种不一样旳措施, 那么完毕这件事一共有N=m1+m2+…+mn 种不一样旳措施。

w.w.w.k.s.5.u.c.o.m2 乘法原理: 做一件事, 完毕它需要分n 个环节, 第1步有m1种不一样旳措施, 第2步有m2种不一样旳措施, ……, 第n 步有mn 种不一样旳措施, 那么完毕这件事共有N=m1×m2×…×mn 种不一样旳措施。

w.w.w.k.s.5.u.c.o.m3.排列与排列数: 从n 个不一样元素中, 任取m(m ≤n)个元素, 按照一定次序排成一列, 叫做从n 个不一样元素中取出m 个元素旳一种排列, 从n 个不一样元素中取出m 个(m ≤n)元素旳所有排列个数, 叫做从n 个不一样元素中取出m 个元素旳排列数, 用 表达, =n(n-1)…(n-m+1)= ,其中m,n ∈N,m ≤n,注:一般地 =1, 0!=1, =n!。

4. N 个不一样元素旳圆周排列数为 =(n-1)!。

5.组合与组合数:一般地, 从n 个不一样元素中, 任取m(m ≤n)个元素并成一组, 叫做从n 个不一样元素中取出m 个元素旳一种组合, 即从n 个不一样元素中不计次序地取出m 个构成原集合旳一种子集。

从n 个不一样元素中取出m(m ≤n)个元素旳所有组合旳个数, 叫做从n 个不一样元素中取出m 个元素旳组合数, 用 表达:.)!(!!!)1()1(m n m n m m n n n C m n -=+--= 6. 组合数旳基本性质: (1) ;(2) ;(3) ;(4) ;(5) ;(6) 。

7. 定理1:不定方程x1+x2+…+xn=r 旳正整数解旳个数为 。

[证明]将r 个相似旳小球装入n 个不一样旳盒子旳装法构成旳集合为A, 不定方程x1+x2+…+xn=r 旳正整数解构成旳集合为B, A 旳每个装法对应B 旳唯一一种解, 因而构成映射, 不一样旳装法对应旳解也不一样, 因此为单射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x在集合A中,称x属于A,记为Ax∈,否则称x不属于A,记作Ax∉。

例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0xx分别{>表示有理数集和正实数集。

定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为BN⊆。

规定空集是任何集合的A⊆,例如Z子集,如果A是B的子集,B也是A的子集,则称A 与B相等。

如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。

定义3 交集,}.∈A∈B=且{BxAxx定义4 并集,}.A∈∈=或Bx{BAxx定义5 补集,若},{,1A x I x x A CI A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合 },,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

(1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈(3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ∉或B x ∉,所以)(B A x ∉,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ⊆,反之也有.)(111B C A C B A C ⊆定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有nm 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法。

定理3 乘法原理:做一件事分n 个步骤,第一步有1m种不同的方法,第二步有2m 种不同的方法,…,第n 步有nm 种不同的方法,那么完成这件事一共有n m m m N ⋅⋅⋅= 21种不同的方法。

二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。

例1 设},,{22Z y x y x a a M ∈-==,求证:(1))(,12Z k M k ∈∈-;(2))(,24Z k M k ∈∈-;(3)若M q M p ∈∈,,则.M pq ∈[证明](1)因为Z k k ∈-1,,且22)1(12--=-k k k ,所以.12M k ∈-(2)假设)(24Z k M k ∈∈-,则存在Z y x ∈,,使2224y xk -=-,由于y x -和y x +有相同的奇偶性,所以))((22y x y x y x+-=-是奇数或4的倍数,不可能等于24-k ,假设不成立,所以.24M k ∉-(3)设Z b a y x b a q y x p ∈-=-=,,,,,2222,则))((2222b a y x pq --= 22222222a y b x b y a a --+=M ya xb yb xa ∈---=22)()((因为Z ya xb Z ya xa ∈-∈-,)。

2.利用子集的定义证明集合相等,先证B A ⊆,再证A B ⊆,则A =B 。

例2 设A ,B 是两个集合,又设集合M 满足 B A M B A B A M B M A ===,,求集合M (用A ,B 表示)。

【解】先证M B A ⊆)( ,若)(B A x ∈,因为B A M A =,所以M x M A x ∈∈, ,所以M B A ⊆)( ;再证)(B A M ⊆,若M x ∈,则.B A M B A x =∈1)若A x ∈,则B A M A x =∈;2)若B x ∈,则B A M B x =∈。

所以).(B A M ⊆综上,.B A M =3.分类讨论思想的应用。

例3 }02{},01{},023{222=+-==-+-==+-=mx x x C a ax x x B x x x A ,若C C A A B A == ,,求.,m a【解】依题设,}2,1{=A ,再由012=-+-a ax x解得1-=a x 或1=x , 因为A B A = ,所以A B ⊆,所以A a ∈-1,所以11=-a 或2,所以2=a 或3。

因为C C A = ,所以A C ⊆,若∅=C ,则082<-=∆m ,即2222<<-m ,若∅≠C ,则C ∈1或C ∈2,解得.3=m 综上所述,2=a 或3=a ;3=m 或2222<<-m 。

4.计数原理的应用。

例4 集合A ,B ,C 是I ={1,2,3,4,5,6,7,8,9,0}的子集,(1)若I B A = ,求有序集合对(A ,B )的个数;(2)求I 的非空真子集的个数。

【解】(1)集合I 可划分为三个不相交的子集;A \B ,B \A ,I B A , 中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。

(2)I 的子集分三类:空集,非空真子集,集合I 本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有1024210=个,非空真子集有1022个。

5.配对方法。

例5 给定集合},,3,2,1{n I =的k 个子集:k A A A ,,,21 ,满足任何两个子集的交集非空,并且再添加I 的任何一个其他子集后将不再具有该性质,求k 的值。

【解】将I 的子集作如下配对:每个子集和它的补集为一对,共得12-n 对,每一对不能同在这k 个子集中,因此,12-≤n k ;其次,每一对中必有一个在这k 个子集中出现,否则,若有一对子集未出现,设为C 1A 与A ,并设∅=1AA ,则A C A 11⊆,从而可以在k 个子集中再添加A C 1,与已知矛盾,所以12-≥n k 。

综上,12-=n k 。

6.竞赛常用方法与例问题。

定理4 容斥原理;用A 表示集合A 的元素个数,则,B A B A B A -+=C B A C B C A B A C B A C B A +---++=,需要xy 此结论可以推广到n 个集合的情况,即∑∑∑∑=≠≤<<≤=+-=n i k j i j i n k j i j i i n i i A A A A A A A111 .)1(11 n i i n A =--+- 定义8 集合的划分:若I A A An = 21,且),,1(j i n j i A A j i ≠≤≤∅= ,则这些子集的全集叫I 的一个n -划分。

定理5 最小数原理:自然数集的任何非空子集必有最小数。

定理6 抽屉原理:将1+mn 个元素放入)1(>n n 个抽屉,必有一个抽屉放有不少于1+m 个元素,也必有一个抽屉放有不多于m 个元素;将无穷多个元素放入n 个抽屉必有一个抽屉放有无穷多个元素。

例6 求1,2,3,…,100中不能被2,3,5整除的数的个数。

【解】 记})2(2,1001{},100,,3,2,1{x x x x A I 记为整除能被且≤≤== ,}5,1001{},3,1001{x x x C x x x B ≤≤=≤≤=,由容斥原理,+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+---++=31002100C B A A C C B B A C B A C B A 7430100151001010061005100=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡,所以不能被2,3,5整除的数有26=-C B A I 个。

例7 S 是集合{1,2,…,2004}的子集,S 中的任意两个数的差不等于4或7,问S 中最多含有多少个元素?【解】将任意连续的11个整数排成一圈如右图所示。

相关文档
最新文档