基于RT-LAB的光伏发电系统实时仿真
RT-LAB实时仿真技术
REAL-TIME PLATFORM FOR THE CONTROL PROTOTYPING AND SIMULATION OF POWER ELECTRONICS AND MOTOR DRIVESSimon Abourida, Jean BelangerOpal-RT Technologies Inc.1751 Richardson #2525Montreal, J4P 1G6, Quebec, CanadaSimon.abourida@ABSTRACTThe paper presents state-of-the-art technologies and platform for real-time simulation and control of motor drives, power converters and power systems.Through its support for Model-Based Design method with Simulink®, its powerful hardware (multi-core processors and FPGAs), and its specialized model libraries and solvers, this real-time simulator (RT-LAB™) enables the engineer and researcher to efficiently implement advanced control strategies on embedded hardware, or to conduct extensive testing of complex power electronics and real-time transient simulation of large power systems.1.INTRODUCTIONOver the years, it has been increasingly acknowledged how important and essential the tools of real-time simulation and testing in all industries are. These tools are no longer a luxury in modern system design, especially in electric motor drives and power electronics, whose applications are found in an ever increasing number in all sectors. As for power systems, it was the sector that pioneered the use of real-time simulators tens of years ago, starting with analog simulator, before the advent of computers and the development of hybrid then fully digital real-time simulators.On other hand, commercial simulation packages such as MATLAB/Simulink™ are now widely used in the industry, education, and research institutions alike. They have become the modeling tools of choice because the many advantages they offer: increase in engineering productivity and efficiency, and accelerated design cycle by relying on the Model Based Design (MBD) methodology, making it possible to go from concept to simulation without ever having to write code, and producing a working prototype very early in the design process.Because of its advantages, the MBD approach has renewed the importance and interest in real-time simulation and its many applications and spread the usage of RT simulation to new fields, because it had greatly facilitated the development of real-time applications and accelerated their design.Before and after the establishment of this MBD process, several real-simulation time tools has been developed, in different sectors: electromechanical systems, aerospace, power systems, electric drives, railway systems, etcMany such tools were proprietary systems or mere research projects that failed to get into maturity. The few others that made it to maturity and had many applications and users have restrained their applications solely to the real-time simulation of the complex electric power systems (RTDS, Hypersim [1]) resulting in high cost for simpler systems like electric drives and industrial power converters; others failed, despite their success in small applications or complex but slow dynamic systems, to address the needs and requirements of real-time simulation of the fast electromagnetic transients of power systems, and the fast dynamics of today’s power converters and electric motor drives, and therefore, their applications stayed confined to systems with relatively slow dynamics (mechanical, hydraulic, aerodynamic systems, etc).A powerful platform for real-time simulation and control of electromechanical and power systems alike that is based on the MBD approach has been developed (RT-LAB) in the mid nineties, pioneering the use of commercial PC processor as the base platform and using Simulink as the visual design environment. In addition to its scalable, distributed processing hardware, RT-LAB integrates on the software level many solvers and model libraries that were designed to solve the problems and challenges of the real-time control and simulation of fast dynamics like those found in electric motor drives, power converters, power grid, renewable energy systems, and other applications.The present paper describes this real-time platform and its architecture, and presents some of its typical applications. It is organized as follows: first an introduction to the methodology of model-based design and its applications is given in section 2; then the RT-LAB platform, its hardware architecture and its software are presented thoroughly in section 3, and some application-driven real-time simulators are presented in section 4; typical applications are shown and discussed in section 5, before concluding.2.MODEL-BASED DESIGN AND REAL-TIMESIMULATIONIn traditional design and test methods of control systems, the actual product or even its prototype become available very late in the design process; and it is only then, as system integration is done toward the end of the design that the designers were able tofind out if the system work well and behave as it was intended to, or to uncover eventual errors in the design, implementation or integration of the system and its components.Model-Based Design process (illustrated on Figure 1) addresses these shortcomings of the traditional development method; it consists of building a mathematical model of the system in a graphical block-diagram environment (like Simulink ™). The entire system model can then be simulated to accurately predict, validate and optimize its performance, and to iteratively refine it until it meets the requirements; this is the model design stage.Figure 1: The process of Model Based DesignThis system model becomes then a specification from which real-time software code is automatically generated for prototyping and implementation, thus avoiding hand coding and reducing the potential for errors (automatic software generation).The software automatically generated from the system-level, graphical block diagram is then uploaded to a real-time platform, and is ready for testing. In fact, verification and validation are conducted throughout the development of the product by integrating tests into the models at any stage. This continuous verification and simulation helps identify errors early, when they are easier and less expensive to fix.This model based design process is more and more used in the development of dynamic systems including motor drives and power electronics systems. In educational institutions, this process is becoming the preferred approach for both research and teaching, because it enables the researchers, engineers and students to focus on their design, algorithms, system topologies and different innovative ideas, rather than dedicating a significant part of their effort and time to the intricacies of writing the real-time code and implementing the software on the real-time platform (microcontroller, DSP, FPGA, etc).3.RT-LAB REAL-TIME PLATFORMRT-LAB is a powerful, modular, distributed, real-time platform that lets the engineer and researcher to quickly implement block diagram Simulink models on PC platform, supporting thus the model-based design method by the use of rapid prototyping and hardware-in-the-loop simulation of complex dynamic systems. The major elements integrated in this real-time platform are: distributed processing architecture; powerful processors, high precision and very fast input/output interface, hard real-time scheduler, and modeling libraries and solvers specifically designed for the highly non-linear motor drives, power electronics, and power systems.3.1.Architecture of RT-LAB platformThe general architecture of RT-LAB is shown on Figure 2. In this host-target architecture, the host is used to develop the model at the design stage, and during runtime, as the user interface, communicating with the target by Ethernet. The target where the real-time computation done, is a PC and has therefore the standard architecture of a PC; one or two processors are dedicated to the simulation of the Simulink model; a PCI (or PCI-Express) bus connects the processors to the rest of the system, and to inputs/outputs (I/O) through an FPGA board; the I/O’s are modular and their number can be configured according to theapplication needs.Figure 2: The architecture of RT-LAB based simulatorIn addition, several targets can be interconnected with FireWire or PCI Express real-time communication links and switches, making the complete system a super-computer of high computational capacity, ideal for the real-time simulation of complex systems (power grids, wind farms, distributed generation systems in large ships, and others)3.1.1.ProcessorRT-LAB uses Intel™ or AMD™ processors as real-time targets; there can be a single or two processors in one target; each processor can be single, dual or quad core, so that a single target box can hold as much as 8 processing cores, communicating by shared memory; and each core simulates a Simulink subsystem; this makes such an RT-LAB target box a very powerful distributed processing simulator that can handle very complex simulation applications.In addition, for applications requiring very small simulation stepin the microsecond range, RT-LAB uses Xilinx FPGA as real-time target; and while this target requires some extra handling in the model by the designer, the design itself is done equally in the form of block diagram in the same Simulink graphical environment by using the Xilinx Blockset, and the VHDL code is then automatically generated from the block diagram, compiled and uploaded to the FPGA; the engineer can then design extremely fast control algorithms or model extremely fast sampling plant models and target them to FPGA without hand coding and without the need of programmable logic chip expertise.3.1.2.Inputs and OutputsIn order to connect the real-time system with real world hardware devices, (controller or physical plant), input/output (I/O) interface is configured through custom blocks, supplied with RT-LAB as a Simulink toolbox (analog, digital, PWM, encoder, serial communication, etc). The engineer drags and drops the I/O blocks to the graphic model, without worrying about low-level driver programming. RT-LAB manages the automatic code generation so to direct the model’s data flow onto the physical I/O cards.RT-LAB platform supports several commercial PCI I/boards; in addition, in order to meet the stringent I/O speed and accuracy requirements of power electronics and drives, it uses digital I/O boards controlled by a 100 MHz FPGA chip yielding a PWM and encoder resolution of ±10 ns, and 16-bits simultaneous fast analog-digital converters.3.1.3.Software and Modeling LibrariesRT-LAB runs either on QNX or RT-Linux real-time operating system; at the heart of the software, there is a hard real-time scheduler that ensures a strict real-time execution of the system code.RT-LAB software automatically handles the real-time communication between processing cores, and processors on different target boxes, as well as the communication with the host station, and it handles the interface between the model code (user actual simulated application) and the I/O devices.On the top of the real-time software, modeling toolboxes and solvers for Simulink has been developed to handle the intricate simulation needs of fast transients found in switching power converters, electromagnetic transients in power grids, and to interface with commercial blocksets designed by third parties addressing special needs for the simulation of motor drives and other electrical related systems. The table given below lists the most important of these toolboxes.Table 1: Model and Solver Libraries for RT-LABModule DescriptionRT-Events Simulink Blockset of control blocks with real-timeinterpolation for power electronics & hybridsystems (dynamic systems with events). RTeDRIVE Simulink Blockset of converter and motor modelsto simulate motor drives in real-time; it includesvoltage-source power converters with real-timeinterpolation techniques.ARTEMIS Simulink solver toolbox to simulate line- or load-commutated drives and AC circuits; it is used torun SimPowerSystems models in real-time. RTeGRID Bundle of ARTEMIS and other models andfunctionalities optimized for the simulation ofpower systemsRTeGRIDpro Bundle of S/W tools to simulate large power gridswith power electronic systems; it includesRTeGRID, RTeDRIVE and RT-EventsRT-LAB.XSG Development and run-time tools to design modelswith Xilinx Blockset and run them on XilinxFPGAXSGeDRIVE Simulink blockset designed with Xilinx blocks tosimulate power electronic drives on FPGART-LAB.JMAG Interface of RT-LAB to JMAG-RT finite elementsuite from the Japanese Research InstituteSolutions, to run high fidelity motor model onCPU targetRT-LAB.JMAG-FPGAJMAG-RT implemented on FPGA target (1 us) 3.2.RT-LAB Based Real-Time Simulators3.2.1.eDRIVEsimeDRIVEsim is an advanced real-time, hardware-in-the-loop (HIL) simulator and control prototyping platform that integrates different libraries in the RT-LAB platform; it is intended for designing advanced control systems or for performing HIL testing of controllers used in high-speed electric motors, power electronics, and other electromechanical systems.Blocks from specialized modeling libraries like RTeDrive™, RT-Events™ and ARTEMIS (with SimPowerSystems®) blocksets can be included by the engineer in the Simulink model to run on the processor target.In addition, eDRIVEsim lets the user incorporate subsystems designed with blocks from the Xilinx Blockset for Simulink into the model. This allows that part of the model to be executed on the eDRIVEsim FPGA allowing testing of fast controllers and protection systems, and achieving a low level of latency unprecedented in the simulation of high speed motors and high switching frequency converters.This is illustrated in Figure 3. In this test, a 3-phase AC motor drive is emulated on the FPGA (with Xilinx blockset for Simulink), and the PWM gate signals of the simulated inverter comes from an external controller. The graph shows the total delay (latency) from the PWM input sent to the FPGA-based simulator to the currents that come out on the digital-to-analog outputs. The test shows a total latency in the order of 1.5 µs; this demonstrates the very high simulation speed of the motor drive emulated on the FPGA.Figure 3: Very small latency & time step with the FPGAreal-time target of RT-LAB simulator3.2.2.eMEGAsimTo answer the real-time electromagnetic simulation needs of power systems, the real-time digital simulator eMEGAsim™ was also developed on the RT-LAB platform.In eMEGAsim, the user develops controller models with Simulink and electrical circuit models with SimPowerSystem [2]. SimPowerSystem is a Simulink toolbox which provides multiple integrated models, all based on electromechanical and electromagnetic equations, for the simulation of power grids and machine drives. ARTEMIS enables SimPowerSystems models to be implemented and run in real-time. With the combination of other Simulink mathematical and physical-domain toolboxes, it is possible to easily model any power system components interconnected with complex mechanical subsystems and associated controls.An EMTP-RV™ [3] interface is also available to facilitate circuit diagram capture and validation of large circuits. The resulting model can be simulated offline using variable-step or fixed step solvers in Simulink and with ARTEMIS third- and fifth-order fixed-step solver, optimized for real-time parallel simulation of models made with SimPowerSystems.With the integration of the above tools, eMEGAsim becomes a powerful real-time digital simulator for the study of FACTS [4][5], in-land and electric ship power grid, wind farm interconnection with the power grid [6], etc.4.RT-LAB APPLICATIONSRT-LAB is used in various projects in industries and institutions, spread among different types of applications.Depending on the part of the system that is simulated (controller or plant), the applications of real-time simulation and of RT-LAB real-time system can be grouped in three major categories. These are explained briefly in the following sections.4.1.Full Real-Time SimulationA control system, is usually made of a controller and a plant connected in closed loop by the means of sensors sending feedback signals from the plant to the controller and actuators to level the signals sent from the controller to the plant (to power switches, breakers, etc).Full real-time simulation consists of converting the Simulink model of the complete system (plant and controller) to real-time software that is uploaded to RT-LAB real-time platform (simulator) to conduct fully digital real-time simulation of the complete system.As an example, the paper in [5][7] describes the use of RT-LAB for the real-time simulation of an induction motor drive with field-oriented speed controller, where [8] presents the use of RT-LAB PC-cluster simulator for real-time simulation of an All Electric Ship integrated power system analysis and optimization. The project described in [9] explains the hardware and software details of RT-LAB real-time digital simulator and its use for power engineering research. It describes its application for the study of 3-level induction motor drive with vector-control and compares the real-time simulation results to offline results from PSCAD/EMTDC.4.2.Rapid Control PrototypingRapid Control Prototyping or RCP consists of quickly generating a functioning prototype of the controller, and to test and iterate this control algorithm on a real-time platform with real input/output devices. Rapid control prototyping differs from HIL in that the control strategy is simulated in real-time and the “plant,” or system under control, is real.The applications of RT-LAB real-time system for rapid control prototyping are numerous; it is found in the development of a biped locomotor applicable to medical and welfare fields [10]; in autonomous control to maneuver a ship along desired paths at different velocities [11], where RT-Lab is used for rapid prototyping of the ship real-time feedback controller; in real-time control of a multilevel converter using the mathematical theory of resultants [12]; and in several research and teaching labs for the control of electric motors; a typical setup using the DriveLab™ experimental kit is shown on Figure 4.Figure 4: RT-LAB motor control prototyping used inDriveLab™4.3.Hardware-In-the-Loop SimulationHardware-In-the-Loop or HILS differs from pure real-time simulation by the use of the “real” controller in the loop (motor drive controller, electronic control unit for automotive, FADEC for aerospace, etc); this controller is connected to the rest of the system that is simulated by input/outputs devices. So unlike RCP, in HILS, it is the plant that is simulated and the controller is real.Hardware-in-the-Loop simulation permits repetition and variation of tests on the actual or prototyped hardware without any risk for people or system. Tests can be performed under realistic and reproducible conditions. They can also be programmed and automatically executed.Several applications in the field of motor drive HIL simulation has taken place in various fields (robotics, industrial, automotive and others).The paper in [13] described the use of RT-LAB simulator of Permanent Magnet Synchronous Motor (PMSM) drive in industrial application (Figure 5), and reported the shortest real-time simulation time step (10 µs) for electric drives with this level of details in modeling the drive circuit, enabling to get very precise drive waveforms compared to actual measurements (Figure 6).The application reported in [14] describes the setup and the results of closed-loop control experiments using a permanent magnet synchronous motor (PMSM) drive emulated on RT-LAB FPGA card connected in a closed loop with a controller implemented on another RT-LAB target computer. The FPGA-based PMSM motor drive is implemented on eDRIVEsim simulator. The simulator implements 2 types of motor drive models: Park (d-q) motor model and another more accurate motor model based on Finite Element Analysis that includes the non-linearities of the motor.Figure 5: Hardware-in-the-loop simulation setup of an ACmotor drive driven by a diode converterFigure 6: Simulated PMSM drive currents in RT-LAB HILsetup, compared to real currents measured in the lab5.CONCLUSIONSThe paper presented the RT-LAB platform for real-time simulation of motor drives, power converters and power systems, and for real-time control of electric motors and mechatronic systems, and described state-of-the-art design methods and technologies used in this platform.Different types of applications in control prototyping and hardware-in-the-loop simulation were portrayed with reference to typical projects.What makes this real-time platform particularly advanced is its powerful hardware (parallel processing, multi-core processors, fast I/O devices, support of FPGA-based computation), and software (scalability, model-driven libraries targeting electric and power electronic systems, real-time interpolation of device switching, and other solver techniques), making it a very useful tool for research, testing and innovation.6.REFERENCES[1]Larose C. ; Guerette S.; Guay F.; Nolet A.; Yamamoto T.;Enomoto H.; Kono Y.; Hasegawa Y.; Taoka H., “A fully digital real-time power system simulator based on PC-cluster”, ELECTRIMACS 2002 International Conference No7, Montréal , Canada, vol. 63, no 3-5[2]Louis-A. Dessaint, Kamal Al-Haddad, Hoang Le-Huy,Gilbert Sybille, and Patrice Brunelle, “A Power SystemSimulation Tool Based on Simulink”, IEEE Transactions onIndustrial Electronics, Vol. 46, No. 6, December 1999[3][4]Majumber R., Pal B.C., Dufour C., Korba P., “Design andReal-Time Implementation of Robust FACTS Controller forDamping Inter-Area Oscillation”, IEEE Transactions on Power Systems, Vol. 21, No. 2, pp. 809-816, May 2006.[5]Dufour C., Bélanger J., "Real-time Simulation of a 48-PulseGTO STATCOM Compensated Power System on a Dual-Xeon PC using RT-LAB," Proceedings of the InternationalConference on Power Systems Transients (IPST 2005), Montréal, Canada, June 19-23, 2005.[6]J.-N. Paquin J.-N., Moyen J., Dumur G., and Lapointe V.,"Real-Time and Offline Simulation of a Detailed Wind FarmModel Connected to a Multi-Bus Network," Proceedings ofthe 2007 IEEE Electrical Power Conference, 8 pp.[7]Ouhrouche M., Beguenane R., Tzynadlowski A.M.,Thongam J.S., Dubé-Dallaire M., “A PC-Cluster-based FullyDigital Real-Time Simulation of a Field-Oriented SpeedController for an Induction Motor”, International Journal ofModeling & Simulation, Vol. 26, Number 3, 2006[8]Xie Y., Seenumani G., Sun J., Liu Y., and Li Z., “A PC-Cluster Based Real-Time Simulator for All-Electric ShipIntegrated Power Systems Analysis and Optimization”, Electric Ship Technologies Symposium, 2007. IEEE Volume ,Issue , 21-23 May 2007 Page(s):396 - 401[9]Pak, L.-F., Faruque, M. O., Nie, X., and Dinavahi, V., “AVersatile Cluster-Based Real-Time Digital Simulator for Power Engineering Research”, IEEE Transactions on PowerSystems, Vol. 21, No. 2, May 2006[10]Hun-ok Lim, Yusuke Sugahara and Atsuo Takanishi,“Development of a Biped Locomotor Applicable to Medicaland Welfare Fields”, Proceedings of the 2003 IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics (AIM 2003)[11]Skjetne R., Smogeli Ø.N. and Fossen T.I., “A Nonlinear ShipManoeuvering Model: Identification and adaptive controlwith experiments for a model ship”. Journal of Modeling,Identification and Control, 2004, Vol. 25, No. 1, 3–27[12]Chiasson, J., Tolbert, L., McKenzie, K., and Du, Z., “Real-Time Computer Control of a Multilevel Converter using theMathematical Theory of Resultants”, Proceedings of Electrimacs, 2002, Montreal, Canada.[13]Harakawa M., Yamasaki H., Nagano, T., Abourida S.,Christian Dufour C., Bélanger J., “Real-Time Simulation of aComplete PMSM Drive at 10 μs Time Step”, The 2005International Power Electronics Conference[14]Dufour C., Lapointe V., Bélanger J., and Abourida S.,“Hardware-in-the-Loop Closed-Loop Experiments with anFPGA-based Permanent Magnet Synchronous Motor DriveSystem and a Rapidly Prototyped Controller”. The 2008IEEE International Symposium on Industrial Electronics,Cambridge, UK, June 30, July 2, 2008.。
基于RT-LAB的MPPT控制模拟及试验验证
基于RT-LAB的MPPT控制模拟及试验验证朱红;马洲俊;张明;嵇文路;卞海红【摘要】提出了一种基于扰动观察法的改进最大功率点跟踪(MPPT)算法,并与常见的MPPT算法(扰动观察法和电导增量法)进行对比分析.结合加拿某公司推出的RT-LAB实时仿真平台建立数字主电路,进行数模混合实时仿真验证,分析了改进MPPT算法与传统MPPT算法的控制效果.实验结果表明,改进的变步长扰动观察法振荡范围小于2种传统MPP算法,同时该算法在光照强度及电池温度改变时,跟踪至新的最大功率点所需时间也小于另外2种算法,验证了改进控制算法的有效性及优越性.%In this paper,an improved maximum power point tracking (MPPT) algorithm based on perturbation observation method is proposed and compared with the common MPPT algorithms-perturbation observation method and conductance increment bined with CRT-LAB real-time simulation platform promoted by Canadian Opal-RT company,a digital main circuit is established,and digital analog realtime simulation verification is carried out,and the control effects of the improved MPPT algorithm and the traditional MPPT algorithm are analyzed and compared.The experimental results show that the oscillation range of the improved variable step perturbation and observation method is less than those of two kinds of traditional MPPT algorithms and the time the improved MPPT algorithm takes to track to the new maximum power is less than those of the other two when the light density and battery temperature are changed.The experiment verifies the effectiveness and superiority of the control algorithm.【期刊名称】《电网与清洁能源》【年(卷),期】2017(033)008【总页数】9页(P49-56,61)【关键词】RT-LAB;最大功率点跟踪(MPPT);数模混合【作者】朱红;马洲俊;张明;嵇文路;卞海红【作者单位】国网南京供电公司,江苏南京210019;国网南京供电公司,江苏南京210019;国网南京供电公司,江苏南京210019;国网南京供电公司,江苏南京210019;南京工程学院,江苏南京211167【正文语种】中文【中图分类】TM712如何快速有效地实现最大功率点跟踪(the maximum power point tracking,MPPT),是光伏发电系统中的关键问题。
基于rt-lab光储模型及功率在环实时仿真平台研究
系统。当物理
为有源系统时,ITM的接口带有 形畸变小,最为适合〔9*。
载能力强、
功放 图1光储模型+功放+负载电路总体框架结构拓扑图
1基于RT-AB搭建的光储模型
1.1 基于RT-LAB搭建整体模型
根
+功放+负载电路拓扑图,分
RT-LAB软件中搭建
、
,时加
ITM接口模块,进行 步 置。基于RT-LAB
微 制器 端 , 将控制器输岀端 量反馈
器,通
数据与真实数据对比分析,验证了该模拟环境的准确性。同时,
台,对分布式
微 制器 进行测试,提高了测试的效率,降低 测试成本。
关键词:微网;RT-LAB实
;
大器;光伏模型;储能模型;逆变变频
—体机
中图分类号:TM 315 文献标志码:A 文章编号:2095-8188(2019)24-0051-07
PHIL)仿真技术作为电力系统仿真技术的潮流和
方向,是目
外研究的热点)1-*。功率
在
环 的技术核 于
和物理侧装置
的接口,接口的放大环节会引入延时并可能带
来幅 的误差,最终有可能造成系统 的不准
的 理论 论了幅
,以二阶系统为例, 闭环系统稳定性和
夕卜有的接口
主要有5种, 理变压器 (ITM)法、
时变一阶近似(TFA)法、电
(TLM)法、
分电 制(PCD)法、阻尼阻抗(DIM) 。
中ITM 为直观,
为 单,不需要添
加过多物理 ,电压型ITM将
系统的
端口电压经
系列控制变换, 物理系
统作为其端口电压,同时,物理系统的实际电流经
测量由受控电流源形式反馈
基于RTDS的光伏并网数字物理混合实时仿真平台设计
第42卷第3期电力系统保护与控制V ol.42 No.3 2014年2月1日Power System Protection and Control Feb.1, 2014 基于RTDS的光伏并网数字物理混合实时仿真平台设计陈 侃,冯 琳,贾林壮,李国杰,莫光玲(电力传输与功率变换控制教育部重点实验室,上海交通大学电气工程系,上海 200240)摘要:作为清洁的可再生能源,太阳能光伏发电已成为国内可再生能源发展战略的重要内容。
运用数字物理混合的硬件在环仿真方法对光伏并网系统的特性进行研究,能够提供便捷的实验条件和准确的实验结果。
基于RTDS(Real Time Digital Simulator)实时仿真系统,通过其数模接口同外部DSP构成数字物理闭环,设计了一种光伏并网系统的硬件在环仿真平台,建立了容量为520 kWp的光伏并网系统,实现了最大功率跟踪和并网控制的功能。
最后对RTDS系统内的闭环仿真结果进行了分析,验证了所提出的数模混合硬件在环实时仿真方法的可行性和有效性。
关键词:RTDS;实时仿真;光伏并网系统;硬件在环仿真Design of digital/physical hybrid simulation platform for photovoltaic grid-connected systembased on RTDSCHEN Kan, FENG Lin, JIA Lin-zhuang, LI Guo-jie, MO Guang-ling(Key Laboratory of Control of Power Transmission and Transformation, Ministry of Education (Department of ElectricalEngineering, Shanghai Jiao Tong University), Shanghai 200240, China)Abstract: As one important kind of renewable energy, solar energy has become a key factor of Chinese renewable energy developing strategy. Research on the characteristic of PV grid-connected system by hardware-in-the-loop simulation could provide convenient experiment condition and accurate result. This paper builds a digital/physical hybrid simulation platform based on RTDS and establishes a 520 kWp PV grid-connected system, in which maximum power point tracking (MPPT) and grid-connected control are achieved. At last, the feasibility and effectiveness of hybrid PV system are validated by the analysis of hardware-in-the-loop result in RTDS.Key words: RTDS; real-time simulation; PV grid-connected system; hardware-in-the-loop simulation中图分类号:TM71 文献标识码:A 文章编号:1674-3415(2014)03-0042-070 引言在众多可再生能源中,太阳能凭其独特的优点而受到一致青睐,光伏发电已成为国内可再生能源发展战略的重要内容[1]。
基于RTLAB的新能源控制器硬件在环仿真技术
这本书的主题是RTLAB,这是一种实时仿真系统,能够实现硬件在环仿真。 对于从事新能源控制器的研发和优化工作的人来说,RTLAB无疑是一种强大的工 具。在书中,作者详细阐述了如何使用RTLAB进行新能源控制器的硬件在环仿真 的全过程,包括系统的建模、仿真、测试和验证等环节。
书中首先对RTLAB的原理和基本操作进行了详细的介绍,然后通过一个具体 的新能源控制器实例,展示了如何使用RTLAB进行硬件在环仿真。这一部分内容 让我深刻体会到了RTLAB的实用性和灵活性。接着,书中又详细介绍了如何利用 RTLAB进行控制器设计和优化,以及如何解决可能出现的问题。这些内容让我对 新能源控制器的设计和优化有了更深入的理解。
书中详细介绍了RTLAB仿真平台的特点和优势,以及其在新能源控制器硬件 在环仿真中的应用。RTLAB作为一种强大的仿真平台,可以帮助科研人员快速实 现新能源控制器的设计和测试。通过将RTLAB与新能源控制器硬件在环仿真技术 相结合,读者可以更好地理解这一技术的实际应用和效果。
书中还详细介绍了新能源控制器硬件在环仿真的实现过程,包括模型建立、 控制器设计、仿真测试等环节。这一部分的内容非常实用,为读者提供了具体的 操作步骤和方法。通过这些内容,读者可以了解如何将理论转化为实践,实现新 能源控制器的设计和测试。
精彩摘录
在新能源控制器的研发过程中,硬件在环仿真技术(HILS)发挥着重要的作 用。这本《基于RTLAB的新能源控制器硬件在环仿真技术》的书籍,为读者提供 了全面而深入的探讨,对于想要了解新能源控制器硬件在环仿真技术的读者来说, 这本书无疑是一本宝贵的指南。
书中首先对硬件在环仿真技术进行了概述,解释了其基本概念、工作原理和 应用范围。对于初学者来说,这无疑是一个极好的起点。通过了解这些基础知识, 读者可以更好地理解后续的章节和内容。
基于RT-LAB的光伏发电系统实时仿真
引 言
随着 传统能 源 的 日益 枯 竭 , 阳能 已经 成 为 一 太 种 十分重 要 的新 能 源 , 当前 开 发 利用 太 阳能 的 主 而 要方 式是 光 伏 发 电 , 关研 究 日益 深 入 ’ 相 。对 于光伏 发 电系统 而 言 , 中最 主要 的 问题 是 如 何提 其 高 系统 的发 电效 率 以及 整 个 系统 的工 作 稳定 性 , 目前 我 国的光伏 发 电水平 相对 于发达 国家 尚有一 定 差距 , 仍需 要投 入 大量 的研 究 。在 进行 真实 系统 的 实验 时 , 仅成本 高 , 不 而且 受 制 于 日射 强 度 、 境 温 环 度等 自然 条件 的限 制 , 多数 情 况 下难 以如 愿 达 到 大
充仿 真系 统 必 须 选 择 其 公 司 配 套 出 品 的处 理 器 板
卡 , 活 性 差 ; TL B支 持 多 种 工 业 标 准 , 与 灵 R —A 可
MA L B Sm l k MA RX / yt ul 无 缝 连 T A / i ui 、 T I x S s mb i n e d
1 光 伏 模 拟 器
光伏模 拟 器是 以光 伏 电池 的数 学模 型为 基 础 , 将普 通 的电源转 换 成特 殊 电源 , 其 能 够按 照 光 伏 使
实 时系统 , 必须 在仿真 前准 备大量 数据 文件 , 不支 持
仿真 过 程 的 在 线 参 数 修 改 ; uo i 运 行 于 U i、 E rSm nx
性实 验 时摆脱 日照 强度 、 境 温度 等 自然条 件 的影 环 响 。然后 , 建立 单级式 光伏 并 网系统仿 真模 型 , 将 并 整个 系 统 在 R —A TL B环境 中转 化 为 实 时仿 真 模 型 , 模拟 系统 在外部 光 照 发 生变 化 时 系 统 的 响应 , 以对
基于RT-LAB的光伏发电实时仿真系统概要
基于RT-LAB的光伏发电实时仿真系统光伏发电作为清洁可再生能源正在快速发展,相关问题的研究也在不断深入。
在室内研究光伏发电系统,尤其是大功率的光伏发电系统时,若采用真实的光伏电池进行实验研究,很容易受光照、温度等自然环境和现场条件的限制。
针对这一问题,本文利用先进的实时仿真软件,搭建了半实物仿真平台,并对单级式光伏发电系统进行了实时仿真建模和分析。
论文首先概述了国内外光伏发电发展现状,阐述了研究光伏发电实时仿真系统的必要性。
随后,建立了光伏模拟器的数学模型和控制器模型。
利用传递函数和波特图对控制器参数进行理论分析,并对控制器的参数进行优化。
通过软件仿真和实验,将理论得到的控制器参数和经验获得的PI控制参数进行实验对比。
实验结果证明,用频率特性法进行控制参数设计更加合理。
然后,利用RT-LAB实时仿真平台,结合DSP控制器以及光伏模拟器硬件,分别建立硬件在回路模型和快速控制模型,并将实验结果分别与MATLAB仿真的结果进行对比分析。
实验证明,该模拟器的工作特性与所模拟的光伏电池输出特性相吻合,并能够动态模拟负载小范围变化的工作情况。
最后,本文利用光伏模拟器代替传统的光伏电池,建立了单级式光伏并网发电系统,在RT-LAB仿真平台中搭建实时仿真模型,对系统进行了仿真研究。
该实验平台不仅克服了实物系统受光照与温度现实条件的限制,同时可以兼顾硬件环境对实验的影响,弥补了全数字仿真的不足,为室内进行大功率光伏发电系统的实验研究提供了一个良好的平台。
同主题文章[1].王耀,金焘,张荣,陈次祥,刘莉飞. PWM整流器硬件在环实时仿真系统研究' [J]. 船舶工程. 2010.(02)[2].王爽心,朱衡君,段新会,刘如九,马铃. 电站汽轮机控制实时仿真系统开发与应用' [J]. 北京交通大学学报. 2004.(04)[3].杨克俭,刘舒燕. 关于内河船舶驾驶实时仿真系统的探讨' [J]. 交通科技. 1999.(04)[4].黄武忠,钟庆,张尧. 电力系统实时仿真系统可信度研究' [J]. 广东电力. 2009.(01)[5].郭海松,张文军. 主战飞机战伤后可重构在环实时仿真系统' [J]. 航空维修与工程. 2005.(01)[6].陈静,邹洁. 基于dSPACE的温度预测控制仿真试验研究' [J]. 武汉理工大学学报. 2006.(06)[7].贺慧英,李红江,沈建清. 变流机组在船舶电力实时仿真系统中的实现' [J]. 电机与控制应用. 2007.(05)[8].邓守业. 实时仿真管理程序(SFZG)' [J]. 火力与指挥控制. 1984.(03)[9].温希东,韩希昌,傅汉成,厉国铭. 分布控制系统实验研究装置' [J]. 华东电力. 1994.(06)[10].张锐,姜长生,卢伟健. 采用DSP实现的神经网络实时仿真系统' [J]. 南京航空航天大学学报. 2002.(04)【关键词相关文档搜索】:电力电子与电力传动; 光伏模拟器; 参数优化;状态空间平均法; Buck电路; 单级式光伏并网系统; RT-LAB; 实时仿真【作者相关信息搜索】:北京交通大学;电力电子与电力传动;刘瑞芳;郑鹤玲;。
高性能电力实时仿真平台RT-LAB
高性能电力实时仿真平台RT-LAB王涛1,邹毅军1,年晓红2,胡毅1(1. 上海科梁信息工程有限公司,上海 200233; 2. 中南大学信息科学与工程学院,长沙 410075)摘要:阐述了PC机群、商业货架(COTS)及实时互联网络概念,介绍了基于分布式并行计算技术的电力实时仿真平台RT-LAB,从软件和硬件架构上对该平台的性能进行了详细描述。
探讨了实时仿真及其意义,分析了快速控制原型(RCP)、硬件在环测试(HIL)及电力系统纯数字实时仿真的意义、应用原理及系统构架,针对以上三个应用领域,分别介绍了具体应用项目。
实际应用表明:实时仿真意义重大,RT-LAB平台仿真结果准确,计算性能强大,开辟了未来电力系统设计、规划、验证的新思路,有效的缩短了研究和产业化过程。
关键词:PC集群;实时仿真;快速控制原型;硬件在环;1. 引言伴随电力学科的飞速发展,电力电子及电力系统的复杂性日益增强,而另一方面市场竞争又在降低产品成本和加快上市时间上对行业人员提出了更高的要求。
大量的系统仿真因此变得不可替代且正在发挥越来越重要的作用。
实时仿真具有将硬件直接接入控制或测试回路的优势,使整个开发过程从本质上更接近于实际,具有更高的置信度[1];并且大大缩短了开发周期,具有较高的经济价值。
因此实时仿真技术及其应用近年来得到了广泛的重视。
电力系统实时仿真方面的研究与应用已经开展多年,领域内早期的产品极大的推动了研究、测试的发展。
但这些产品有其固有的缺陷:1)价格昂贵;2)复杂的专用硬件;3)传统Tusin积分方法易于引起数值振荡问题[2]。
本文所介绍的电力系统实时仿真平台采用PC集群技术,基于以RT-LAB为旗舰的一系列软件工具包,对上述几个问题进行了解决。
以较高的性价比为电力领域的控制算法设计、控制器测试及系统级仿真提供了完整的解决方案。
2.PC集群架构计算能力是衡量一个国家国力和科学研究能力的重要指标,一个国家和地区的计算能力现在已经成为一种重要的战略资源,不亚于石油和其他战略物资的重要性。
基于RT-LAB兆瓦级PMSG实时仿真及最大功率跟踪
(School of Electrical Engineering,Guangxi University,Nanning 53000ห้องสมุดไป่ตู้,China)
Abstract:In order to make full use of wind energy,the maximum power point tracking(MPPT)of wind power genera—
目前 ,对 风 力 发 电 系 统 最 大 功 率 点 跟 踪 (MPPT)的研究大多 只进行 了全仿 真分析 ,不 能真实 反映风力发电系统最大功率点跟踪的实况 ,而且 ,这样 分 析研 究会 显 得过 于 理想 ,直 接在 真 实 系统 中应 用 可 能带来很大风险。另外 ,由于永磁直驱风力发电机 多 为几兆瓦 ,在对其进行稳定性分析时 ,很难进行真实系 统 的实 验 。
搭 建 了 2.5MW 直 驱式 永磁 风 力发 电 系统仿 真模 型 ,对不 同风速 条 件 下 ,直驱 式永磁 风 力发 电 系统 工作 情 况进 行
了实时仿 真 实验 ,根 据 实验 结果分 析 了不 同风 速 下 最 大功 率跟 踪 的特 性 ,研 究 结果 表 明 :基 于 RT—LAB建 立 的
本文 对 风力发 电系 统 的最 大 功率 点 跟 踪 (MPPT)
《电气开 关》【2018.No.41
进行 了研 究 。基 于 RT—LAB 实 时 仿 真 平 台 搭 建 了 2.5MW 直驱 式永磁 风 力发 电系 统仿 真模 型 ,对 不 同风 速条 件 下 ,直 驱式 永 磁风 力 发 电系 统 工 作情 况 进 行 了 实 时仿 真实 验 ,根据 实验 结 果 分 析 了不 同 风速 下 最 大 功率 跟 踪 的特性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
万方数据
万方数据
万方数据
基于RT-LAB的光伏发电系统实时仿真
作者:郑鹤玲, 葛宝明, 毕大强, ZHENG He-ling, GE Bao-ming, BI Da-qiang
作者单位:郑鹤玲,葛宝明,ZHENG He-ling,GE Bao-ming(北京交通大学电气工程学院,北京,100044),毕大强,BI Da-qiang(电力系统国家重点实验室,清华大学电机系,北京,100084)
刊名:
电工电能新技术
英文刊名:ADVANCED TECHNOLOGY OF ELECTRICAL ENGINEERING AND ENERGY
年,卷(期):2010,29(4)
1.姜东红;吴根水;屠宁RT-LAB软件在半实物仿真系统中的应用[期刊论文]-测控技术 2008(04)
2.常晓飞;符文星;闫杰RT-LAB在半实物仿真系统中的应用研究[期刊论文]-测控技术 2008(10)
3.周德佳;赵争鸣;袁立强基于同步矢量电流比例-积分控制器的光伏并网系统[期刊论文]-清华大学学报 2009(01)
4.吴理博;赵争鸣;刘建政单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[期刊论文]-中国电机工程学报 2006(06)
5.茆美琴;余世杰;苏建徽带有MPPT功能的光伏阵列Mat lab通用仿真模型 2005(05)
6.苏建徽;余世杰;赵为数字式太阳电池阵列模拟器[期刊论文]-太阳能学报 2002(01)
7.苏建徽;余世杰;赵为硅太阳电池工程用数学模型[期刊论文]-太阳能学报 2001(04)
8.杜柯;段善旭;刘飞基于Mat lab的一种光伏阵列模拟器的研究[期刊论文]-通信电源技术 2006(03)
9.张熙霖基于DSP2407的光伏方阵仿真电源的设计与研究 2004
10.Matsui Mikihiko;Kitano Tatsuya;Xu Dehong A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC Link 1999
11.吴理博;赵争鸣;刘建政用于太阳能照明系统的智能控制器[期刊论文]-清华大学学报 2003(09)
12.禹华军;潘俊民无功补偿技术在光伏并网发电系统孤岛检测中的应用[期刊论文]-电工电能新技术 2005(03)
13.杨海柱;金新民并网光伏系统最大功率点跟踪控制的一种改进措施及其仿真和实验研究[期刊论文]-电工电能新技术 2006(01)
14.Schaefer J C Review of photovoltaic power plant performance and economics[外文期刊] 1990(02)
本文链接:/Periodical_dgdn201004014.aspx。