10大物理学难题困扰世界(详细版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学家们挑选出10个最匪夷所思的物理学问题,解答这些问题足够
让他们忙上100年。尽管没有任何悬赏,不过,对任何一个问题的解答差
不多都能获得诺贝尔奖
【美国《纽约时报》8月15日文章】题:需要两千年思考的十大物理学
问题(作者乔治·约翰逊)
100年前,德因数学家戴维·希尔伯特在巴黎的国际数学家大会上以一
番发人深省的话语开始了他划时代的讲话。他在讲话中罗列了当时尚未解决
的23个重大难题。希尔伯特宣称:“—个伟大时代的结束,不仅要求我们回
首过去,而且还引导我们回首对未知的将来进行深思。”随着又一个世纪——实际上是整整一个千年纪元——的结束,有一种要求显得比以往任何时候
更为紧迫,那就是通过罗列最引人入胜的宇宙之谜来显示人类的无知。
今年5月,马萨诸塞州剑桥的克莱数学学会仿效希尔伯特,在巴黎宣布
了7道“千年大奖难题”,每道题悬赏100万美元征求解答。
无独有偶,上月,存圣巴巴拉加州大学,物理学家们像通常那样不事张
扬地结束了一次有关超弦理论的会议。他们的最后一次讨论题为“干年疯狂”,议程是挑选出他们领域中10个最匪夷所思的问题。这就像是一场由科学界最聪明的一批人参加的荒岛游戏。
圣巴巴拉加州大学的理论物理学家戴维·格罗斯在公布选出的问题时
说:“我是这样考虑的:如果我从现在起昏迷100年,当我醒来时,我会问
什么问题。”
在剔除一些大法问答的问题(例如“怎样获得终身职位?”)后,评委们
列出了足够让物理学家忙上100年的难题。尽管没有任何悬赏,不过,解决
下列问题中的任何一个差不多都能保证获得诺贝尔奖。
1.表达物理世界特征的所有(可测量的)无量纲参数原则上是否都可以推算,或者是否存在一些仅仅取决于历吏或量子力学偶发事件,因而也是无法推算
的参数?
爱因斯坦的表述更为清楚:上帝在创造宇宙时是否有选择?想象上帝坐
在控制台前,准备引发宇宙大爆炸。“我该把光速定在多少?”“我该让这
种名叫电子的小点带多少电荷?”“我该把普朗克常数——即决定量子大小
的参数——的数值定在多大?”他是不是为了赶时间而胡乱抓来几个数字?抑
或这些数值必须如此,因为其中深藏着某种逻辑?
2.量子引力如何帮助解释宇宙起源?
现代物理学的两大理论是标准模型和广义相对论。前者利用量子力学来
描述亚原子粒子以及它们所服从的作用力,而后者是有关引力的理沦。很久
以来,物理学家希望合二为一,得到一种“万物至理”——即量子引力论,
以便更深入地了解宇宙,包括宇宙是如何随着大爆炸自然地诞生的。实现这
种融合的首要候选理论是超弦理论,或者叫 M理论——这是其名称的最新
“升级版”,M代表“魔法”( magic)、“神秘”( mystery)或“所有理论
之母”( mother of alltheories)。
3.质子的寿命有多长,如何来理解?
以前人们认为质子与中子不同,它永远不会分裂成更小的颗粒。这曾
被当成真理。然而在70年代,理论物理学家认识到,他们提出的各种可能
成为“大一统理论”——该理论把除引力外的所有作用力汇于一炉——的
理论暗示:质子必须是不稳定的。只要有足够长的时间,在极其偶然的情
况下,质子是会分裂的。
办法是捕捉到正在死去的质子。许多年来,实验人员一直在地下实验
空中密切注视大型的水槽,等待着原子内部质子的死去。但迄今未止质子
的死亡率是零,这意味着要么质子十分稳定,要么它们的寿命很长——估
计在10亿亿亿亿年以上。
4.自然界是超对称的吗?如果是,超对称性是如何破灭的?
许多物理学家认为,把包括引力在内的所有作用力统一成为单一的理
论要求证明两种差异极大的粒子实际上存在密切的关系,这种关系就是所
谓的超对称现象。
第一种粒子是费密子,可以把它们粗略地说成是物质的基本组件,就
像质子、电子和中子一样。它们聚集在一起组成物质。另一种粒子是玻色子,它们是传递作用力的粒子,类似于传递光的光子。在超对称的条件下,每一个费密子都有一个与之对应的玻色子,反之亦然。
物理学家有杜撰古怪名字的冲动,他们把所谓的超级对称粒子称为“Sparticle”。但由于在自然界中还没有观察到5particle,物理学家
还需要解释这种对称性“破灭”的原因:随着宇宙冷却并凝结成现在的这
种不对称状态,在其诞生之际所存在的数学上的完美被打破了。
5.为什么宇宙表现为一个时间维数和三个空间维数?
这只是因为还没有想到一个可以接受的答案,只是因为除了上下、左右、前后,人们无法想像在更多的方向上运动。这并不意味着宇宙原本就是这样的。实际上,根据超弦理论,肯定还存存着另外六个维数,每一维
都呈卷曲状,十分微小,因而无法察觉。如果这一理论是正确的,那么为
什么只有这三个维数是伸展开来的,留给我们这个相对幽闭恐怖的空间呢? 6.为什么宇宙常数有它自身的数值?它是否为零,是否真正恒定?
直到最近,宇宙学家仍然认为宇宙是以一个稳定的速度在膨胀。但最
近的观察发现,宇宙可能膨胀得越来越快。人们用一个叫宇宙常数的数字
来描述这种轻微的加速。这个常数是否如人们早期所认为的是零,或者是
一个非常小的数值,物理学家现在还无法做出解释。
根据一些基本计算,这个常数应该很大——是我们观测结果的大约
10到122倍。换句话说,宇宙应该以跳跃般的速度在膨胀。而实际情况并
非如此,肯定有什么机制在压制这种作用。如果宇宙真是超对称性的,那
宇宙常数就该被完全抵消掉。但这种对称性——如果确实存在的话——看
来已经破灭。如果这个常数随时间的变化而变化的话,那情况就更加复杂了。
7.M理论的基本自由度( M理论的低能极限是 ll维的超引力,它包含5种相容的超弦理论)是多少?这一理论是否真实地描述了自然?
多年来,超弦理论最大的弱点是它有5个不同的版本。到底哪一个——如果有的话——描述了宇宙?反对这一理论的人最近已经接受了被称为 M理论的最主要的 l l维理论框架。但情况却因此变得更加复杂。
在 M里论前,所有的亚原子粒子都被说成是由微小的超弦组成的。M理论给组成亚原子的物质增加了一种叫做“膜”(brane)的更为神秘的物质,它就像生理学上的膜一样,但最多有9个维数度。现在的问题是,什么是更基本的物质组成单位,是膜组成了弦还是刚好相反?或者另外存在着一些更基本的物质单位,只是人们没有想到罢了?最后,这两种东西中是否有一种