浙江省温州市瓯海区2019年中考数学一模试卷(解析版)
2019年浙江省温州市三县(市)中考数学一模试卷(解析版)
2019年浙江省温州市三县(市)中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.给出四个数0,,1,-2,其中最大的数是()A. 0B.C. 1D.2.有一个正方形原料,挖去一个小正方体,得到如图所示的零件,则这个零件的主视图是()A.B.C.D.3.一个不透明的盒子里有3个红球、5个白球,他们除颜色外其他都一样,先从盒子中随机取出一个球,则取出的球是白球的概率是()A. B. C. D.4.计算2a3•3a3的结果是()A. B. C. D.5.不等式3(x-2)≥x+4的解集是()A. B. C. D.6.如图,C,D是⊙O上位于直径AB异侧的两点,若∠ACD=20°,则∠BAD的度数是()A.B.C.D.7.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()A. B. C. D.8.已知反比例函数y=-,点A(a-b,2),B(a-c,3)在这个函数图象上,下列对于a,b,c的大小判断正确的是()A. B. C. D.9.如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是()A. 2B.C.D. 410.在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕AF交BC边于点F;②把△ADH翻折,点D落在AE边长的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则的值是()A.B.C.D.二、填空题(本大题共6小题,共30.0分)11.因式分解:2a2+4a=______.12.函数y=的自变量x的取值范围是______.13.若一组数据4,a,7,8,3的平均是5,则这组数据的中位数是______.14.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是______.(结果保留π)15.图1是一款优雅且稳定的抛物线型落地灯,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,点最高点C距灯柱的水平距离为1.6米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为______米.16.如图,在Rt△ABC中,∠ACB=90°,sin∠BAC=,点D在AB的延长线上,BD=BC,AE平分∠BAC交CD于点E.若AE=5,则点A到直线CD的距离AH为______,BD的长为______.三、计算题(本大题共1小题,共10.0分)17.(1)计算:(-2)2+-(2)0.(2)化简:(a+2)(a-2)-a(a-4).四、解答题(本大题共7小题,共70.0分)18. 已知:如图,在▱ABCD 中,DE 平分∠ADB ,交AB 于E ,BF 平分∠CBD ,交CD 于F .(1)求证:△ADE ≌△CBF ;(2)当AD 与BD 满足什么关系时,四边形DEBF 是矩形?请说明理由.19. 某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解C .基本了解D .不了解.根据调查统计结果,回执了不完整的三种统计图表.请结合统计图表,回答下列问题: (1)本次参与调查的市民共有______人,m =______,n =______. (2)统计图中扇形D 的圆心角是______度.(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和一名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).n%20. 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点.如图,已知整点A (2,2),B (4,1),请在所给网格区域(含边界)上找到整点P .(1)画一个等腰三角形PAB ,使点P 的纵坐标比点A 的横坐标大1. (2)若△PAB 是直角三角形,则这样的点P 共有______个.21. 如图,点E 在△ABC 的边AB 上,过点B ,C ,E 的圆O 切AC 于点C ,直径CD 交BE 于点F ,连接BD ,DE .已知∠A =∠CDE ,AC =2 ,BD =1.(1)求圆O 的直径;(2)过点F 作FG ⊥CD 交BC 于点G ,求FG 的长.22. 如图,抛物线y =-x 2+4x -1与y 轴交于点C ,CD ∥x 轴交抛物线于另一点D ,AB ∥x 轴交抛物线于点A ,B ,点A 在点B 的左侧,且两点均在第一象限,BH ⊥CD 于点H .设点A 的横坐标为m . (1)当m =1时,求AB 的长;(2)若AH = (CH -DH ),求m 的值.23.现有一块矩形地皮,计划共分九个区域.区域甲、乙是两个矩形主体建筑,区域丙为梯形停车场,区域①~④是四块三角形绿化区,△AEL和△CIJ为综合办公区(如图所示).∠HEL=∠ELI=90°,MN∥BC,AD=220米,AL=40米,AE=IC=30米.(1)求HI的长;(2)若BG=KD,求主体建筑甲和乙的面积和;(3)设LK=3x,绿化区②的面积为S平方米.若要求绿化区②与④的面积之差不少于1200平方米,求S关于x的函数表达式,并求出S的最小值.24.如图,AB是半圆O的直径,半径OC⊥AB,OB=4,D是OB的中点,点E是弧BC上的动点,连接AE,DE.(1)当点E是弧BC的中点时,求△ADE的面积;(2)若tan∠AED=,求AE的长;(3)点F是半径OC上一动点,设点E到直线OC的距离为m,①当△DEF是等腰直角三角形时,求m的值;②延长DF交半圆弧于点G,若弧AG=弧EG,AG∥DE,直接写出DE的长______.答案和解析1.【答案】B【解析】解:∵,∴最大的数是,故选:B.根据实数的大小比较,即可解答.本题考查了实数的大小比较,解决本题的关键是熟记实数的大小比较.2.【答案】A【解析】解:该几何体的主视图如下:故选:A.根据从正面看得到的图形是主视图.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】C【解析】解:∵盒子里有3个红球、5个白球,共8个球,∴从盒子中随机取出一个球,取出的球是白球的概率是,故选:C.让白球的个数除以球的总个数即为所求的概率.此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.【答案】C 【解析】解:原式=6a6.故选:C.根据单项式乘单项式的运算法则进行运算即可.本题考查了单项式乘单项式的知识,属于基础题.5.【答案】A【解析】解:3(x-2)≥x+43x-6≥x+4,3x-x≥4+6,2x≥10,x≥5,故选:A.去括号、移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.6.【答案】D【解析】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ACD=20°,∴∠DCB=70°,由圆周角定理得,∠BAD=∠DCB=70°,故选:D.根据圆周角定理得到∠ACB=90°,求出∠DCB=70°,根据圆周角定理解答.本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,直径所对的圆周角是直角是解题的关键.7.【答案】C【解析】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:=.故选:C.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.8.【答案】B【解析】解:∵点A(a-b,2),B(a-c,3)在函数y=-的图象上,∴2(a-b)=-2,3(a-c)=-2,∴a-b=-1<0,a-c=-<0,∴a<b,a<c,∵-b+c=-<0,∴c<b,∴a<c<b.故选:B.利用反比例函数图象上点的坐标特征得到2(a-b)=-2,3(a-c)=-2,则a-b=-1<0,a-c=-<0,再消去a得到-b+c=-<0,然后比较a、b、c的大小关系.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.【答案】B【解析】解:∵直线y=-x+2分别交x轴、y轴于点A,B,∴OA=OB=2.在Rt△BOA中,利用勾股定理求得BA=.又△OBC周长=2+BC+OC,△OAD周长=2+OD+AD,由△OBC和△OAD的周长相等,可得BC+OC=OD+AD.∵OD的垂直平分线交线段AB于点C,∴OC=CD,则OC=CA+AD.∴BC+CA+AD=OD+AD,整理得BC+CA=OD,即BA=OD.∴OD=.故选:B.根据直线解析式可得OA和OB长度,利用勾股定理可得AB长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB.本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理.10.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=10-6=4,在Rt△ADE中,DE===8,∴EC=10-8=2,设BF=EF=x,在Rt△EFC中:x2=22+(6-x)2,∴x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,∴y=3,∴EH=5,∴==,故选:D.依据折叠的性质以及勾股定理可得DE==8,即可得到EC=10-8=2,设BF=EF=x,在Rt△EFC中:x2=22+(6-x)2,求得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,求得y=3,即可得到的值.本题考查矩形的性质,翻折变换等知识,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.11.【答案】2a(a+2)【解析】解:原式=2a(a+2).观察发现,系数的最大公约数是2,相同字母的最低次幂是a.故公因式是2a.本题考查了提公因式法分解因式,掌握找公因式的正确方法是关键,提取公因式后,剩下的注意根据幂运算的法则进行.12.【答案】x≥-3【解析】解:根据题意得:x+3≥0, 解得:x≥-3. 故答案为x≥-3.根据二次根式有意义的条件,被开方数大于或等于0,可以求出x 的范围.本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 13.【答案】4【解析】解:由题意可知,(4+a+7+8+3)÷5=5, a=3,这组数据从小到大排列3,3,4,7,8, 所以,中位数是4.故答案是:4.先根据平均数的定义求出x 的值,然后根据中位数的定义求解. 考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数. 14.【答案】【解析】解:过点O 作OD ⊥BC 于点D,交于点E ,连接OC ,则点E 是的中点,由折叠的性质可得点O 为的中点,∴S 弓形BO =S 弓形CO ,在Rt △BOD 中,OD=DE=R=2,OB=R=4, ∴∠OBD=30°, ∴∠AOC=60°, ∴S 阴影=S 扇形AOC ==.故答案为:.过点O 作OD ⊥BC 于点D,交于点E ,则可判断点O 是的中点,由折叠的性质可得OD=OE=R=2,在Rt △OBD 中求出∠OBD=30°,继而得出∠AOC ,求出扇形AOC 的面积即可得出阴影部分的面积.本题考查了扇形面积的计算,解答本题的关键是作出辅助线,判断点O 是的中点,将阴影部分的面积转化为扇形的面积.15.【答案】2.88【解析】解:设y=a (x-1.6)2+2.5.由AB 得高为1.5米∴把x=0,y=1.5代入上式得,1.5=a (0-1.6)2+2.5.解得,a=-.∴y=-(x-1.6)2+2.5.又∵DE 的高为1.86米 ∴当y=1.86时,则-(x-1.6)2+2.5=1.86解得,x=2.88或x=0.32(舍去) 故答案为:2.88.根据题意可以把AB 所在的直线当作y 轴,AE 所在的直线当作x 轴建立直角坐标系,由防滑螺母C 为抛物线支架的最高点,灯罩D 距离地面1.86米,点最高点C 距灯柱的水平距离为1.6米,可以知道抛物线的顶点坐标C (1.6,2.5),直接设出顶点式y=a (x-1.6)2+2.5,然后用待定系数法将(0,1.5)代入解析式解得a 值,再次将D 点到地面的高当作纵坐标代入解析式即可求出AE 的长,将不符合实际的取值舍去即可.本题考查了将二次函数的实际应用转化为二次函数图象的抽象能力以及用待定系数法求函数解析式与点的坐标的能力.16.【答案】5 2【解析】解:如图,作BM⊥CD于M.∵BC=BD,∴∠D=∠BCD,∵AH⊥DH,∴∠H=∠ACB=90°,∴∠ACH+∠HAC=90°,∠ACH+∠BCD=90°,∴∠HAC=∠BCD=∠D,∵AE平分∠CAB,∴∠EAC=∠EAD,∵∠HAE=∠HAC+∠EAC,∠AEH=∠D+∠EAD,∴∠HAE=∠AEH,∴HA=HE,∵AE=5,∴AH=HE=5,∵sin∠BAC==,设BC=BD=2k,AB=3k,则AC=k,∵∠H=∠H,∠HAC=∠D,∴△HAC∽△HDA,∴AH2=HC•HD,∵∠BCM=∠HAC,∠H=∠BMC=90°,∴△AHC∽△CMB,∴=,∴=,∴CM=2,∵BC=BD,BM⊥CD,∴CM=DM=2,∴CD=4,∴25=HC•(HC+4),∴HC=或-5(舍弃),∴AC==,∴k=,∴k=,∴BD=CB=2k=2,故答案为5,2.证明HA=HE,理由等腰直角三角形的性质即可求出AH,由sin∠BAC==,设BC=BD=2k,AB=3k,则AC=k,证明△HAC∽△HDA,可得AH2=HC•HD,由△AHC∽△CMB,可得=,推出=,推出CM=2,CD=4,可得25=HC•(HC+4),求出CH即可解决问题.本题考查解直角三角形,角平分线的定义,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.17.【答案】解:(1)原式=4+2-1=3+2.(2)原式=a2-4-a2+4a=4a-4.【解析】(1)先计算负整数指数幂,二次根式的化简,零指数幂,然后计算加减法.(2)利用平方差公式和单项式乘多项式法则解答.考查了平方差公式,实数的运算,单项式乘多项式等知识点,属于基础题.18.【答案】证明:(1)∵▱ABCD,∴AD=BC,∠A=∠C,AD∥BC,∴∠ADB=∠CBD,∵DE平分∠ADB,BF平分∠CBD,∴∠ADE=∠CBF,在△ADE与△CBF中,∴△ADE≌△CBF(ASA),(2)当AD=BD时,∵DE平分∠ADB,∴DE⊥BE,∴∠DEB=90°,∵△ADE≌△CBF,∴DE=BF,∵∠EDB=∠DBF,∴DE∥BF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴平行四边形DEBF是矩形.【解析】(1)根据平行四边形的性质得出AD=BC,∠A=∠C,AD∥BC,进而得出∠ADE=∠CBF,利用全等三角形的判定证明即可;(2)利用矩形的判定解答即可.本题考查了平行四边形的性质和判定,全等三角形的判定的应用,主要考查学生的推理能力,注意:平行四边形的对边平行,对角相等..19.【答案】400 15 35 126【解析】解:(1)本次参与调查的市民共有:20÷5%=400(人),m%=×100%=15%,则m=15,n%=1-5%-45%-15%=35%,则n=35;故答案为:400,15,35;(2)扇形统计图中D部分扇形所对应的圆心角是360°×35%=126°.故答案为:126;(3)根据题意画图如下:共有6种等可能的结果数,其中恰好选中1男1女的结果数为4种,所以恰好选中1男1女的概率是=.(1)利用本次参与调查的市民人数=A等级的人数÷对应的百分比;用比较了解的人数除以总人数,求出m的值,再用整体1减去其它对雾霾的了解程度的百分比,从而求出n的值.(2)利用扇形统计图中D部分扇形所对应的圆心角=360°×D类的百分比.(3)画树状图展示所有6种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.【答案】5【解析】解:(1)如图1所示,点P与点P′即为所求.(2)如图2所示,这样的点P有5个,故答案为:5.(1)由点P的纵坐标比点A的横坐标大1知点P的纵坐标为3,再根据整点的概念与等腰三角形的定义作图即可得;(2)根据直角三角形的概念,结合整点概念作图可得.本题主要考查作图-应用与设计作图,解题的关键是掌握等腰三角形的概念、直角三角形的判定与性质.21.【答案】解:(1)∵CD是⊙O的直径,∴∠CBD=90°,∵∠A=∠CDE,∠CDE=∠CBA,∴∠CAB=∠CBA,∴BC=AC=2,∵BD=1,∴⊙O的直径CD=;(2))如图,∵过点B,C,E的圆O切AC于点C,直径CD交BE于点F,∴AC⊥CD,∵FG⊥CD,∴FG∥AC,∴∠GFB=∠CAB=∠CBA,∴FG=GB=x,∵sin∠BCD=,∴,即CG=3FG=3x,∵BC=2,∴x+3x=2,∴FG=x=.【解析】(1)因为CD是⊙O的直径,所以∠CBD=90°,因为∠A=∠CDE=∠CBA,可得BC=AC=2,因为BD=1,在Rt△CBD中,用勾股定理即可得出⊙O的直径;(2)由题意,可得FG∥AC,所以∠GFB=∠CAB=∠CBA,即FG=GB=x,根据sin∠BCD=,得CG=3FG=3x,由BC=2可列方程:x+3x=2,解得x的值即可得出FG的长.本题考查圆的切线的性质,圆周角定理,锐角三角函数的定义,等腰三角形的判定和性质,解题的关键是掌握圆的切线的性质.22.【答案】解:(1)∵m=1,∴A的横坐标为1,代入y=-x2+4x-1得,y=2,∴A(1,2),把y=2代入y=-x2+4x-1得,2=-x2+4x-1,解得x1=1,x2=3,∴B(3,2),∴AB=3-1=2.(2)∵AB∥x轴交抛物线于点A,B,∴A、B两点关于对称轴对称,∴CH-DH=AB,∵AH=(CH-DH),∴AH=AB,∴=,∴∠BAH=45°,∴AB=BH,由A在抛物线上,则设A(m,-m2+4m-1),则B(-m2+5m,-m2+4m-1).∴对称轴h=-=∴整理得,m2-6m+4=0解得,m=3+或m=3-又∵A点在对称轴左边∴m<2∴m=3-【解析】(1)因为A在抛物线上,则把m=1代入二次函数解析式y=-x2+4x-1解得y=2,令-x2+4x-1=2解得的两个根分别是A、B两点的横坐标.由于B点在A点右边,用B点横坐标减去A点横坐标所得的数值就是AB线段的长度.(2)根据题意以及抛物线的对称性分析可得AB=CH-DH,若AH=(CH-DH),实际上AH=AB,此时△ABH应为等腰直角三角形,∠B为直角,AB=BH,用待定系数法设点A的坐标为(m,-m2+4m-1),再利用等腰三角形边比数量关系设出B点坐标,由于A、B两点关于对称轴直线x=2对称,建立方程求解即可得m的值.本题考查了数形结合的思想以及用待定系数法设点的坐标并建立方程求解的能力.23.【答案】解:(1)过H作HP⊥LI于点P,如图1所示,则四边形EHPL为矩形,HP=EL=,∵∠A=∠B=∠EHP=90°,∴∠PHI+∠BHE=∠BHE+∠BEH=∠BEH+∠AEL=∠AEL+∠ALE=90°,∴∠ALE=∠PHI,∴cos∠PHI=cos∠ALE=,∴HI=,答:HI的长度为米;(2)设BG=KD=x米,则GH=220-x--30=-x,LK=220-40-x=180-x,FM=x,由互余角性质,易证∠KLN=∠AEL=∠EMF=∠MHG,∴tan∠KLN=tan∠EMF=tan∠MHG=tan∠AEL=,∴KN=LK•tan∠KLN=240-x,EF=MF•tan∠EMF=x,MG=GH•tan∠MHG=170-x,∵MN∥BC∥AD,∴AF=KN,即30+x=240-x,解得,x=,∴主体建筑甲和乙的面积和为:BG•GM+DK•KN=×(170-×)+×(240-×)=15750,答:主体建筑甲和乙的面积和15750平方米;(3)∵LK=3x,∴KN=LK•tan∠KLN=3x×=4x,NJ=KD=220-40-3x=180-3x,∴BG=FM=220-NJ-MN=220-180+3x-=3x-,∴GH=220-BG-HI-IC=220-3x+--30=150-3x,∴GM=GH•tan∠GHM=200-4x,∵绿化区②与④的面积之差不少于1200平方米,∴NJ•GM-GH•GM≥1200,即(180-3x)(200-4x)-(150-3x)(200-4x)≥1200,解得,x≤30,∵S=NJ•GM=(180-3x)(200-4x)=(x-55)2-25,∴当x<55时,S随x的增大而减小,∴当x=30时,S有最小值为:S=(30-55)2-25=600.【解析】(1)过H作HP⊥LI于点P,得四边形EHPL为矩形,得HP=EL=50米,再证∠PHI=∠ALE,由cos∠ALE便可求得HI;(2)设BG=KD=x米,用x表示KL、GH,进而通过三角函数用x表示KN、MG、EF,再由AE+EF=KN,列出x的方程,求出x的值便可;(3)由三角函数用x表示KN,进而表示FM、GH、MG,再已知条件“绿化区②与④的面积之差不少于1200平方米”列出不等式,求出x的取值范围,进而由三角形面积公式表示出S与x的函数关系式,最后由函数性质求出最小值.本题是矩形的综合题,主要考查了矩形的性质,解直角三角形的性质,二次函数的性质,不等式的性质,矩形的面积,三角形的面积,第一小题关键是构建直角三角形,运用三角函数代换解决问题;第二小题关键是由AF=KN得出x的方程,用方程的思想解决问题;第三小题建立二次函数,用二次函数的性质求最小值.难度较大.24.【答案】【解析】解:(1)如图,作EH⊥AB,连接OE,EB设DH=a,则HB=2-a,OH=2+a∵点E是弧BC中点∴∠COE=∠EOH=45°∴EH=OH=2+a在Rt△AEB中,EH2=AH•BH(2+a)2=(6+a)(2-a)解得a=∴a=S△ADE =(2)如图,作DF⊥AE,垂足为F,连接BE设EF=2x,DF=3x∵DF∥BE∴=∴==3∴AF=6x在Rt△AFD中,AF2+DF2=AD2(6x)2+(3x)2=(6)2解得x=AE=8x=(3)①当点D为等腰直角三角形直角顶点时,如图设DH=a可证△ODF≌△EDH∴OD=EH=2在Rt△ABE中,EH2=AH2•BH2(2)2=(6+a)2•(2-a)2解得a=±m=当点E为等腰直角三角形直角顶点时,如图可证△EFG≌△EDH设DH=a,则GE=a,EH=CG=2+a在Rt△ABE中,EH2=AH2•BH2(2+a)2=(6+a)2+(2-a)2解得a=∴m=当点F为等腰直角三角形直角顶点时,如图可证△EFM≌△ODF设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4-a)解得a=±m=②可证△BDE为等腰三角形BD=BE=2∵△AOF~△ABE∴OF=1在Rt△OFA中,由勾股定理可得AF=GF=3勾股定理可得AG=∵△AOG~△DEB∴=∴DE=(1)因为点E是弧BC的中点,连接OE,BE,利用45°构造直角三角形,利用△AEB的射影定理结论建立方程即可.(2)条件中有三角函数,所以作DF⊥AE构造直角三角形,接着出现平行相似,利用AD与AB之比,表示AF,用△AFD建立勾股关系方程.(3)①分别以D、E、F为直角端点分类讨论,用K型全等和射影定理结论建立方程求解.②需要导角证明△BDE为等腰三角形,用勾股定理求出AG,用△AOG~△DEB求出DE本题考查了圆的基本模型,射影定理的结论应用,K型全等模型,等腰直角三角形分类讨论以及平行相似,考查方式灵活,是一道很好的压轴题.第11页,共11页。
浙江省温州市2019-2020学年数学中考一模试卷二(含答案)
浙江省温州市2019-2020学年数学中考⼀模试卷⼆(含答案)浙江省温州市2019-2020学年数学中考⼀模试卷(含答案)⼀、单选题1.2的倒数是()A. B. ﹣2 C. ﹣ D. 2【答案】A【考点】有理数的倒数2.如图所⽰的⽀架是由两个长⽅体构成的组合体,则它的主视图是()A. B. C. D.【答案】D【考点】简单组合体的三视图3.如图是某⼿机店去年8﹣12⽉份某品牌⼿机销售额统计图,根据图中信息,可以判断相邻两个⽉该品牌⼿机销售额变化量最⼤的是()A. 8⽉⾄9⽉B. 9⽉⾄10⽉C. 10⽉⾄11⽉D. 11⽉⾄12⽉【答案】C【考点】折线统计图,利⽤统计图表分析实际问题4.⼀次函数y=﹣2x+5的图象与y轴的交点坐标是()A. (5,0)B. (0,5)C. (,0)D. (0,)【答案】B【考点】⼀次函数图像与坐标轴交点问题5.已知扇形半径为3,弧长为π,则它所对的圆⼼⾓的度数为()A. 120°B. 60°C. 40°D. 20°【答案】B【考点】弧长的计算6.⽤配⽅法解⽅程2x2﹣x﹣1=0,变形结果正确的是()A. (x﹣)2=B. (x﹣)2=C. (x﹣)2=D. (x﹣)2=【答案】 D【考点】配⽅法解⼀元⼆次⽅程7.如图,直线l1∥l2,以直线l1上的点A为圆⼼、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A. 23°B. 46°C. 67°D. 78°【答案】B【考点】等腰三⾓形的性质8.某美术社团为联系素描,他们第⼀次⽤200元买了若⼲本单价相同的资料,第⼆次⽤来360元在同⼀商家买同样的资料,这次商家每本优惠10%出售,结果⽐上次多买了10本.求资料⼀本原价多少元?若设原价为每本x元,列⽅程正确的是()A. =10B. =10C. =10D. =10【答案】A【考点】分式⽅程的实际应⽤9.如图,甲是第七届国际数学教育⼤会(简称ICME~7)的会徽,会徽的主体图案是由如图⼄的⼀连串直⾓三⾓形演化⽽成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图⼄中的直⾓三⾓形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A. 3B. 4C. 5D. 6【答案】C【考点】勾股定理,探索图形规律10.如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记△ABM和△CDN的⾯积和为S,则四边形MQNP的⾯积为()A. SB. SC. SD. S【答案】C【考点】菱形的判定,矩形的性质,相似三⾓形的判定与性质⼆、填空题11.分解因式:a2﹣6a=________.【答案】a(a-6)【考点】提公因式法因式分解12.不等式2(x﹣1)≥x的解为________.【答案】x≥2【考点】解⼀元⼀次不等式13.如图所⽰,⼀只蚂蚁从A点出发到D,E,F处寻觅⾷物.假定蚂蚁在每个岔路⼝都等可能的随机选择⼀条向左下或右下的路径(⽐如A岔路⼝可以向左下到达B处,也可以向右下到达C处,其中A,B,C 都是岔路⼝).那么,蚂蚁从A出发到达E处的概率是________.【答案】【考点】概率的简单应⽤14.如图,将△ABC绕点A按逆时针⽅向旋转⾄△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC 于点D,E,已知AB=AC=5,BC=6,则DE的长为________.【答案】【考点】锐⾓三⾓函数的定义,旋转的性质15.现有⼀张五边形的钢板ABCDE如图所⽰,∠A=∠B=∠C=90°,现在AB边上取⼀点P,分别以AP,BP为边各剪下⼀个正⽅形钢板模型,所剪得的两个正⽅形⾯积和的最⼤值为________m2.【答案】14.5【考点】⼆次函数的最值,⼆次函数的实际应⽤-⼏何问题16.如图,点A在x轴的正半轴上,点B在反⽐例函数y= (k>0,x>0)的图象上,延长AB交该函数图象于另⼀点C,BC=3AB,点D也在该函数的图象上,BD=BC,以BC,BD为边构造?CBDE,若点O,B,E 在同⼀条直线上,且?CBDE 的周长为k,则AB的长为________.【答案】【考点】反⽐例函数的实际应⽤,反⽐例函数图象上点的坐标特征三、解答题17.(1)计算:20180﹣()﹣1+ .(2)化简:.【答案】(1)解:原式=1﹣2+2=2 ﹣1(2)解:原式=== .【考点】实数的运算,分式的加减法18.如图,在△ABC和△DCB中,∠BAC=∠CDB=90°,AB=DC,AC与BD交于点O.(1)求证:△ABC≌△DCB.(2)当∠DBC=30°,BC=6时,求BO的长.【答案】(1)证明:在△ABC和△DCB中,∠A=∠D=90°,,∴△ABC≌△DCB(HL)(2)解:∵∠BDC=90°,∠DBC=30°,BC=6,∴CD=3,BD=3 ,∵∠DOC=∠DBC+∠ACB=60°,∴OD= CD= ,∴OB=BD﹣OD=2 .【考点】直⾓三⾓形全等的判定,含30度⾓的直⾓三⾓形,勾股定理19.如图,在所给的⽅格纸中,每个⼩正⽅形的边长都是1,点A,B,C位于格点处,请按要求画出格点四边形.(1)在图甲中画出⼀个以点A,B,C,P为顶点的格点四边形,使其为中⼼对称图形;(2)在图⼄中画出⼀个以点A,B,C,P为顶点的格点四边形,使PC2+PB2=18.【答案】(1)解:如图甲所⽰,四边形APBC即为所求(2)解:如图⼄所⽰,四边形ABPC即为所求.【考点】勾股定理,作图﹣旋转20.为了保护视⼒,某学校开展了全校性的视⼒保健活动,活动前,随机抽取部分学⽣,检查他们的视⼒,结果如图所⽰,(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学⽣的视⼒,结果如表格所⽰.抽取的学⽣活动后视⼒频数分布表(1)此次调查所抽取的样本容量为________;(2)若视⼒达到4.8以上(含4.8)为达标,请估计活动前该校学⽣的视⼒达标率;(3)请选择适当的统计量,从两个不同的⾓度分析活动前后相关数据,并评价视⼒保健活动的效果.【答案】(1)50(2)解:视⼒达标率= ×100%=56%(3)解:①视⼒4.0≤x<4.2之间活动前有6⼈,活动后只有2⼈,⼈数明显减少;②活动前合格率36%,活动后合格率56%;视⼒保健活动的效果⽐较好.【考点】总体、个体、样本、样本容量,频数(率)分布表,频数(率)分布直⽅图21.如图,以AB为直径作⊙O,点C为⊙O上⼀点,劣弧CB沿BC翻折,交AB于点D,过A作⊙O的切线交DC的延长线于点E.(1)求证:AC=CD;(2)已知tanE= ,AC=2,求⊙O的半径.【答案】(1)证明:如图所⽰:∵点D与点D′关于CB对称,∴CD=CD′,∠DBC=∠D′BC,∴AC=CD′,∴AC=CD(2)解:∵AE为⊙O的切线,∴∠BAE=90°,∴∠E+∠ADC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵AC=CD,∴∠CAB=∠ADC,∴∠E=∠ABC,∴tanE=tan∠ABC= = ,∵AC=2,∴BC=4,则AB= ,∴⊙O的半径为.【考点】圆周⾓定理,切线的性质,锐⾓三⾓函数的定义22.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,它的对称轴与x轴交于点F,过点C作CE∥x轴交抛物线于另⼀点E,连结EF,AC.(1)求该抛物线的表达式及点E的坐标;(2)在线段EF上任取点P,连结OP,作点F关于直线OP的对称点G,连结EG和PG,当点G恰好落到y轴上时,求△EGP的⾯积.【答案】(1)解:把A(﹣1,0),C(0,3)两点代⼊抛物线y=﹣x2+bx+c中得:,解得:,∴该抛物线的表达式为:y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴是:x=1,∵CE∥x轴,∴点C与点E是对称点,。
2019年浙江省温州市中考数学试卷解析版
2019年浙江省温州市中考数学试卷解析版一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【解答】解:(﹣3)×5=﹣15;故选:A.2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.3.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.【解答】解:它的俯视图是:故选:B.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A .16B .13C .12D .23【解答】解:从中任意抽取1张,是“红桃”的概率为16, 故选:A .5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人【解答】解:调查总人数:40÷20%=200(人), 选择黄鱼的人数:200×40%=80(人), 故选:D .6.(4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( ) 近视眼镜的度数y (度) 200 250 400 500 1000镜片焦距x (米) 0.50 0.40 0.25 0.20 0.10A .y =100xB .y =x100C .y =400xD .y =x400【解答】解:由表格中数据可得:xy =100, 故y 关于x 的函数表达式为:y =100x. 故选:A .7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32πB .2πC .3πD .6π【解答】解:该扇形的弧长=90⋅π⋅6180=3π. 故选:C .8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.95sinα米B.95cosα米C.59sinα米D.59cosα米【解答】解:作AD⊥BC于点D,则BD=32+0.3=95,∵cosα=BD AB,∴cosα=95 AB,解得,AB=95cosα米,故选:B.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D .10.(4分)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a ﹣b )=a 2﹣b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则S 1S 2的值为( )A .√22B .√23C .√24D .√26【解答】解:如图,连接ALGL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH =2−b 2 ∵点A ,L ,G 在同一直线上,AM ∥GN , ∴△AML ∽△GNL , ∴AM GN=ML NL, ∴a+b a−b=a−b b,整理得a =3b ,∴S 1S 2=12⋅(a−b)⋅√a 2−b 2a 2−b 2=2√2b 28b 2=√24,故选:C .二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:m 2+4m +4= (m +2)2 .【解答】解:原式=(m +2)2. 故答案为:(m +2)2.12.(5分)不等式组{x +2>3x−12≤4的解为 1<x ≤9 .【解答】解:{x +2>3①x−12≤4②,由①得,x >1, 由②得,x ≤9,故此不等式组的解集为:1<x ≤9. 故答案为:1<x ≤9.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 90 人.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人), 故答案为:90.14.(5分)如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 在优弧(EDF ̂)上,若∠BAC =66°,则∠EPF 等于 57 度.【解答】解:连接OE ,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为12+8√2 cm.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI =2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=√2x,IK=√2x﹣x,∵Rt△CIK中,(√2x﹣x)2+x2=22,解得x2=2+√2,又∵S菱形BCOI=IO×CK=12IC×BO,∴√2x2=12×2×BO,∴BO=2√2+2,∴BE=2BO=4√2+4,AB=AE=√2BO=4+2√2,∴△ABE的周长=4√2+4+2(4+2√2)=12+8√2,故答案为:12+8√2.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5√3)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为4分米.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=12∠COD=30°,∴QM=OP=OC•cos30°=5√3(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=12OA=5(分米),∴AM=AQ+MQ=5+5√3.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2√3(分米),在Rt△FKE中,EK=2−FK2=2√6(分米)∴BE=10﹣2﹣2√6=(8﹣2√6)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2√3(分米),在Rt△FJE′中,E′J=√62−(2√3)2=2√6,∴B′E′=10﹣(2√6−2)=12﹣2√6,∴B′E′﹣BE=4.故答案为5+5√3,4.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|−√9+(1−√2)0﹣(﹣3).(2)x+4x+3x −13x+x.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式=x+4−1 x2+3x=x+3x(x+3)=1x.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个) 9 10 11 12 13 15 16 19 20 工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【解答】解:(1)x =120×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为12+122=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性; 当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性; 当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性; ∴定额为11个时,有利于提高大多数工人的积极性.20.(8分)如图,在7×5的方格纸ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A ,B ,C ,D 重合.(1)在图1中画一个格点△EFG ,使点E ,F ,G 分别落在边AB ,BC ,CD 上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且MP =NQ .【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.21.(10分)如图,在平面直角坐标系中,二次函数y=−12x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.【解答】解:(1)令y =0,则−12x 2+2x +6=0, 解得,x 1=﹣2,x 2=6, ∴A (﹣2,0),B (6,0),由函数图象得,当y ≥0时,﹣2≤x ≤6;(2)由题意得,B 1(6,m ),B 2(6﹣n ,m ),B 3(﹣n ,m ), 函数图象的对称轴为直线x =−2+62=2, ∵点B 2,B 3在二次函数图象上且纵坐标相同, ∴6−n+(−n)2=2,∴n =1,∴m =−12×(−1)2+2×(−1)+6=72, ∴m ,n 的值分别为72,1.22.(10分)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形. (2)当BE =4,CD =38AB 时,求⊙O 的直径长.【解答】(1)证明:连接AE , ∵∠BAC =90°,∴CF 是⊙O 的直径, ∵AC =EC , ∴CF ⊥AE ,∵AD 是⊙O 的直径, ∴∠AED =90°, 即GD ⊥AE , ∴CF ∥DG , ∵AD 是⊙O 的直径, ∴∠ACD =90°, ∴∠ACD +∠BAC =180°, ∴AB ∥CD ,∴四边形DCFG 是平行四边形; (2)解:由CD =38AB , 设CD =3x ,AB =8x , ∴CD =FG =3x , ∵∠AOF =∠COD , ∴AF =CD =3x , ∴BG =8x ﹣3x ﹣3x =2x , ∵GE ∥CF , ∴BE EC=BG GF=23,∵BE =4, ∴AC =CE =6, ∴BC =6+4=10,∴AB =√102−62=8=8x , ∴x =1,在Rt △ACF 中,AF =3,AC =6, ∴CF =√32+62=3√5, 即⊙O 的直径长为3√5.23.(12分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少. 【解答】解:(1)设成人有x 人,少年y 人, {x +y +10=32x =y +12, 解得,{x =17y =5,答:该旅行团中成人与少年分别是17人、5人; (2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元; ②设可以安排成人a 人,少年b 人带队,则1≤a ≤17,1≤b ≤5, 当10≤a ≤17时,若a =10,则费用为100×10+100×b ×0.8≤1200,得b ≤2.5, ∴b 的最大值是2,此时a +b =12,费用为1160元; 若a =11,则费用为100×11+100×b ×0.8≤1200,得b ≤54, ∴b 的最大值是1,此时a +b =12,费用为1180元;若a ≥12,100a ≥1200,即成人门票至少是1200元,不合题意,舍去; 当1≤a <10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P 在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm =17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【解答】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=2√5∵∠CDN=∠NEM,∠CND=∠MNE ∴△CDN∽△MEN,∴CNMN =CDEM=1,∴CN=MN=1,∴EN=√12+42=√17,∵S△ONE=12EN•OF=12ON•EM,∴OF=17=1217√17,由勾股定理得:EF=√OE2−OF2=(2√5)2−(121717)2=1417√17,∴tan∠EOF=EFOF=14√1717121717=76,∴nm =17×76=16,∵n=−12m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合, ∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动, ∴同理得:t =12时,s =√52, ∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,t =0时,s =6, 将{t =2s =2√5和{t =4s =5√5代入得{2k +b =2√54k +b =5√5,解得:{k =32√5b =−√5, ∴s =3√52t −√5, ∵s ≥0,t ≥0,且32√5>0,∴s 随t 的增大而增大, 当s =0时,3√52t −√5=0,即t =23,将{t =0s =0和{t =12s =√52代入得12k =√52,解得:{k =√5b =0, ∴s =√5x ,综上,s 关于t 的函数表达式为:s ={y =√5t(0≤t ≤23)y =3√52t −√5(23<t ≤4);②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB ,Rt △ABQ 3中,AQ 3=6,AB =4+8=12, ∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t , ∵cos ∠QBH =ABBQ 3=BHBQ =126√5=25√5, ∴BH =14﹣3t , ∴PB =28﹣6t , ∴t +28﹣6t =12,t =165; (ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5, ∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2,∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2, ∵∠HPQ =∠CDN , ∴tan ∠HPQ =tan ∠CDN =14, ∴2t ﹣2=14(7−32t),t =3019,(iii )由图形可知PQ 不可能与EF 平行, 综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是( ) A .﹣15B .15C .﹣2D .22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为( ) A .0.25×1018B .2.5×1017C .25×1016D .2.5×10163.(4分)某露天舞台如图所示,它的俯视图是( )A .B .C .D .4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .16B .13C .12D .235.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人6.(4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( ) 近视眼镜的度数y (度) 200 250 400 500 1000镜片焦距x (米) 0.50 0.40 0.25 0.20 0.10A .y =100xB .y =x100C .y =400xD .y =x4007.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32πB .2πC .3πD .6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )A .95sinα米 B .95cosα米 C .59sinα米 D .59cosα米9.(4分)已知二次函数y =x 2﹣4x +2,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a ﹣b )=a 2﹣b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则S 1S 2的值为( )A .√22B .√23C .√24D .√26二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:m 2+4m +4= . 12.(5分)不等式组{x +2>3x−12≤4的解为 .13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人.14.(5分)如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 在优弧(EDF ̂)上,若∠BAC =66°,则∠EPF 等于 度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB =∠AOE =90°,菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|−√9+(1−√2)0﹣(﹣3).(2)x+4x2+3x −13x+x2.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y=−12x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=38AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P 在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm =17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.。
温州市2019届中考数学模拟检测试卷(一)(含答案)(1).docx
一.选择题(满分40分,每小题4分)10.如图,点A在反比例函数的图象上,轴于点点。
在x轴上,且C。
:。
3=2: 1. △ABC的面x16. (5 分)如图,在△ABC•中,AB=8, BC=10, BD、C2>分别平分ZABC, ZACB, ZBQC=135。
,过点。
作DE//AC交BC于点E,贝I] DE=.23.(12分)如图,已知抛物线- x2+bx+c与一直线相交于A (1, 0)、C ( - 2, 3)两点,与y轴交于点N,其顶点为D. (1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC±方的一个动点,求AAPC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点使的周长最小.若存在,请求出M点的坐标和周长的最小值;若不存在, 请说明理由.24.(14分)已知,AB是。
的直径,点C在上,点P是AB延长线上一点,连接CP.(1)如图1,若/PCB=/A.①求证:直线FC是。
的切线;②若CF=C4, OA=2,求CF的长;(2)如图2,若点M是弧AB的中点,CM交A3于点N, MN・MC=9,求的值.r图1 图210.: c.(T+b+c=0 解得:l-4-2b+c=3 设直线AC 的函数关系式为y=mx+n (m^O),将A (1, 0), C ( - 2, 3)代入y=mx+n,得:件 =0 ,解得:(呻T,...直线AC 的函数关系式为汽-x+1.I -2nrl-n=3 I n=l(2)过点P 作PE//y 轴交x 轴于点E,交直线AC 于点F,过点C 作CQ//y 轴交x 轴于点Q,如图1所示. 设点F 的坐标为(X, - x 2 - 2x+3) (-2VxVl),则点E 的坐标为(x, 0),点F 的坐标为(x, - x+1),:・PE= - x 2 - 2x+3, EF= - x+1,EF=PE - EF= - X 2 - 2x+3 - ( - x+1) = - x 2 - x+2...•点。
浙江省温州市2019届中考数学模拟检测试卷(一)(含答案)(1)
浙江省温州市2019届中考数学模拟检测试卷(一)计算-6+1的结果为(某车间20名工人每天加工零件数如表所示:每天加工零件数人数平面内,如果a 丄b , b ± c ,则a 丄c ;④直线c 外一点A 与直线c 上各点连接而成的所有线段中,最短线段 的长是5cm ,则点A 到直线c 的距离是5cm ;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是•选择题(满分 40分,每小题4分)B .次函数 y =- 3x - 5图象上的两点, F 列判断正确的是( B . y i <y 2 C . y i = y 2 D .以上都不对元一次不等式 2 (x - 1 )> 3x - 3的解在数轴上表示为(这些工人每天加工零件数的众数、 中位数分别是A . 5, 5B . 5, 6C . 6,D . 6, 5 在下列命题中:①过一点有且只有一条直线与已知直线平行; ②平方根与立方根相等的数有1和0;③在同 A • -52. A .3.A . y i > y 2 y 2)是 B.D.7.如图,是某厂2018年各季度产值统计图(单位:万元),则下列说法中正确的是(A •四季度中,每季度生产总值有增有减B. 四季度中,前三季度生产总值增长较快C. 四季度中,各季度的生产总值变化一样D. 第四季度生产总值增长最快8 .如图是抛物线 y = ax 2+bx+c (a 丰0)图象的一部分,已知抛物线的对称轴是直线x = 2,与x 轴的一个交点是(-1, 0),那么抛物线与x 轴的另一个交点是( ) 9•半径为1的圆中,扇形 AOB 的圆心角为120°,则扇形 AOB 的面积为() 面积为6,则k 的值为()A . 2B . 3C . 4D . 5二•填空题(共 6小题,满分30分,每小题5分)11. (5 分)分解因式:4m 2 - 16n2= _________ .12. ( 5分)如图,量角器的直径与直角三角板 ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,30025015010050一垂度二季慶三垂虔四季區A . ( 3, 0)B . (4, 0)C . ( 5, 0)D . (6, 0)B .10 •如图,点A 在反比例函数y = L 的图象上,AB 丄x 轴于点B ,点C 在x 轴上,且 CO : OB = 2:ABC 的射线CP 从CA 处出发沿顺时针方向以每秒 1度的速度旋转,CP 与量角器的半圆弧交于点 E ,第30秒时,点 E 在量角器上对应的读数是 度.14. ( 5分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共嘗0个,购买资金不超过 3000元•若每 个篮球80元,每个足球50元,则篮球最多可购买 个.15. (5分)如图,在△ ABC 中,/ ACB = 90°,/ B = 30°, AC = 1, AC 在直线l 上,将△ ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1= 2;将位置①的三角形绕点 此时AP 2= 2+ .将位置②的三角形绕点 P 2顺时针旋转到位置③,可得到点P 3,此时AP 3= 3+ 「;;…按17. (10 分)(1)计算:(-〒)-2- 23X 0.125+2005°+|- 1|; 65 (2)解方程:一= ------- .18. (8分)计算: (1) (x+y ) 2- 2x (x+y );(2) (a+1) (a - 1)-( a - 1) 2;(3) 先化简,再求值:(x+2y ) (x - 2y )-( 2x 3y - 4x 2y 2)+ 2xy ,其中 x =- 3, y=—.13. (5分)已知a 是方程x 2-2019x+1= 0的一个根,则a 2- 2018a+ 的值为P 1顺时针旋转到位置②,可得到点P 2, 16. (5 分)如图,在△ ABC 中,AB = 8, BC = 10 , BD 、CD 分别平分/ABC 、/ ACB , / BDC = 135 ,过点DP 1P 2017 =DE = 分,每小题10分)19. (8分)图1,图2都是8X 8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为在每个正方形网格中标注了6个格点,这6个格点简称为标注点:.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等)(2)图2中所画的平行四边形的面积为_______ .L・L訂r-.■ f ■ ■产■ f 1 i' ■'1 1 1 1* ■1 1 | 1 4 1 ■j I| !—H 』H丄工I L0 L =J u j _, i1 ■I ■■i■■fl J H j -iIlli l- fi1■ 1 1 1 1 » 4 11 | i |I I1i 1 1I 4 »( 1i 1 1b i i■i i■I I H J 1P ■・L - T - #r■ r■"r~ 4■ T r ■・|・■■ n w■'■' R ■▼T■i a i b> n■I -i 1v R t I i' JL 1?■ ■■■H i| ■■■ F■ y■ ■ V"■ f p ■ T■■叩・Ti i 1 i■ ■1i i i a "i H J im”讣.4--■ J■2+■八L■i ■» J - - 1■iI■ 1 I-■I-i » 4 1L …■ _________ __ 4|| ・i P < ■i ■1■ ! 1 _■ f - -i 1 !! I l l fe> H i■i I i I i> 1 1卜---»■ - - ■ ----- T■a--- R -円1 b 4 i I- *1■i i 1 1 1><i 1!■■■ E ■■ 1 a. 4)i| q ■J i图1图:!20. (8分)漳州市教育局到某校抽查七年级学生“根据音标写单词”的水平,随机抽取若干名学生进行测试(成绩取整数,满分为100分).如下两幅是尚未绘制完整的统计图,请根据图中提供的信息,解答下列问题:HJ1 囹2(1)本次抽取的学生有_____ 人;(2)_____________________________________________________________________________ 该年段有450名学生,若全部参加测试,请估计60分以上(含60分)有__________________________________________ 人;(3)甲、乙、丙是该校三名英语成绩优秀的学生,随机抽取其中两名学生介绍英语学习经验,请用树状图或列表法表示所有可能的结果,并求抽到甲、乙两名学生的概率.21. (10分)如图,矩形ABCD中,/ BAD的平分线AE与BC边交于点E,点P是线段A E上一定点(其中PA> PE),过点P作AE的垂线与AD边交于点F (不与D重合)•一直角三角形的直角顶点落在P点处,两直角边分别交AB边,AD边于点M , N .(1)求证:△ PAMPFN ;(2)若PA= 3,求AM+AN 的长.1,22. (10分)一个车间加工轴杆和轴承,每人每天平均可以加工轴杆 为一套,该车间共有 90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?23. (12分)如图,已知抛物线y =-x 2+bx+c 与一直线相交于 A (1, 0)、C (- 2, 3)两点,与y 轴交于点N , 其顶点为D .(1)求抛物线及直线 AC 的函数关系式;(2)若P 是抛物线上位于直线 AC 上方的一个动点,求△ APC 的面积的最大值及此时点 P 的坐标;(3) 在对称轴上是否存在一点 M ,使△ ANM 的周长最小•若存在,请求出 M 点的坐标和△ ANM 周长的最小 (1) 如图 1,若/ PCB =Z A . ① 求证:直线PC 是O O 的切线;② 若CP = CA , OA = 2,求CP 的长;(2) 如图2,若点M 是弧AB 的中点,CM 交AB 于点N , MN?MC = 9,求BM 的值.12根或者轴承16个,1根轴杆与2个轴承24. (14分)已知, AB 是O O 的直径,点 C 在O O 上,点P 是AB 延长线上一点,连接CP .参考答案•选择题1 .解:-6+1=-(6 - 1)=-5故选:A.2 .解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.3. 解:•••点P1 (2, y i)和P2 (- 3, y2)是一次函数y=- 3x- 5图象上的两点,y1 =- 3 X 2 - 5 =- 11, y2=- 3X( - 3)- 5= 4,•••- 11 V 4,.y1V y2,故选:B.4. 【解答]解:2 (x- 1)> 3x-3,2x - 2 A 3x -3,2x - 3x A- 3+2,-x>- 1 ,x< 1 ,在数轴上表示为:・■,故选:B.5 .解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,C_LC所以中位数为第10、11个数据的平均数,即中位数为一二=6,故选:B.6 .解:①过直线外一点有且只有一条直线与已知直线平行,故错误;②平方根与立方根相等的数只有0,故错误;③在同一平面内,如果a丄b, b丄c,贝U a// c,故错误;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm,正确;⑤ 无理数包括正无理数和负无理数,错误.正确的只有1个,故选:A .7 .解:图为增长率的折线图,分析可得:四季度中,每季度生产总值都持续增加, 增长最快,D 正确,而B 、C 错误.故选:D .8 .解:•••抛物线的对称轴是直线 x = 2,与x 轴的一个交点是(-1,0), •••抛物线与x 轴的另一个交点是:(5, 0).故选:C .9 .解:扇形AOB 的面积= ------ =—, 360 3故选:B .10. 解:••• CO : OB = 2: 1,...k = 2S ^ABC = 4,•••反比例函数的图象位于第一象限,• k = 4,故选:C ..填空题(共 6小题,满分30分,每小题5 分)11. 解:原式=4 ( m+2n ) ( m - 2n ).故答案为:4 (m+2n ) ( m - 2n )12.解:连接OE ,•••/ ACB = 90°,•••点C 在以AB 为直径的圆上,即点C 在O O 上,• / EOA = 2 /ECA ,•••/ ECA = 1 X 30°= 30 ° ,• /AOE = 2厶;ECA = 2X 30° = 60°故答案为:60. AOB = 6 = 2,A 错误;第四季度生产总值13 .解:••• a 是方程 x 2- 2019x+1 = 0 的一个根,••• a 2 - 2019a+1 = 0,••• a 2= 2019a — 1, a 2+i = 2019a ,••• a 2 — 2018a+ = 2019a — 1— 2018a+'-异十12019a=2019 — 1=2018.故答案为2018.14 •解:设购买篮球 x 个,则购买足球(50 — x )个,根据题意得:80X+50 (50 — x )w 3000,解得:x^—.•/ x 为整数,• x 最大值为16.故答案为:16.15 •解:根据题意可得:每三次旋转,向右平移 3+ .•••从P1到P2017共旋转672次•- P 1P 2017= 672 (3+ . ;)= 2016+672 一故答案为2016+672 ,16. 解:•••/ BDC = 135 ° ,•••/ DCB+ / DBC = 45°,•/ BD 、CD 分另平分/ ABC 、/ ACB ,•••/ACB+ / ABC = 2 / DCB+2 / DBC = 90°, —1a 2019aa =a+二—1a1•/ AB = 8, BC = 10,••• AC= ‘ = 6,过D 作DF 丄BC 于F , DG 丄AB 于G , DH 丄AC 于H ,• DH = DF = DG ,•四边形AHDG 是正方形,连接AD ,三•解答题(共 8小题,满分80分,每小题10 分)17. 解:(1)原式=4 - 8X 0.125+1+1=4- 1+1+1 S ABC = S ADC +S A BCD +S A ABD = AC?AB ,• DF = 2,AH = AG = 2,• CH = 4,• CD =^^+CH 2= 2 旖,• CF 「’"丄4,•/ DE // AC ,• / ACD = Z CDE ,• / DCE = Z CDE ,• CE = DE , 设CE = DE = x ,• EF = 4 - x ,•••DE 2 = EF 2+DF 2,• x 2=( 4 - x ) 2;+22,(AC+BC+AB)?DF =故答案为:=5.(2)两边同乘以x (2x- 1),得 6 (2x- 1) = 5x,解得x =—.经检验,x = ¥是原方程的解.18. 解:(1) ( x+y) 2- 2x (x+y)= x2+2xy+y2-2■- 2xy= y2- x2;(2)(a+1) (a- 1) -( a - 1) 2= a2- 1 -( a2- 2a+1) = 2a-2;(3)(x+2y) (x- 2y)-( X. 4x2y2)+ 2xy= x2- 4y2- x2+2xy=- 4y2+2xy,当x=- 3, y=-二-时,原式=- 1 - 3=- 4.219•解:(1)如图所示,四边形ABCD和四边形EFGH均为平行四边形;(2)图2中所画的平行四边形的面积= f-X 6X( 1 + 1 )= 6, 故答案为:6.20.解:(1) 8十16%= 50 (人);(2) 1 - 4% = 96%, 450 X 96% = 432 (人);(3)列表如下:所以P (抽到甲、乙两名同学)= 三6 3故答案为50 ;432 •21 •证明:(1)•••四边形ABCD是矩形•••/ BAD = 90°•••/ BAD的平分线AE与BC边交于点E,•••/ BAE = Z EAD = 45°•/ PF 丄AP.•./ FAF = Z PFA = 45°••• AF= PF•••/ MPN = 90。
瓯海中考一模数学试卷答案
一、选择题1. 答案:D解析:根据勾股定理,直角三角形的两条直角边长分别为3和4,斜边长为5,因此3^2 + 4^2 = 5^2,符合勾股定理。
2. 答案:B解析:根据一元一次方程的解法,将x=2代入方程中,得2x+3=7,解得x=2,符合方程。
3. 答案:C解析:根据不等式的性质,将不等式两边同时乘以-1,不等号方向改变,得-2x < -4,再同时除以-2,不等号方向不变,得x > 2。
4. 答案:A解析:根据二次函数的性质,当x=1时,y有最大值,代入二次函数解析式得y=4。
5. 答案:B解析:根据概率的计算公式,事件A发生的概率为P(A) = 事件A发生的情况数 / 所有可能的情况数 = 3 / 6 = 1 / 2。
二、填空题6. 答案:-3解析:根据绝对值的性质,|-3| = 3,因此-|-3| = -3。
7. 答案:x=2解析:根据分式方程的解法,将x=2代入方程中,得(2+1) / (2-1) = 3,符合方程。
8. 答案:1/3解析:根据几何概型的计算公式,事件A发生的概率为P(A) = 事件A的面积 /总面积 = 1/3。
9. 答案:9解析:根据几何体的体积计算公式,圆柱的体积为V = πr^2h,代入r=3,h=4,得V = 3.14 3^2 4 = 9 π。
10. 答案:a^2 + b^2 = c^2解析:根据勾股定理的逆定理,如果a^2 + b^2 = c^2,则三角形ABC是直角三角形。
三、解答题11. 答案:(1)解一元一次方程x - 5 = 2,得x = 7。
(2)根据x的值,代入y的解析式y = 2x + 3,得y = 2 7 + 3 = 17。
12. 答案:(1)根据题意,可以列出不等式组:x + y ≥ 52x - y ≤ 3(2)将不等式组表示在坐标系中,得到一个平面区域。
(3)在平面区域内,找到满足不等式组的最优解,即x=2,y=3。
13. 答案:(1)设正方形的边长为a,根据题意,可以列出方程:a^2 + (a + 3)^2 = 50(2)解方程得a=5,因此正方形的边长为5。
2019年浙江省温州市中考数学试卷 解析版
2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数.)3.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度2002504005001000数y(度)0.500.400.250.200.10镜片焦距x(米)A.y =B.y =C.y =D.y =【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y =.故选:A.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π【分析】根据弧长公式计算.【解答】解:该扇形的弧长==3π.故选:C.【点评】本题考查了弧长的计算:弧长公式:l =(弧长为l,圆心角度数为n,圆的半径为R).8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴sinα=,解得,AB=米,故选:B.【点评】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.【点评】本题源于欧几里得《几何原本》中对(a+b)(a﹣b)=a2﹣b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=(m+2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.(5分)不等式组的解为1<x≤9.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于57度.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°【点评】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为12+8 cm.【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH 是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO =x,IK=x﹣x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC ×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI =2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【点评】本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为4分米.【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米)∴BE=10﹣2﹣2=(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J==2,∴B′E′=10﹣(2﹣2)=12﹣2,∴B′E′﹣BE=4.故答案为5+5,4.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.【分析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式===.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点评】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【解答】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【点评】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点评】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m 的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6﹣n,m),B2(﹣n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.【点评】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x ﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x =1,在Rt△ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.【点评】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由=tan∠EOF和n=﹣m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q 恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=,列方程为2t﹣2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.【解答】解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC==4;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=OB=4,OE=BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN==,∵S△ONE=EN•OF=ON•EM,∴OF==,由勾股定理得:EF===,∴tan∠EOF===,∴==,∵n=﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s==5,将或代入得,解得:,∴s=﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6﹣s=6﹣t+=7﹣t,∵cos∠QBH====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t=;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s=t﹣,∴Q3G=t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【点评】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.。
浙江省温州市2019-2020学年中考数学一模试卷含解析
浙江省温州市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 2.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( ) A .686×104 B .68.6×105 C .6.86×106 D .6.86×1053.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A .9πB .10πC .11πD .12π4.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定5.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233πC .233πD 233π 6.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()n n n nA .55B .510C .255D .127.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )A .513B .512C .1213D .1258.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( )A .(1,1)B .(2,2)C .(1,3)D .(1,2)9.在函数y =1x x -中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠110.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m 1.将78000000用科学记数法表示应为( )A .780×105B .78×106C .7.8×107D .0.78×10811.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°12.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程220--=x x k 有两个相等的实数根,则k =________.14.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.15.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.16.若2x+y=2,则4x+1+2y的值是_______.17.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.18.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.20.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.21.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.22.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.23.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?24.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.25.(10分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.26.(12分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM 相似?若存在,求出点P的坐标;若不存在,请说明理由.27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.2.D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,故选:D.3.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.4.C【解析】【分析】根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.5.B【解析】【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=33AC=2, ∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π. 故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 6.A【解析】【分析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC =+=,5OC sinA OA ∴==. 故选:A .【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则,5 =,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)<2,因此点在圆内,B选项) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) >2,因此点在圆外D选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.9.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10.C【解析】【分析】科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:78000000= 7.8×107.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.11.D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.12.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1.【解析】【分析】根据根的判别式计算即可.【详解】解:依题意得:∵关于x的一元二次方程220x x k有两个相等的实数根,--=b-=4-4⨯1⨯(-k)=4+4k=0∴n=24ac解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当n =24ac b ->0时,方程有两个不相等的实数根;当n =24ac b -=0时,方程有两个相等的实数根;当n =24ac b -<0时,方程无实数根.14.1【解析】析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∴△=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为115.113407, 北京市近两年的专利授权量平均每年增加6458.5件.【解析】【分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【详解】 解:∵北京市近两年的专利授权量平均每年增加:106948940316458.52-=(件), ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.【点睛】此题考查统计图的意义,解题的关键在于看懂图中数据.16.1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.详解:原式=2(2x+y)+1=2×2+1=1. 点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.17.50°【解析】【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).18.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.20.(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DPDF EF DE==求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标. 【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴10{3b cc-+==-,解得2{3bc=-=-,故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得DP=3, 过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣13,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(13,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴OC ODDP DC=,即3DP=10,解得DP=310,过点P作PG⊥y轴于点G,则DG PG DPDF EF DE==,即3103110DG PG==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题. 21.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 22.S 1,S 3,S 4,S 5,1【解析】【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S 矩形ABCD =S 1+S 1+S 3=1,S 4=S 1,S 5=S 3,S 6=S 4+S 5,S 阴影面积=S 1+S 6=S 1+S 1+S 3=1.故答案为S 1,S 3,S 4,S 5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题. 23. (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m 值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6 (2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.24.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.26.【小题1】设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、D(0,3)代入,得…………………………………………2分即所求抛物线的解析式为:……………………………3分【小题2】如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得∴点E坐标为(-2,3)………………………………………………………………4分又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)∴抛物线的对称轴直线PQ为:直线x=-1,[中国教#&~@育出%版网]∴点D与点E关于PQ对称,GD=GE……………………………………………②分别将点A(1,0)、点E(-2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=-x+1∴当x=0时,y=1∴点F坐标为(0,1)……………………5分∴=2………………………………………③又∵点F与点I关于x轴对称,∴点I坐标为(0,-1)∴……………………………………④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可……………………………………6分由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:,分别将点E(-2,3)、点I(0,-1)代入,得:解得:过I、E两点的一次函数解析式为:y=-2x-1∴当x=-1时,y=1;当y=0时,x=-;∴点G坐标为(-1,1),点H坐标为(-,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=∴四边形DFHG的周长最小为. …………………………………………7分【小题3】如图⑤,由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:解得:,过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且,………………8分要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论;……………………………………………………………………………9分①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分【解析】(1)直接利用三点式求出二次函数的解析式;(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,由图形的对称性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小,即,DF+EI=即边形DFHG的周长最小为.(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)27.(1)证明见解析;(2)BC=;.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.。
2019年浙江省中考数学一模试卷附解析
2019年浙江省中考数学一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =-+与⊙O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能2. 如图是一些相同的小\正方体构成的几何体的三视图:主视图 左视图 俯视图这些相同的小正方体的个数有( )A .4 个B .5 个C .6 个D .7 个 3.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( )A .1B .12C .13D .234.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )A .11000B .1200C .12D .155.如图,以正方形 ABCD 各边为直径在正方形内画半圆,计算所围成的图形 ( 阴影部分)的面积,正确的方法是( )A .三个半圆的面积减去正方形的面积B . 四个半圆的面积减去正方形的面积C . 正方形的面积减去两个半圆的面积D . 正方形的面积减去三个半圆的面积6.下列命题中,是真命题的为( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.下列可作为证明命题“直角三角形至少有一个锐角大于45°”是假命题的反例是()8.一个几何体的三视图如下图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体9.两条直线被第三条直线所截,必有()A.同位角相等B.内错角相等C.同旁内角互补D.以上都不对10.两个偶数的平方差一定是()A.2 B.4 C.8 D. 4 的倍数11.已知623m⋅(m 是小于 10 的自然数),则()⨯⋅⨯⋅⨯=10n(810)(510)(210)A. m=8 , n= 11 B. m=8 , n= 12 C. m= 5 , n= 12 D. m= 8 , n= 3612.如图,身高为1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,那么树的高度为()A.4.8 m B.6.4 m C.8 m D.10 m13.一根长为3.8 m的铁丝被分成两段,各围成一个正方形和长方形,已知正方形的边长比长方形的长少0.1 m,长方形的长和宽之比为2:1,则正方形和长方形的面积分别是()A.2.5 m2和1.8 m2 B.0.25 m2和0.18 m2C.1.6 m2和2 m2 D.0.16 m2和0.2 m2二、填空题14.求下列三角函数的值(精确到 0. 0001).(1)sin36°= ;sin53°16′= ;cos25°18′= .(2) cos36°= ;tan54°24′= ;sin26°18′24"= .(3)tan54°= ;cos48°6′36"= ;tan60°= .15.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则 BP= .16.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x17.如果一个多边形的每一个外角都相等,且小于45°,那么这个多边形的边数最少是 .18.如图 ,在△ABC 中,∠ACB=90°,角平分线 AD 、BE 交于点F ,则∠AFB= .19.某单位内线电话号码由3个数字组成,每个数字可以是1、2、3中的任一个,•如果不知道某人的内线电话号码,任意拨一个号码能接通的概率是 .20.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张?答: .21.一件工作,甲独做要 3 h 完成,乙独做要5 h 完成,若两人合作完成这件工作的45,则需要 h 完成.三、解答题22.如图,△ABC 中,∠C=90°,0 是 AB 上的点,以 0为圆心,OB 为半径的圆与 AB 相交于点 E ,与 AC 相切于点 D ,已知 AD=2,AE= 1,求 BC.23.如图所示,锐角α的顶点在坐标原点,一边在x 轴的正半轴上,另一边上有一点 P(2,y),若sin α=35,的值.24.已知n m ,是实数,且155+-+-=n n m ,求n m 32-的值.25.如图,用长为120 m 的铁丝一边靠墙围成一个长方形,墙的长度 AB =100 m ,要使靠墙的一边不小于 42 m ,那么不靠墙的一边(垂直于墙的边)应取多少?26.如图所示,先画出线段AB 关于直线1l 对称的线段A ′B ′,再画出线段A ′B ′关于直线2l 对称的线段A ″B ″,看看线段AB 和线段A ″B ″之间有怎样的位置关系.把线段AB 换成三角形试试看.27.求下列各数的立方根:0,-125, -343,0. 064,-1,1,338,21628.如图,从建筑物顶端A 处拉一条宣传标语条幅到地面C 处,为了测量条幅AC 的长,在地面另一处选一点D ,使D 、C 、B (B 为建筑物的底部)三点在同一直线上,并测得∠D=40°,∠ACB=80°,求∠DAC 的度数.29.随着人民生活水平懂得提高,购房者对居住面积的要求有了新的变化.现从某区近期卖出的不同户型的商品房中随机抽取1000套进行统计,并根据统计结果绘出如图所示的统计图,请结合统计图提供的信息,解答下列问题:(1)卖出面积为60~80平方米的商品房多少套?据此补全统计图.(2)面积在什么范围内的住房卖出的最多?约占全部卖出住房的百分之几?(3)假如你是房地产开发商,根据以上信息,你将会多建面积在哪些范围内的住房?请简要说明理由:A BC D30.个正方形的边长为 a(cm),若边长增加6 cm,则新正方形的面积增加了多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.B6.C7.B8.A9.B10.D11.B12.C13.B二、填空题14.(3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 443215.35-16. 17.918.135°19.27120.第一张方块421.32三、解答题22.连结OD.∵ 圆 0切 AC 于点D ,∴∠ODA=90°,设⊙O 的半径为 r ,则222()AD OD AE EO +=+,则r= 1.5,且OD AO BC AB=, 2.4BC =. 23.过点P 作x 轴的垂线段,M 为垂足,∵ PM=y ,OM= 2,∴24OP y =+3sin 5PM a OP ==,∴2354y y =+,∴32y ⋅=± ∵y>0 ,∴32y =. 24.-1325.不靠墙的一边应取不小于10 m 且不大于39 m 26.略27.依次为 0,-5,-7,0.4, -1, 1 ,32-,6 28.40°29.(1)350套;(2)80~100m 2,占48%;(3)60~80m 2和80~1OOm 2.理由:购房者对面积在这两个范围内的住房需求量最高 30.22(6)1236a a a +-=+(cm 2)。
2019年最新浙江省中考数学第一次模拟试卷1及答案解析
三、解答题:本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.
A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h
7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是( )
A.100°B.80°C.60°D.50°
8.下列分式运算中正确的是( )
A. B.
C. D.
9.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是( )
(4)请从两个不同的角度评价一下八、九年级学生的总体睡眠情况,并给学校提出合理化的建议.
23.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.
(1)写出这个四边形的一条性质并证明你的结论.
(2)若BD=BC,证明: .
(3)①若AB=BC=4,AD+DC=6,求 的值.
4.如图,BD⊥AB,BD⊥CD,则∠α的度数是( )
A.50°B.40°C.60°D.45°
5.掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是( )
A. B. C. D.
6.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )
浙江省中考数学一模试卷
一、选择题:本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.
浙江省温州市2019-2020学年中考数学一模考试卷含解析
浙江省温州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个2.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .3.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为( )A .512B .1213C .513D .13124.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o5.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 6.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。
问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )A .5210258x y x y +=⎧⎨+=⎩B .52107718x y x y +=⎧⎨+=⎩C .7718258x y x y +=⎧⎨+=⎩D .5282510x y x y +=⎧⎨+=⎩7.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米 B .30sinα米 C .30tanα米 D .30cosα米8.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A .16B .13C .12D .239.如图,在底边BC 为3,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+3B .2+23C .4D .3310.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .011.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A 、B 、C 、D ,则图中的相似三角形有( )A .4 对B .5 对C .6 对D .7 对12.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.14.如图所示,直线y=x+b 交x 轴A 点,交y 轴于B 点,交双曲线8(0)y x x=>于P 点,连OP ,则OP 2﹣OA 2=__.15.如图,在半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为_____.16.分解因式8x 2y ﹣2y =_____. 17.计算:(1)(23b a)2=_____;(2)210ab c 54ac÷=_____. 18.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.20.(6分)如图①,一次函数y=12x ﹣2的图象交x 轴于点A ,交y 轴于点B ,二次函数y=12-x 2+bx+c 的图象经过A 、B 两点,与x 轴交于另一点C . (1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD+PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB=∠ACB ,求出所有满足条件的点M 的坐标.21.(6分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .小明所求作的直线DE 是线段AB的 ;联结AD,AD =7,sin ∠DAC =,BC =9,求AC 的长.22.(8分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 23.(8分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为12.求 x 和 y 的值.24.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元. (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 25.(10分)(1)解方程:x 2﹣5x ﹣6=0;(2)解不等式组:43(2)123x x x x +≤+⎧⎪-⎨<⎪⎩.26.(12分)解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.27.(12分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④.故选:C.【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.2.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,22=10m,13050∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.4.A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 5.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV-S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴2,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD矩形−S ABEV −S EBF扇形=1×2−12245(2)3-24π⨯π故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式6.D【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.7.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.8.D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263=,故选D.9.B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可. 详解:∵DE垂直平分AB,∴BE=AE,∴,∴△ACE 的周长 故选B .点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等. 10.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 11.C 【解析】由题意,AQ ∥NP ,MN ∥BQ ,∴△ACM ∽△DCN ,△CDN ∽△BDP ,△BPD ∽△BQA ,△ACM ∽△ABQ ,△DCN ∽△ABQ ,△ACM ∽△DBP ,所以图中共有六对相似三角形. 故选C . 12.C 【解析】 【分析】根据∠DBC=∠A ,∠C=∠C ,判定△BCD ∽△ACB=代入求值即可. 【详解】∵∠DBC=∠A ,∠C=∠C , ∴△BCD ∽△ACB , ∴CD BCBC AC=,∴636=,∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC ﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.14.1【解析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.15.﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.16.2y(2x+1)(2x﹣1)【解析】【分析】首先提取公因式2y,再利用平方差公式分解因式得出答案.【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17.429b a8b c【解析】 【分析】(1)直接利用分式乘方运算法则计算得出答案; (2)直接利用分式除法运算法则计算得出答案. 【详解】(1)(23b a )2=429b a ;故答案为429b a;(2)210ab c 54a c ÷=21045ab c c a ⨯=8bc . 故答案为8bc.【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键. 18.3n+1 【解析】 【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律. 【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n 个图案中共有“”为:4+3(n ﹣1)=3n+1故答案为:3n+1. 【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1) 14;(2)112. 【解析】 【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解. 【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14; (2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.20.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,21.【解析】 【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论; (2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD+PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论. 【详解】 解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点,∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==,∴二次函数的关系式为y =215222x x -+-.令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0).(2)∵PD ∥x 轴,PE ∥y 轴, ∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -).∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+.∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1. ∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2,∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=,解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2. ∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1,∴DM 2,∴点M 的坐标为(52,2-).综上所述:点M 的坐标为(52,12)或(52,.点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.21.(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】【分析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题. 22.13. 【解析】 【分析】先计算括号里面的,再利用除法化简原式, 【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ , =()()()()222222a a a a a a-++⋅+- ,=2222a a a a a --+⋅- ,=222a a a a -+⋅-, =2a a+,由a 2+a ﹣6=0,得a=﹣3或a=2, ∵a ﹣2≠0, ∴a≠2, ∴a=﹣3, 当a=﹣3时,原式=32133-+=-. 【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算. 23.x=15,y=1 【解析】 【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102xx yxx y⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1.【详解】依题意得,38101102xx yxx y⎧=⎪+⎪⎨+⎪=⎪++⎩,化简得,53010x yx y-=⎧⎨-=-⎩,解得,1525xy=⎧⎨=⎩.,检验当x=15,y=1时,0x y+≠,100x y++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.24.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82123=;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】 请在此输入详解!25.(1)x 1=6,x 2=﹣1;(2)﹣1≤x <1. 【解析】 【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)先求出不等式的解集,再求出不等式组的解集即可. 【详解】(1)x 2﹣5x ﹣6=0, (x ﹣6)(x+1)=0, x ﹣6=0,x+1=0, x 1=6,x 2=﹣1;(2)()432x 1x23x x ⎧+≤+⎪⎨-<⎪⎩①② ∵解不等式①得:x≥﹣1, 解不等式②得:x <1,∴不等式组的解集为﹣1≤x <1. 【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键. 26.则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析. 【解析】 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1, 解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3, 不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.27.(1)223y x x =--;(2)P 点坐标为315,24⎛⎫- ⎪⎝⎭, 758;(3)Q 317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-.【解析】【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)首先设出Q 点的坐标,则可表示出QB 2、QC 2和BC 2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.【详解】解:(1)∵A(-1,0),()0,3C -在2y x bx c =++上,103b c c -+=⎧∴⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令0y =可得2023x x -=-,解得3x =或1x =-,()3,0B ∴,且()0,3C -,∴经过B 、C 两点的直线为3y x =-,设点P 的坐标为()223x x x --,,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,ABC BCP ABPC S S S ∆∆=+Q 四边形()211433322x x =⨯⨯+-⨯239622x x =-++23375228x ⎛⎫=-+ ⎪⎝⎭, ∴当32x =时,四边形ABPC 的面积最大,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭, ∴四边形ABPC 的最大面积为758; (3)()222314y x x x =--=--Q ,∴对称轴为1x =,∴可设Q 点坐标为()1,t ,()3,0B Q ,()0,3C -,()2222134BQ t t ∴=-+=+,()222213610CQ t t t =++=++,218BC =, QBC ∆Q 为直角三角形,∴有90BQC ∠=︒、90CBQ ∠=︒和90BCQ ∠=︒三种情况,①当90BQC ∠=︒时,则有222BQ CQ BC +=,即22461018t t t ++++=,解得317t -+=或3172t -=,此时Q 点坐标为3171,2⎛-+ ⎝⎭或3171,2⎛-- ⎝⎭; ②当90CBQ ∠=︒时,则有222BC BQ CQ +=,即22418610t t t ++=++,解得2t =,此时Q 点坐标为()1,2;③当90BCQ ∠=︒时,则有222BCCQ BQ +=,即22186104t t t +++=+,解得4t =-,此时Q 点坐标为()1,4-; 综上可知Q 点的坐标为317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-. 【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.。
2019年浙江省温州市中考数学模拟试卷(一)(解析版)
2019年浙江省温州市中考数学模拟试卷(一)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个实数,2,0,﹣1,其中最小的是( )A. B.2 C.0 D.﹣12.小明的生日礼盒如图所示,它的主视图是( )A. B.C. D.3.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a124.在不透明口袋内装有除颜色外完全相同的5个小球,其中红球3个,白球2个搅拌均匀后,随机抽取一个小球,是白球的概率为( )A. B. C. D.5.不等式组的解是( )A.x>2 B.x<3 C.2<x<3 D.2<x<66.在Rt△ABC中,∠ACB=90°,AB=2,AC=1,则cos A的值是( )A. B. C. D.7.如图,在△ABC中,AB=AC,在边AB上取点D,使得BD=BC,连结CD,若∠A=36°,则∠BDC等于( )A.36° B.54° C.72° D.126°8.如图,正△ABC内接于⊙O,将△ABC绕点O顺时针旋转20°得到△DEF,若⊙O半径为3,则的长为( )A.π B.2π C.π D.π9.如图,点A在反比例函数y=(x>0)图象上,点B在反比例函数y=(k>0,x>0)的图象上,AB∥x轴,BC∥y轴交x轴于点C,连结AC,交反比例函数y=(x>0)图象于点D,若D为AC的中点,则k的值是( )A.2 B.3 C.4 D.510.如图,B是线段AP的中点,以AB为边构造菱形ABCD,连接PD.若tan∠BDP=,AB=13,则BD的长为( )A. B. C. D.4二、填空题(本题有6小题,每小题5,共30分)11.(5分)因式分解:2x2﹣4x═ .12.(5分)若分式的值为零,则a的值是 .13.(5分)一组数据3,5,7,8,m的平均数为5,则这组数据的中位数是 .14.(5分)如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是 .15.(5分)如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连结AE,若AE=4,则四边形ABCD的面积为 .16.(5分)如图,两个完全相同的直角三角板放置在平面直角坐标系中,点A,B分别在x轴、y 轴上,点C在边AB上,延长DC交y轴于点E.若点D的横坐标为5,∠OBA=30°,二次函数y=ax2+bx+c的图象经过点A,D,E,则a的值为 .三、解答题(本题有8小题,共80分)17.(10分)(1)计算: +(﹣1)2019﹣4sin60°(2)化简:(2a+1)(2a﹣1)﹣a(a﹣1)18.(8分)如图,在△ABC中,AB=AC,CD⊥AB,BE⊥AC,垂足分别为点D,E. (1)求证:BD=CE;(2)当AB=5,CE=2时,求BC的长19.(8分)某校九年(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查,调查项目分别为球类、棋类、电脑、艺术,要求每生必选且只能选其中一类,并根据调查结果列出统计表,绘制成扇形统计图如下:学生所选项目人数的统计表项目 男生人数 女生人数电脑 a 8球类 8 b棋类 4 c艺术 2 3 根据以上信息解决下列问题:(1)a= ,b= ,c= .(2)该班要从参加“艺术”课外活动的学生中选2名参加学校艺术节活动,其中有2位女生因有事而弃权,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率20.(8分)每个顶点都在格点的四边形叫做格点四边形.在6×6的正方形网格中画出符合要求的格点四边形(设每个小正方形的边长为1).(1)在图甲中画出一个以AB为对角线的四边形APBQ,且∠PAQ=∠PBQ=90°;(2)在图乙中画出一个以AB为边的四边形ABCD,且∠ABC=∠ADC=90°,∠BAD=45°.21.(10分)如图,在△ABC中,点O在BC边上,以OC为半径作⊙O,与AB切于点D,与边BC,AC分别交于点E,F,且弧DE=弧DF.(1)求证:△ABC是直角三角形.(2)连结CD交OF于点P,当cos∠B=时,求的值.22.(10分)如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.23.(12分)某超市为了销售一种新型“吸水拖把”,对销售情况作了调查,结果发现每月销售量y(只)与销售单价x(元)满足一次函数关系,所调查的部分数据如表:(已知每只进价为10元,销售单价为整数,每只利润=销售单价﹣进价)销售单价x(元) 20 22 25 …月销售额y(只) 300 280 250 …(1)求出y与x之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w(元),求w关于x的函数表达式,并指出销售单价为多少元时利润最大,最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大,厂家又进行了改装,此时超市老板发现进价提高了m元,当每月销售量与销售单价仍满足上述一次函数关系,随着销量的增大,最大利润能减少1750元,求m的值.24.(14分)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,动点P在线段BC上,点Q在线段AB上,且PQ=BQ,延长QP交射线AC于点D.(1)求证:QA=QD;(2)设∠BAP=α,当2tanα是正整数时,求PC的长;(3)作点Q关于AC的对称点Q′,连结QQ′,AQ′,DQ′,延长BC交线段DQ′于点E,连结AE,QQ′分别与AP,AE交于点M,N(如图2所示).若存在常数k,满足k•MN=PE•QQ′,求k的值.2019年浙江省温州市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.【分析】先比较数的大小,再得出答案即可.【解答】解:∵﹣1,∴四个实数,2,0,﹣1中最小的是﹣1,故选:D.【点评】本题考查了实数的大小比较和估算无理数的大小,能熟记实数的大小比较法则的内容是解此题的关键.2.【分析】细心观察图中生日礼盒摆放的位置,根据主视图是从正面看到的图形判定则可. 【解答】解:生日礼盒从正面看,它的正视图应该是两个大小不一的矩形.从四个选项中看,只有A选项符合这个条件.故选:A.【点评】本题考查了三种视图中的主视图,生日礼盒大家经常见,比较容易想象它的主视图. 3.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.4.【分析】用白球的个数除以所有球的个数即可求得抽到白球的概率.【解答】解:∵共有5个球,其中白球有2个,=,∴P(摸到白球)故选:C.【点评】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比. 5.【分析】先求出每一个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 【解答】解:由①得:x>2,由②得:x <3,∴原不等式组的解集为2<x <3, 故选:C .【点评】本题考查了解一元一次不等式组,本题考查了解一元一次不等式组,解集的规律:解集的规律:解集的规律:同大取大;同大取大;同大取大;同小取小;同小取小;同小取小;大小小大中间找;大小小大中间找;大大小小找不到.6.【分析】根据锐角三角函数的定义求出答案即可.【解答】解:∵在Rt △ABC 中,∠ACB =90°,AB =2,AC =1,∴cos A ==,故选:A .【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键,注意:在Rt △ACB 中,∠C =90°,则sin A =,cos A =,tan A =,cot A =.7.【分析】根据等腰三角形的性质即可得到结论. 【解答】解:∵AB =AC ,∠A =36°,∴∠B ==72°,∵BD =BC ,∴∠BDC =∠BCD ==54°,故选:B .【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.8.【分析】连接OD 、OA 、OB ,求出∠AOB 和∠DOA ,求出∠DOB ,再根据弧长公式求出即可.【解答】解:连接OD 、OA 、OB ,∵正△ABC 内接于⊙O ,∴∠OAB =∠OBA =×60°=30°, ∴∠AOB =180°﹣30°﹣30°=120°, ∵将△ABC 绕点O 顺时针旋转20°得到△DEF ,∴∠DOA=20°,∴∠DOB=140°,∴的长是=π,故选:C.【点评】本题考查了等边三角形的性质,三角形的外接圆,弧长公式等知识点,能求出∠DOB的度数是解此题的关键.9.【分析】由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,并找出点C坐标,根据D为AC的中点得出d的坐标,即可得出关于k的一元一次方程,解方程即可得出结论;【解答】解:设A(a,b),∵A在反比例函数y=(x>0)的图象上,∴b=,∵AB∥x轴,且点B在反比例函数y=(k>0,x>0)的图象上,∴B(ak,).∵BC∥y轴,∴C(ak,0),又∵D为AC的中点,∴D(,),∵反比例函数y=(x>0)图象于点D,∴•=1,解得k=3,故选:B.【点评】本题考查了反比例函数图象上点的坐标特征、根据线段间的关系找出关于k的一元一次方程是解题的关键.10.【分析】证明△CED∽△AEP,根据相似三角形对应边成比例得:,设CE=x,得AE=2x,由三角函数得tan∠BDP=tan∠ODE=,得OD=x=OB,由勾股定理列方程可得结论.【解答】解:如图,∵四边形ABCD是菱形,∴CD∥AP,AC⊥BD,CD=AB,∴△CED∽△AEP,∴,设CE=x,∵B是AP的中点,∴AP=2AB=2CD,∴,∴AE=2x,∴AC=3x,∴AO=OC=x,∴OE=x﹣x=x,∵AC⊥BD,∴∠DOE=90°,tan∠BDP=tan∠ODE=,∴OD=x=OB,Rt△AOB中,由勾股定理得:AB2=AO2+OB2,132=x2+(x)2,x=2,∴BD=4.故选:D.【点评】本题考查了菱形的性质,三角形相似的判定和性质,三角函数的定义及勾股定理等知识,正确的识别图形是解题的关键.二、填空题(本题有6小题,每小题5,共30分)11.【分析】直接提取公因式2x,进而分解因式即可.【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】先根据分式的值为0的条件列出关于a的不等式组,求出a的值即可. 【解答】解:∵分式的值为零,∴,解得a=﹣.故答案是:﹣.【点评】本题考查的是分式的值为0的条件,即分式的分子为0,分母不为0.13.【分析】先根据平均数的定义求出m的值,然后根据中位数的定义求解即可. 【解答】解:由题意可知,(3+5+7+8+m)÷5=5,解得:m=2,这组数据从小到大排列2,3,5,7,8,则中位数是5.故答案为:5.【点评】本题考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.14.【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解. 【解答】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3), ∴,解得,∴关于x的方程kx=b即为: x=3,解得x=2,故答案为:x=2.【点评】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax +b =0 (a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值. 15.【分析】如图,连接AC ,BD .由△ABC ≌△ADE (SAS ),推出∠BAC =∠DAE ,AC =AE =4,S △ABC =S △ADE ,推出S 四边形ABCD =S △ACE ,由此即可解决问题;【解答】解:如图,连接AC ,BD .∵∠BCD =90°,∴BD 是⊙O 的直径,∴∠BAD =90°,∵∠ADE +∠ADC =18°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE ,∵AB =AD ,BC =DE ,∴△ABC ≌△ADE (SAS ),∴∠BAC =∠DAE ,AC =AE =4,S △ABC =S △ADE ,∴∠CAE =∠BAD =90°,∴S 四边形ABCD =S △ACE =×4×4=8.故答案为8.【点评】本题考查圆内接四边形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.16.【分析】设A (m ,0),根据含有30°角的直角三角板的特点,能够得到EC 是△ABO 的中位线,进而分别求出A ,D ,E 三点的坐标,再将三点代入函数解析式,利用待定系数法求得a 的值.【解答】解:设A (m ,0),在Rt △ABO 中,∠OBA =30°,∴OB =m ,AB =2m ,又∵△ACD是与△ABO相同的三角板,∴∠ADC=30°,AC=m,CD=2m,∴C是AB的中点,又∵∠BEC=90°,∴EC=m,∴ED=m,又∵ED=5,∴m=2,∴A(2,0),E(0,),D(5,),∴,∴a=,故答案为【点评】本题考查含有30°角的直角三角形中边角关系;待定系数法求得a的值.利用三角形的全等,边角关系求解三角形是解题关键.三、解答题(本题有8小题,共80分)17.【分析】(1)化简二次根式、计算乘方、代入三角函数值,再计算乘法,最后计算加减可得;(2)先利用平方差公式和单项式乘多项式法则计算,再合并同类项即可得.【解答】解:(1)原式=2﹣1﹣4×=2﹣1﹣2=﹣1;(2)原式=4a2﹣1﹣a2+a=3a2+a﹣1.【点评】本题主要考查平方差公式,解题的关键是掌握实数与整式的混合运算顺序和运算法则. 18.【分析】(1)由“AAS”可证△BDC≌△CEB,可得BD=CE;(2)由题意可得AE=3,由勾股定理可求BE,CB的长.【解答】证明:(1)∵AB=AC∴∠ABC=∠ACB,且BC=BC,∠BDC=∠BEC∴△BDC≌△CEB(AAS)∴BD=CE,(2)∵AB=AC=5,CE=2∴AE=3∴BE==4∴BC==2【点评】本题考查了全等三角形的判定和性质,勾股定理,熟练利用勾股定理求BE的长是本题的关键.19.【分析】(1)根据艺术的人数和所占的百分比求出抽查的总人数,再根据各自所占的百分比即可求出a,b,c;(2)根据题意画出树状图得出所有等情况数和恰好有1名男生、1名女生的学生数,然后根据概率公式即可得出答案.【解答】解:(1)抽查的总学生数是:(2+3)÷10%=50(人),a=50×40%﹣8=12,b=50×30%﹣8=7,c=50×20%﹣4=6,故答案为:12,7,6;(2)根据题意画图如下:共有6种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有4种可能,所以P( 1名男生、1名女生)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)根据矩形的性质画出图形即可;(2)根据四边形的性质画出图形解答即可.【解答】解:(1)如图所示:(2)如图所示.【点评】本题主要考查了矩形的判定、性质及四边形的性质,熟练掌握这些判定、性质及定理并灵活运用是解题的关键.21.【分析】(1)连接OD,根据圆周角定理得出∠ACD=∠BCD,由等腰三角形的性质得出∠OCD=∠ODC,即可得到∠ODC=∠ACD,得出OD∥CA,根据平行线的性质即可得出结论;(2)连接EF,根据圆周角定理得出∠EFC=90°,进而证得AB∥EF,平行线的性质得出∠CEF=∠B,得出cos∠CEF=cos∠B=,设OC=OD=OE=a,则EF=a,即可求得CF=a,由△PDO∽△PCF,即可证得==.【解答】(1)证明:如图,连接OD,∵⊙O与AB切于点D,∴OD⊥AB,∴∠BDO=90°,∵弧DE=弧DF.∴∠ACD=∠BCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ODC=∠ACD,∴OD∥CA,∴∠BAC=∠BDO=90°,∴△ABC是直角三角形;(2)解:连接EF,∵CE是直径,∴∠EFC=90°,∴∠BAC=∠EFC,∴AB∥EF,∴∠CEF=∠B,∴cos∠CEF=cos∠B=,设OC=OD=OE=a,则EF=a,∴CF=a,∵OD∥CF,∴△PDO∽△PCF,∴==.【点评】本题考查了切线的性质,圆周角定理以及平行线的判定和性质,三角形相似的判定和性质,作出辅助线根据直角三角形是解题的关键.22.【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【解答】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=上,∴D (4,4),∴BD =m ﹣4;(2)①如图1,∵矩形OABC 的顶点B 的坐标为(4,m ),∴S 矩形OABC =4m ,由(1)知,D (4,4),∴S △PBD =(m ﹣4)(m ﹣4)=(m ﹣4)2,∴S =S 矩形OABC ﹣S △PBD =4m ﹣(m ﹣4)2=﹣(m ﹣8)2+24,∴抛物线的对称轴为m =8,∵a <0,5≤m ≤7,∴m =7时,S 取到最大值;②如图2,过点P 作PF ⊥x 轴于F ,过点D 作DG ⊥FP 交FP 的延长线于G ,∴∠DGP =∠PFE =90°,∴∠DPG +∠PDG =90°,由旋转知,PD =PE ,∠DPE =90°,∴∠DPG +∠EPF =90°,∴∠PDG =∠EPF ,∴△PDG ≌△EPF (AAS ),∴DG =PF ,∵DG =AF =m ﹣4,∴P (m ,m ﹣4),∵点P 在反比例函数y =, ∴m (m ﹣4)=16,∴m =2+2或m =2﹣2(舍).【点评】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.23.【分析】(1)待定系数法求函数解析式.(2)总利润=单件利润×总销售量,先表示出w,再根据二次函数求最值问题进行配方即可.(3)含参的二次函数问题,先表示出w,根据最大利润列式即可求出m.【解答】解:(1)设y=kx+b(k≠0),根据题意代入点(20,300),(25,250),∴解得,∴y=﹣10x+500.(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000,∵a=﹣10<0,∴当x=30时,w有最大值4000,即当销售单价定为30元时,每月可获得最大利润4000元.(3)最新利润可表示为﹣102+600x﹣5000﹣m(﹣10x+500)=﹣10x2+(600+10m)x﹣5000﹣500m,∴此时最大利润为=4000﹣1750,解得m1=10,m2=70,∵当m=70时,销量为负数舍去.∴m=10.【点评】此题考查了一次函数的实际应用,以及二次函数的实际应用,利用最大利润列式求解为解题关键.24.【分析】(1)由等腰三角形的性质得出∠B=∠BPQ=∠CPD,由直角三角形的性质得出∠BAC =∠D,即可得出结论;(2)过点P作PH⊥AB于H,设PH=3x,BH=4x,BP=5x,由题意知tanα=1或,当tanα=1时,HA=PH=3x,与勾股定理得出3x+4x=5,解得x=,即可求出PC长;当tanα=时,HA=2PH﹣6x,得出6x+4x=5,解得x=,即可求出PC长;(3)设QQ′与AD交于点O,由轴对称的性质得出AQ′=AQ=DQ=DQ′,得出四边形AQDQ′是菱形,由菱形的性质得出QQ′⊥AD,AO=AD,证出四边形BEQ'Q是平行四边形,得出QQ′=BE,设CD=3m,则PC=4m,AD=3+3m,即QQ′﹣BE=4m+4,PE=8m,由三角函数得出=tan∠PAC=,即可得出结果.【解答】(1)证明:∵PQ=BQ,∴∠B=∠BPQ=∠CPD,∵∠ACB=∠PCD=90°,∴∠A+∠BAC=90°,∠D+∠CPD=90°,∴∠BAC=∠D,∴QA=QD;(2)解:过点P作PH⊥AB于H,如图1所示:设PH=3x,BH=4x,BP=5x,由题意得:tan∠BAC=,∠BAP<∠BAC,∴2tanα是正整数时,tanα=1或,当tanα=1时,HA=PH=3x,∴3x+4x==5,∴x=,即PC=4﹣5x=;当tanα=时,HA=2PH﹣6x,∴6x+4x=5,∴x=,即PC=4﹣5x=;综上所述,PC的长为或;(3)解:设QQ′与AD交于点O,如图2所示: 由轴对称的性质得:AQ′=AQ=DQ=DQ′,∴四边形AQDQ′是菱形,∴QQ′⊥AD,AO=AD,∵BC⊥AC,∴QQ′∥BE,∵BQ∥EQ′,∴四边形BEQ'Q是平行四边形,∴QQ′=BE,设CD=3m,则PC=4m,AD=3+3m,即QQ′﹣BE=4m+4,PE=8m,∵=tan∠PAC=,∴=,即MN=2MO=4m(1+m),∴k===8.【点评】本题是三角形综合题目,考查了等腰三角形的性质与判定、三角函数、勾股定理、菱形的判定与性质、平行线的性质以及分类讨论等知识;本题综合性强,熟练掌握等腰三角形的判定与性质,灵活运用三角函数是解题关键.。
2019年温州模式中考数学一模试卷(含答案)
2019年温州中考数学一模试卷一.选择题(满分40分,每小题4分)1.给出四个数0,﹣,,﹣1,其中最小的数是()A.﹣1B.﹣C.0D.2.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④3.如图所示的几何体的左视图是()A.B.C.D.4.若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣5.小敏的讲义夹里放了大小相同的试卷共12页,其中语文2页、数学4页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为()A.2B.2+C.1+D.7.不等式2(x﹣1)≥4的解集在数轴上表示为()A.B.C.D.8.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣9.如图,两个同心圆的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πB.4πC.6πD.8π10.有一张矩形ABCD的纸片(AB<BC),按如图所示的方式,在A,C两端截去两个矩形AEFG和CE′F′G′,且AE=CE′,AG=CG′,再分别过EF,FG,E′F′,F′G′四边的中点,沿平行于原矩形各边的方向剪裁,得到如图的阴影部分,分别记为L1,L2.若L1的周长是矩形ABCD的,L2的周长是矩形ABCD的,则的值为()A.B.C.D.二.填空题(满分30分,每小题5分)11.已知x=y+95,则代数式x2﹣2xy+y2﹣25=.12.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于cm2.13.如图,A、D是半圆O上的两点,BC是直径,若∠D=35°,则∠AOB=°.14.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.15.如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为.16.如图,已知菱形ABCD的边长为4,∠ABC=60°,对角线AC、BD相交于点O,则菱形ABCD的面积是.三.解答题(共8小题,满分80分,每小题10分)17.(10分)(1)计算:(﹣2ab)(3a2﹣2ab﹣b2)(2)计算:20140+2﹣2﹣()2+2013(3)用乘法公式计算:102×98(4)计算:2(m+1)2﹣(2m+1)(2m﹣1)18.(8分)如图,在Rt△ABC中,∠C=90°,AP′⊥AB,BP′交AC于点P,AP=AP′.(1)求证:∠CBP=∠ABP;(2)过点P′作P′E⊥AC于点E,求证:AE=CP.19.(8分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表请结合统计图表,回答下列问题:(1)统计表中:m=,n=;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.(8分)如图,现有指定格点A,B,C1,C2,D1,D2,D3在格点平行四边形的边上,请分别在四条边上各选取一个指定格点,按要求画出以这四个指定格点为顶点的四边形.(1)在图甲中画出一个四边形,使它的面积是原来平行四边形的一半;(2)在图乙中画出一个面积为5.5的四边形.21.(10分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径的半圆O交AB于点D,E是的中点,连接CE交AB于点F.(1)求证:AC=AF;(2)若tan∠DCE=,AD=5,求AC的长.22.(10分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台,已知购3台空调、2台彩电需花费2.32万元.购2台空调、4台彩电需花费2.48万元.(1)计算每台空调与彩电的进价分别是多少元?(2)已知每台空调的售价为6100元.每台彩电的售价为3900元,设商场计划购进空调x台,空调和彩电全部销售完商场获得的利润为y元.试写出y与x的函数关系式;(3)根据市场需要,商场购进空调不少于10台,且购进的空调和彩电可以全部销售,那么在筹集资金范围内,商场有哪几种进货方案可供选择?选择哪种进货方案,商场获利最大?最大利润是多少元?23.(12分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的左侧),交y轴于点C,顶点为D,对称轴DE交BC于点E,点P是抛物线上一动点,将点P向右平移2个单位得到点P′,连接PP′(1)求抛物线的对称轴及点B的坐标;(2)当点P′落在抛物线上时,求点P的坐标;(3)①点P从点A运动到点D,则PP′扫过的面积为?②连接PE,OE,P′B,当P′B=PE+OE时,点P的坐标.24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC 于E、F(1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.参考答案一.选择题1.解:四个数0,﹣,,﹣1中,最小的数是﹣,故选:B.2.解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.3.解:图中几何体的左视图如图所示:故选:D.4.解:∵分式有意义,∴x+3≠0.解得:x≠﹣3.故选:C.5.解:∵相同的试卷共12页,其中语文2页、数学4页、英语6页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=;故选:D.6.解:在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,则tan75°=tan∠CAD===2+,故选:B.7.解:去括号,得:2x﹣2≥4,移项,得:2x≥4+2,合并同类项,得:2x≥6,系数化为1,得:x≥3,故选:C.8.解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.9.解:如图,连接OC,AO,∵大圆的一条弦AB与小圆相切,∴OC⊥AB,∵OA=6,OC=3,∴OA=2OC,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB的长==4π,故选:B.10.解:在矩形ABCD中,设AD=BC=a,AB=CD=b,在矩形AEFG和矩形CE′F′G′中,设AE=FG=E′C=F′G′=y,AG=EF=E′F′=CG′=x,由题意得,L1的周长=a﹣x++a﹣x﹣+b﹣﹣x++b﹣x=2a+2b﹣4x=(2a+2b),L2的周长=b﹣y+a﹣y++a﹣y﹣+b﹣y﹣+=2a+2b﹣4y=(2a+2b),解得:x=(2a+2b),y=(2a+2b),∴==即=,故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:∵x=y+95,即x﹣y=95,∴原式=(x﹣y)2﹣25=9025﹣25=9000,故答案为:900012.解:这个圆锥的侧面积=×2π×4×5=20π(cm2).故答案为:20π;13.解:∵∠D=35°,∴∠AOB=70°,故答案为:7014.解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.15.解:如图,连接AE交GF于O,连接BE,BD,则△BCD为等边三角形,∵E是CD的中点,∴BE⊥CD,∴∠EBF=∠BEC=90°,Rt△BCE中,CE=cos60°×3=1.5,BE=sin60°×3=,∴Rt△ABE中,AE=,由折叠可得,AE⊥GF,EO=AE=,设AF=x=EF,则BF=3﹣x,∵Rt△BEF中,BF2+BE2=EF2,∴(3﹣x)2+()2=x2,解得x=,即EF=,∴Rt△EOF中,OF==,∴tan∠EFG==.故答案为:.16.解:∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠DBC=∠ABC=30°,∴CO=BC=2,BO=CO=2∴AC=4,BD=4=×AC×BD=8∴S菱形ABCD故答案为8三.解答题(共8小题,满分80分,每小题10分)17.解:(1)原式=﹣6a3b+4a2b2+2ab3;(2)原式=1+﹣+2013=2014;(3)原式=(100+2)×(100﹣2)=10000﹣4=9996;(4)原式=2m2+4m+2﹣4m2+1=﹣2m2+4m+3.18.解:(1)∵AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠P AD+∠EAP′=90°,∴∠P AD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=DP,∴AE=CP.19.解:(1)总人数=20÷5%=400(人),∴m==15%,400﹣20﹣60﹣180=140(人),n==35%故答案为15%,140;(2)条形图如图所示:(3)D组的圆心角=360°×35%=126°.20.解:(1)如图甲中,四边形AB1D2即为所求.(2)如图乙中,四边形ABC2D1即为所求.21.(1)证明:∵BC是半圆O的直径,∴∠CDB=90°,∵∠ACB=90°,∴∠ACD+∠BCD=∠BCD+∠ABC=90°,∴∠ACD=∠ABC,∵E是的中点,∴∠DCE=∠BCE,∵∠ACF=∠ACD+∠DCE,∠AFC=∠BCE+∠DCE,∴∠ACF=∠AFC,∴AC=AF;(2)解:∵tan∠DCE==,∴设DF=2x,CD=3x,∵AD=5,∴AF=AC=5+2x,在Rt△ACD中,∵AC2=AD2+CD2,∴(5+2x)2=52+(3x)2,解得:x=4,x=0(舍去),∴AC=5+2x=13.22.解:(1)设每台空调与彩电的进价分别是x元、y元,根据题意得,解得,,答:每台空调与彩电的进价分别是5400元、3500元;(2)由题意可得,y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000,即y与x的函数关系是y=300x+12000;(3)由题意可得,5400x+3500(30﹣x)≤12800,解得,∴,∴x=10、11、12,∴有三种进货方案,方案一:购机空调10台,彩电20台;方案二:购进空调11台,彩电19台;方案三:购进空调12台,彩电18台;∵y=300x+12000,∴当x=12时,y取得最大值,此时y=300×12+12000=15600,答:商场有三种进货方案,分别是方案一:购机空调10台,彩电20台;方案二:购进空调11台,彩电19台;方案三:购进空调12台,彩电18台;选择方案三商场获利最大,最大利润是15600元.23.解:(1)对于抛物线y=﹣x2+2x+6令y=0,得到﹣x2+2x+6=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0),令x=0,得到y=6,∴C(0,6),∴抛物线的对称轴x=﹣=2,B(6,0).(2)观察图象可知当点P′落在抛物线上时,点P的横坐标为1,x=1时,y=﹣+8=.∴P(1,).(3)①∵抛物线的顶点坐标D(2,8),∴点P从点A运动到点D,则PP′扫过的面积=2×8=16.②如图,作EF∥PP′交BP′于F.当EF=2时,∵EF=PP′=2,EF∥PP′,∴四边形PP′FE是平行四边形,∴PE=P′F,∵E(2,4),∴F(4,4),∴OE=BF=2,∴P′B=BF+P′F=OE+PE,∴此时点P满足条件,设直线BF的解析式为y=kx+b,则有,解得,∵PE∥BF,∴直线EP的解析式为y=﹣2x+8,由,解得或,∵点P在第一象限,∴P(4﹣2,4).24.解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GF D=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK ⊥EB ,DM ⊥EF ,∴∠EKD =∠EMD =90°,DK =DM ,∴Rt △DEK ≌Rt △DEM (HL ),∴∴EK =EM ,同法可证:DK =DL ,∴DM =CL ,∵DM ⊥FE ,DL ⊥FC ,∴∠FMD =∠FLD =90°,∴Rt △DFM ≌Rt △DFL (HL ),∴FM =FL ,∵AD =AD ,DK =DF ,∴Rt △ADK ≌Rt △ADL (HL ),∴AK =AL ,∴△AEF 的周长=AE +EF +AF =AE +EK +AF +FL =2AL ,∵AD =6,∴AL =AD •cos30°=9,∴△AEF 的周长=18.(3)如图3中,作FP ⊥AB 于P ,作EM ⊥AC 于M ,作NQ ⊥AB 于Q ,DL ⊥AC 于L .在Rt △AEM 中,∵AE =3,∠EAM =60°,∴AM =AE =,EM =,在Rt △EFM 中,EF ===,∴AF =AM +MF =8,∵△AEF 的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=.。
浙江省温州市2019-2020学年数学中考一模试卷(含答案)
浙江省温州市2019-2020学年数学中考一模试卷(含答案)一、单选题1.在,,0,-2这四个数中,为无理数的是( )A. B. C. 0 D. -2【答案】A【考点】无理数的认识2.下列计算正确的是()A. a2+a3=a5B. a2•a3=a5C. (2a)2=4aD. (a2)3=a5【答案】B【考点】同底数幂的乘法,合并同类项法则及应用,积的乘方,幂的乘方3.如图所示,该圆柱体的左视图是()A. B. C. D.【答案】C【考点】简单几何体的三视图4.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A. 22°B. 26°C. 32°D. 34°【答案】A【考点】圆周角定理5.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表所示:表中表示成绩分数的数据中,中位数是()A. 38分B. 38.5分C. 39分D. 39.5分【答案】C【考点】中位数6.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A. (x+3)2=1B. (x﹣3)2=1C. (x+3)2=19D. (x﹣3)2=19【答案】 D【考点】公式法解一元二次方程7.不等式组的解集是()A. x≥2B. 1<x<2C. 1<x≤2D. x≤2【答案】C【考点】解一元一次不等式组8.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A. 0<y1<y2B. y1<0<y2C. y1<y2<0D. y2<0<y1【答案】B【考点】比较一次函数值的大小9.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中点E,P分别是AD,CD的中点,AB=2 ,一只蚂蚁从A处沿图中实线爬行到出口P处,则它爬行的最短路径长为()A. 3B. 2+C. 4D. 3【答案】B【考点】七巧板,勾股定理,矩形的性质10.如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A. 15B. 18C. 20D. 24【答案】C【考点】相似三角形的判定与性质,旋转的性质二、填空题11.分解因式:a2﹣4a=________.【答案】a(a﹣4)【考点】因式分解-提公因式法12.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为________.【答案】3【考点】利用频率估计概率13.某种品牌手机经过4,5月份连续两次降价,每部售价由5000降到3600元,且5月份降价的百分率是4月份降价的百分率的2倍.设4月份降价的百分率为x,根据题意可列方程:________(不解方程).【答案】5000(1﹣x)(1﹣2x)=3600【考点】一元二次方程的实际应用-销售问题14.如图,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE,若∠B=30°,则∠CDE=________°.【答案】45【考点】菱形的判定与性质,翻折变换(折叠问题)15.如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD= 米,则路灯的灯柱BC高度应该设计为________米(计算结果保留根号).【答案】【考点】相似三角形的判定与性质,相似三角形的应用,解直角三角形16.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD 的面积为S2,若,则CD的长为________.【答案】【考点】反比例函数与一次函数的交点问题,反比例函数的实际应用三、解答题17.计算:(﹣2)0﹣()2+|﹣1|.【答案】解:原式=1﹣6+1=﹣4【考点】实数的运算18.如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.【答案】(1)证明:∵∠ABE+∠EBD+∠DBC=180°,∠A+∠AEB+∠EBA=180°,∵∠EBD=∠A=∠DCB,∴∠EBA=∠DBC,在△ABE与△CDB中,∴△ABE≌△CDB(AAS)(2)解:∵△ABE≌△CDB,∴BE=DB,∠AEB=∠DBC,∵∠CDB=60°,∠AEB=50°,∴∠DBC=50°,∴∠C=180°﹣60°﹣50°=70°,∴∠EBD=∠DCB=70°,∴∠BDE= .【考点】全等三角形的判定与性质19.如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.【答案】解:△POQ如图所示;【考点】勾股定理,作图—复杂作图20.随着道路交通的不断完善,某市旅游业快速发展,该市旅游景区有A、B、C、D、E等著名景点,市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2017年“五•一”期间,该市旅游景点共接待游客________万人,扇形统计图中A景点所对应的圆心角的度数是________,并补全条形统计图.________(2)在等可能性的情况下,甲、乙两个旅行团在A、B、D三个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.【答案】(1)50;108°;补全条形图如下,(2)解:画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率= =【考点】扇形统计图,条形统计图,列表法与树状图法21.如图,钝角△ABC中,AB=AC,BC=2 ,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB 于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.【答案】(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC(2)解:连接DE,如图,设⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE= BD=r,BE= r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF= r,∴EF=2DF= r,在Rt△CEF中,CE=2EF= r,而BC=2 ,∴r+ r=2 ,解得r= ,即⊙O的半径长为.【考点】圆周角定理,切线的性质,解直角三角形22.如图,▱ABCD位于直角坐标系中,AB=2,点D(0,1),以点C为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.(1)求点A,B,C的坐标.(2)将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.①求MN的长.________②点P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°得AQ,则OQ的最小值为________(直接写出答案即可)【答案】(1)解:∵四边形ABCD是平行四边形,∴CD=AB=2,∵CE⊥x轴,∴OE=2,∵点E是AB中点,∴AE=BE=1,∴OA=2﹣1=1.OB=OE+BE=3,∴A(1,0),B(3,0),∵D(0,1),∴C(2,1)(2)解:由(1)知,抛物线的顶点C(2,1),∴设抛物线的解析式为y=a(x﹣2)2+1,∵A(1,0)在抛物线上,∴a(1﹣2)2+1=0,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣2)2+1,①该抛物线向上平移m个单位恰好经过点D,设平移后的抛物线解析式为y=﹣(x﹣2)2+1+m,∵D(0,1),∴﹣(﹣2)2+1+m=1,∴m=4,∴平移后的抛物线解析式为y=﹣(x﹣2)2+5,令y=0,∴0=﹣(x﹣2)2+5,∴x=2± ,∴M(2+ ,0),N(2﹣,0),∴MN=2;【考点】待定系数法求二次函数解析式,二次函数的实际应用-几何问题23.如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.(1)当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.(2)若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.(3)求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.【答案】(1)解:作AH⊥BC于H,交MN于D.∵AB=AC,AH⊥BC,∴CH=HB=3,在Rt△ACH中,AH= =4,∵ME∥AH,∴= = ,∴CE=3x,EM=EF=4x,易证△MEC≌△NFB,∴CE=BF=3x,∴3x+4x+3x=6,∴x= ,∴EM= ,∴矩形MNFE的面积为平方米(2)解:由题意:100×4x•(6﹣6x)=2•[60× ×(6﹣6x)•(4﹣4x)+40×4x×3x],解得x= 或(3)解:由题意W=100×4x•(6﹣6x)+60× ×(6﹣6x)•(4﹣4x)+40×4x×3x=﹣1200x2+960x+720=﹣1200(x﹣)2+912,,∵﹣1200<0,∴x= 时,W有最大值,最大值为912元.【考点】相似三角形的判定与性质,一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题24.如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=m.(1)当m=6时,求AF的长.(2)在点P的整个运动过程中.①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围.②当矩形ABCD恰好有2个顶点落在⊙O上时,求m的值.(3)若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的m 的值.(直接写出答案即可)【答案】(1)解:如图1中,连接AE.在Rt△DPE中,∵DE=5,DP=AD﹣AP=4,∴PE= = ,在Rt△ADE中,AE= =5 ,∵∠PAF=90°,∴PF是⊙O的直径,∴∠PEF=∠ADF=90°,∵∠DAE=∠PFE,∴△ADE∽△FEP,∴= ,∴= ,∴PF= ,在Rt△PAF中,AF= = =13.(2)解:①tan∠PFE的值不变.理由:如图1中,∵∠PFE=∠DAE,∴tan∠PFE=tan∠DAF= = .②如图2中,当⊙O经过A、D时,点P与D重合,此时m=10.如图3中,当⊙O经过A、B时,在Rt△BCE中,BE= =10 ,∵tan∠PFE= ,∴PE=5 ,∴PD= =5,∴m=PA=5.如图4中当⊙O经过AC时,作FM⊥DC交DC的延长线于M.根据对称性可知,DE=CM=BF=5,在Rt△EFM中,EF= =5 ,∴PE= EF= ,∴PD= = ,∴m=AD﹣PD= ,综上所述,m=10或5或时,矩形ABCD恰好有2个顶点落在⊙O上(3)解:如图5中,当EC=CH时,根据对称性可知:PE=CH=EC=10,PD= =5 ,∴m=10﹣5 .如图6中当EC=EH=10时,在Rt△AEH中,AH= = =5 ,易知PF=AH=5 ,∵∴∴PE:EF:PF=1:2:,∴PE= ,在Rt△PDE中,DP= =2 ,∴m=PA=AD﹣PD=10﹣2 .如图7中当HC=HE时,延长FH交CD于M,则EM=CM=BF=5,HM= ,∴m=PA=HF=10﹣= .如图8中,当EH=EC时,PF=AH= = =5 ,∵PE:EF:PF=1:2:,∴PE= ,在Rt△PDE中,PD= =3 ,∴m=PA=AD+PD=10+3 ,综上所述,满足条件的m的值为10﹣5 或10﹣2 或或10+3 .【考点】圆的综合题,几何图形的动态问题。
温州瓯海区九年级第一次模拟测试数学试卷参考答案
A1B1 C1 A2 B2C2某某瓯海区九年级第一次模拟测试数学试卷参考答案 题号 1 2 3 4 5 6 7 8 9 10答案 A C C A B B D B C B二、填空题(本题有6小题,每小题5分,共30分)题号 11 12 13 14 15 16 答案 ab(1+b) 157 6 15 三 83三、解答题(本题有8小题,共80分)17.(本题10分)(1)解:()︒⋅-⎪⎭⎫ ⎝⎛-+-÷30tan 33200521603π =-2+1-1………………………………………………3分=-2………………………………………………………………5分(2)解:224x x -=1215x =,5分18.(本题8分)16cm19.(本题8分)解:(1)y=x (40-2x)=-2x2+40x…………………………4分(2)x=a b2-=440--=10……………………………………6分在0<x<20X 围内, y最大值=200………………………………7分答:当养鸡圈的宽为10米、长20米时,最大面积为200平方米。
………8分20.(本题9分)(1)如图△A 1B 1C 1就是所求的图形;…………3分 (2)如图△A 2B 2C 2就是所求的图形;…………6分 AO=133222=+点A 旋转到A 2所经过的路线长=1801390π=213π…9分21.(本题12分) 解:(1)直线OA 的函数解析式:y=x …………………………2分 双曲线的函数解析式:y=x 4…………………………4分(2)将直线OA 向上平移3个单位后,直线CD 解析式为y=x+3…………6分2008.12y=x+3 y=x4 得交点C (1,4),D (-4,-1)…………………………………………8分(3)设直线CD 与y 轴交点为E ,则点E (0,3)S △COD =S △COE +S △EOD =5.7243213=⨯+⨯…………………………12分 22.(本题9分)(1)该年报名参加丙组的人数为 25 人;……………………………………3分(2)该年级报名参加本次活动的总人数为 50 人,并补全频数分布直方图(略);……6分(3)设应从甲抽调x 名学生到丙组,根据题意得25+x=3(15-x)解得:x=5答:应从甲抽调5名学生到丙组。
2019浙江省温州市中考数学试题(解析版)
2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×10163.(4分)某露天舞台如图所示,它的俯视图是()A .B .C .D .4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A .B .C .D .5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y =B.y =C.y =D.y =7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G 在同一直线上,则的值为()A .B .C .D .二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=.12.(5分)不等式组的解为.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y =﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD =AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y =﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数.)3.(4分)某露天舞台如图所示,它的俯视图是()A .B .C .D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A .B .C .D .【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y =B.y =C.y =D.y =【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y =.故选:A.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π【分析】根据弧长公式计算.【解答】解:该扇形的弧长==3π.故选:C.【点评】本题考查了弧长的计算:弧长公式:l =(弧长为l,圆心角度数为n,圆的半径为R).8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD =0.3=,∵cosα=,∴sinα=,解得,AB =米,故选:B.【点评】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G 在同一直线上,则的值为()A .B .C .D .【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH =,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.【点评】本题源于欧几里得《几何原本》中对(a+b)(a﹣b)=a2﹣b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=(m+2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.(5分)不等式组的解为1<x≤9.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于57度.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°【点评】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE 的周长为12+8cm.【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO ,设CK=OK=x,则CO=IO=x,IK=x﹣x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK =x,则CO=IO=x,IK =x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK =IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE =BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【点评】本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE 为4分米.【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K ,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM =OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt △PKE中,EK==2(分米)∴BE=10﹣2﹣2=(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE ′中,E′J==2,∴B′E′=10﹣(2﹣2)=12﹣2,∴B′E ′﹣BE=4.故答案为5+5,4.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.【分析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式===.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点评】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【解答】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【点评】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点评】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.(10分)如图,在平面直角坐标系中,二次函数y =﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6﹣n,m),B2(﹣n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n 的值分别为,1.【点评】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD =AB时,求⊙O的直径长.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB ==8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD =AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB ==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF ==3,即⊙O的直径长为3.【点评】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b ≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.(14分)如图,在平面直角坐标系中,直线y =﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF 的长,由=tan∠EOF和n =﹣m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t =2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH ====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN =,列方程为2t﹣2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.【解答】解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC ==4;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM =OB=4,OE =BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN ==,∵S△ONE =EN•OF =ON•EM,∴OF ==,由勾股定理得:EF ===,∴tan∠EOF ===,∴==,∵n =﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C ==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s ==5,将或代入得,解得:,∴s =﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH =PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6﹣s=6﹣t +=7﹣t,∵cos∠QBH ====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t =;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s =t ﹣,∴Q3G =t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【点评】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.。
2019年浙江省温州市瓯海区中考数学一模考试卷
2019年浙江省温州市瓯海区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.在0,﹣0.5,﹣2,1这四个数中,最小的数是()A.0 B.﹣0.5 C.1 D.﹣22.如图是某班45名同学爱心捐款额的频数分布直方图如图,由几个小正方体组成的立体图形的俯视图是()A.B.C.D.4.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22242325242221 A.22℃B.23℃C.24℃D.25℃5.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD=120°,则∠A=()A.50°B.60°C.70°D.80°6.如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是()A.B.C.D.7.不等式2(x﹣1)≥x的解集在数轴上表示为()A.B.C.D.8.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.09.折叠矩形ABCD,使点D落在BC的边上点E处,并使折痕经过点A交CD于点F,若点E恰好为BC的中点,则CE:CF等于()A.:1 B.5:2 C.:1 D.2:110.如图,动点C在以AB为直径的半圆上,以BC,CA为边在△ABC的外侧分别作正方形BCED,正方形ACFH,当点C沿半圆从点A运动到点B过程中(点C 不与点A,B重合),则△ABD与△ABH的面积之和变化情况是()A.变小再变大B.不变C.变大再变小D.无法确定二、填空题(本大题共6小题,每小题5分,共30分)11.分解因式:a2﹣3a=.12.小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,“乒乓球”对应的扇形的圆心角度数是度.13.若圆锥底面的半径为3,母线长为6,则它的侧面展开图的面积为.(结果保留π)14.如图,将△ABC沿BC方向平移3cm得到△DEF,如果四边形ABFD的周长是28cm,则△ABC的周长是cm.15.如图,将△ABC 沿点C按逆时针方向旋转至△A′B′C′,使B′C⊥AB,A′B′分别交AC,AB于点D,E,已知∠ACB=90°,AC=4,BC=3,则DE的长为.16.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,若S1﹣S2的值最大为1,则k的值为.三、解答题(本大题共8小题,共80分)17.(10分)(1)计算:(﹣2017)0+(﹣2)2+.(2)化简:(a+b)2﹣2b(a﹣b).18.(8分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求从袋中摸出一个球是红球的概率;(2)摸出1个球,记下颜色后不放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).19.(8分)如图,在所给的6×6网格中每个小正方形的边长都为1,线段AB 的端点都在格点上,按下列要求画正方形(另两个顶点也都在格点上),并直接写出所画正方形的面积.(1)在图甲中画出以AB为边的正方形;(2)在图乙中画出以AB为对角线的正方形.(注:图甲、乙在答题纸上)20.(8分)如图,线段AB⊥BC于点B,CD⊥BC于点C,连结AD,点E是AD 的中点,连结BE并延长交CD于F点.(1)请说明△ABE≌△DFE的理由;(2)连结CE,若CE⊥AD,DE=2CE,CD=,求BF的长.21.(10分)如图,在△ACB中,AB=AC=5,BC=6,点D在△ACB外接圆的上,AE⊥BC于点E,连结DA,DB.(1)求tan∠D.(2)作射线CD,过点A分别作AH⊥BD,AF⊥CD,垂足分别为H,F,求证:DH=DF.22.(10分)浙江省这几年开展污水共治,为了增加污水处理能力,某污水处理厂决定购进A型与B型污水处理设备若干台,下表是A,B型号污水处理设备的每台售价与每日污水处理量的相关数据.型号每台售价(万元)每台每日污水处理量(吨)A型18160B型12150(1)现共花费了180万元购买A型与B型污水处理设备,若要使每日的污水处理量增加1730吨,那么A,B型号需要分别购进多少台?(2)在保持购买金额180万元不变的情况下,若要使购进A型台数不少于B型台数的一半,则如何分配购进A型与B型污水处理设备数量,使得增加的污水处理能力最大?此时增加的最大污水处理能力为多少?23.(12分)如图1,抛物线y=a(x﹣3)2(a>0)与x轴相交于点M,与y 轴相交于点A,过点A作AB∥x轴交抛物线于点B,交对称轴于点N,以AB为边向下作等边三角形ABC.(1)求CN的长度;(2)当a=3时,求直线BC的解析式;(3)点D是抛物线BM段上的一任意点,连结CD和BD,延长BD交对称轴于E 点.①如图2,若点A、C、D三点在一条直线上,当△CBD的面积是△CDE的面积的2倍时,求a的值;②如图3,若CD∥AB,当=时,请直接写出a的值.24.(14分)如图,点C是线段AB的中点,过点C作CD⊥AB,且CD=AB=8,点P是线段AB上一动点(不包括端点A,B),点Q是线段CD上的动点,CQ=2PC,过点P作PM⊥AD于M点,点N是点A关于直线PM的对称点,连结NQ,设AP=x.(1)则AD=,AM=(AM用含x的代数式表示);(2)当点P在线段AC上时,请说明∠MPQ=90°的理由;(3)若以NQ为直径作⊙O,在点P的整个运动过程中,①当⊙O与线段CD相切时,求x的值;②连结PN交⊙O于I,若NI=1时,请直接写出....所有x的值.2017年浙江省温州市瓯海区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.在0,﹣0.5,﹣2,1这四个数中,最小的数是()A.0 B.﹣0.5 C.1 D.﹣2【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣0.5<0<1,∴在0,﹣0.5,﹣2,1这四个数中,最小的数是﹣2.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图是某班45名同学爱心捐款额的频数分布直方图(2017•瓯海区一模)如图,由几个小正方体组成的立体图形的俯视图是()A. B. C. D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,考查了学生细心观察能力,属于基础题.4.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22242325242221 A.22℃B.23℃C.24℃D.25℃【考点】W4:中位数.【分析】将数据从小到大排列,根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选:B.【点评】本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD=120°,则∠A=()A.50°B.60°C.70°D.80°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠A=∠ACD﹣∠B=70°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是()A. B. C. D.【考点】T1:锐角三角函数的定义.【分析】根据勾股定理求得BC=3,再根据三角函数定义即可得.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,AC=4,∴BC===3,则sinA==,故选:B.【点评】本题主要考查勾股定理和三角函数,熟练掌握勾股定理和三角函数的定义是解题的关键.7.不等式2(x﹣1)≥x的解集在数轴上表示为()A. B. C. D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】先去括号、移项、合并可解得x≥2,然后根据用数轴表示不等式解集的方法对各选项进行判断.【解答】解:去括号得2x﹣2≥x,移项得2x﹣x≥2,合并得x≥2.故选A.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.8.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.0【考点】63:分式的值为零的条件.【分析】分式的值为0时,分子等于0且分母不等于0.【解答】解:依题意得:x2﹣4=0且x﹣2≠0,解得x=﹣2.故选:C.【点评】本题考查了分式的值为零的条件.注意:“分母不为零”这个条件不能少.9.折叠矩形ABCD,使点D落在BC的边上点E处,并使折痕经过点A交CD于点F,若点E恰好为BC的中点,则CE:CF等于()A.:1 B.5:2 C.:1 D.2:1【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据翻折的性质可得AE=AD,∠AEF=∠D=90°,然后求出AE=2BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠BAE=30°,再求出∠CEF=30°,然后根据含30°角的直角三角形两直角边的关系求解即可.【解答】解:由翻折得,AE=AD,∠AEF=∠D=90°,在矩形ABCD中,AD=BC,∵点E恰好为BC的中点,∴BC=2BE,∴AE=2BE,由∵∠B=90°,∴∠BAE=30°,∵∠BAE+∠AEB=90°,∠CEF+∠AEB=180°﹣∠AEF=180°﹣90°=90°,∴∠CEF=∠BAE=30°,∴CE:CF=:1.故选A.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,以及含30°角的直角三角形两直角边的关系,翻折前后对应边相等,对应角相等.10.如图,动点C在以AB为直径的半圆上,以BC,CA为边在△ABC的外侧分别作正方形BCED,正方形ACFH,当点C沿半圆从点A运动到点B过程中(点C不与点A,B重合),则△ABD与△ABH的面积之和变化情况是()A.变小再变大B.不变C.变大再变小D.无法确定【考点】E7:动点问题的函数图象.【分析】延长HA,DB交于G,根据三角形面积公式可得△ABD的面积等于正方形ACFH面积的一半,即BG2,△ABH的面积等于正方形BCED面积的一半,即AG2,再根据勾股定理可得△ABD与△ABH的面积之和等于AB2,依此即可求解.【解答】解:延长HA,DB交于G,△ABD的面积=AH•BG=BG2,△ABH的面积=BD•AG=AG2,在Rt△AGB中,AG2+BG2=AB2,则△ABD与△ABH的面积之和=BG2+AG2=AB2,即不变.故选:B.【点评】考查了动点问题的函数图象,勾股定理,关键是作出辅助线得出三角形面积公式可得△ABD的面积等于BG2,△ABH的面积等于AG2.二、填空题(本大题共6小题,每小题5分,共30分)11.分解因式:a2﹣3a=a(a﹣3).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣3a=a(a﹣3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,“乒乓球”对应的扇形的圆心角度数是72度.【考点】VB:扇形统计图.【分析】用扇形图中乒乓球的百分比乘以360度即可得.【解答】解:由扇形统计图知,“乒乓球”对应的扇形的圆心角度数是360°×20%=72°,故答案为:72.【点评】本题主要考查扇形统计图,在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.13.若圆锥底面的半径为3,母线长为6,则它的侧面展开图的面积为18π.(结果保留π)【考点】MP:圆锥的计算.【分析】先计算出圆锥底面圆的周长2π×3,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.【解答】解:圆锥的侧面展开图的面积=×2π×3×6=18π(cm2).故答案为:18π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.14.如图,将△ABC沿BC方向平移3cm得到△DEF,如果四边形ABFD的周长是28cm,则△ABC的周长是22cm.【考点】Q2:平移的性质.【分析】先利用平移的性质得AC=DF,AD=CF=3,然后利用AB+BC+CF+DF+AD=28得到AB+BC+AC=22,从而得到△ABC的周长为22cm.【解答】解:∵△ABC沿BC方向平移3cm得到△DEF,∴AC=DF,AD=CF=3,∵四边形ABFD的周长是28cm,即AB+BC+CF+DF+AD=28,∴AB+BC+AC+3+3=28,即AB+BC+AC=22,∴△ABC的周长为22cm.故答案为22.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.15.如图,将△ABC 沿点C按逆时针方向旋转至△A′B′C′,使B′C⊥AB,A′B′分别交AC,AB于点D,E,已知∠ACB=90°,AC=4,BC=3,则DE的长为 1.5.【考点】R2:旋转的性质;KQ:勾股定理.【分析】由旋转的性质得到A′C=AC=4,B′C=BC=3,∠A′CB′=∠ACB=90°,∠B=∠B′,根据勾股定理得到A′B′=5,证得∠A=∠AED,由等腰三角形的判定得到AD=DE,求得A′D=CD,根据直角三角形的性质即可得到结论.【解答】解:∵将△ABC 沿点C按逆时针方向旋转至△A′B′C′,∴A′C=AC=4,B′C=BC=3,∠A′CB′=∠ACB=90°,∠B=∠B′,∴A′B′=5,∵B′C⊥AB,∴∠B′EB=∠A,∵∠AED=∠B′EB,∴∠A=∠AED,∴AD=DE,∵∠A=∠A′,∠ADE=∠A′DC,∴∠A′=∠A′CD,∴A′D=CD,∴CD=A′B′=2.5,∴DE=AD=1.5.【点评】本题考查了旋转的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.16.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,若S1﹣S2的值最大为1,则k的值为4+4.【考点】GB:反比例函数综合题.【分析】如图连接BC、O′C,作CH⊥x轴于H.首先证明四边形BHCO′是正方形.推出∠ABC=45°,推出△ACB是等腰直角三角形,由S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,推出△DBC的面积最大时,S1﹣S2的值最大,推出当DO′⊥BC时,△DBC 的面积最大,可得•m•(m+m)﹣•2m•m=1,解方程即可解决问题.【解答】解:如图连接BC、O′C,作CH⊥x轴于H.由题意⊙O′与反比例函数图象均关于直线y=x对称,∴点A、C关于直线y=x对称,设A(m,2m)则C(2m,m),∴BO′=CH=m,BO′∥CH,∴四边形BHCO′是平行四边形,∵BH=CH,∠BHC=90°,∴四边形BHCO′是正方形.∴∠ABC=45°,∴△ACB是等腰直角三角形,∵S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,∴△DBC的面积最大时,S1﹣S2的值最大,∴当DO′⊥BC时,△DBC 的面积最大,∴•m•(m+m)﹣•2m•m=1,∴m2=2(+1),∵k=2m2,∴k=4+4,故答案为4+4.【点评】本题考查反比例函数综合题、圆的有关性质、正方形的性质、等腰直角三角形的性质、轴对称的性质等知识,解题的关键是学会添加辅助线,构造特殊四边形解决问题,学会用转化的思想思考问题,属于中考常考题型.三、解答题(本大题共8小题,共80分)17.(10分)(2017•瓯海区一模)(1)计算:(﹣2017)0+(﹣2)2+.(2)化简:(a+b)2﹣2b(a﹣b).【考点】4A:单项式乘多项式;4C:完全平方公式;6E:零指数幂.【分析】(1)根据零指数幂、二次根式的性质、有理数的乘方分别求出每一部分的值,再求出结果即可;(2)先算乘法,再合并同类项即可.【解答】解:(1)原式=1+4+2=5+2;(2)原式=a2+2ab+b2﹣2ab+2b2=a2+3b2.【点评】本题考查了完全平方公式,零指数幂,二次根式的性质,有理数的乘方,单项式乘以多项式等知识点,能灵活运用性质进行计算和化简是解此题的关键,注意运算顺序.18.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求从袋中摸出一个球是红球的概率;(2)摸出1个球,记下颜色后不放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).【考点】X6:列表法与树状图法.【分析】(1)根据概率公式用红球的个数除以总球的个数即可得出答案;(2)根据题意先画出树状图,求出总情况数,再根据概率公式即可得出答案.【解答】解:(1)∵布袋里装有3个球,其中2个红球,1个白球,∴从袋中摸出一个球是红球的概率是:;(2)根据题意画图如下:∵共有6种情况,两次摸出的球恰好颜色相同的有2种情况,∴两次摸出的球恰好颜色相同的概率是:=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.如图,在所给的6×6网格中每个小正方形的边长都为1,线段AB的端点都在格点上,按下列要求画正方形(另两个顶点也都在格点上),并直接写出所画正方形的面积.(1)在图甲中画出以AB为边的正方形;(2)在图乙中画出以AB为对角线的正方形.(注:图甲、乙在答题纸上)【考点】N4:作图—应用与设计作图;LE:正方形的性质.【分析】(1)根据正方形的边AB=,可得正方形ABCD的面积为10;(2)根据正方形的对角线AB=,可得正方形ABCD的面积为5.【解答】解:(1)如图甲所示,正方形ABCD的面积为10;(2)如图乙所示,正方形ABCD的面积为5.【点评】本题主要考查了正方形的性质以及作图,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.如图,线段AB⊥BC于点B,CD⊥BC于点C,连结AD,点E是AD的中点,连结BE并延长交CD于F点.(1)请说明△ABE≌△DFE的理由;(2)连结CE,若CE⊥AD,DE=2CE,CD=,求BF的长.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)根据垂直于同一直线的两直线互相平行可得AB∥CD,根据两直线平行,内错角相等可得∠A=∠D,∠ABE=∠DFE,然后利用“角角边”证明即可;(2)设CE=x,表示出DE=2x,在Rt△CDE中,利用勾股定理列方程求解即可得到CE,再根据全等三角形对应边相等可得BE=EF,然后根据直角三角形斜边上的中线等于斜边的一半可得BF=2CE.【解答】(1)证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∴∠A=∠D,∠ABE=∠DFE,∵点E是AD的中点,∴AE=DE,在△ABE≌△DFE中,,∴△ABE≌△DFE(AAS);(2)解:设CE=x,∵DE=2CE,∴DE=2x,∵CE⊥AD,CD=,在Rt△CDE中,根据勾股定理得,CE2+DE2=CD2,∴x2+(2x)2=()2,解得x=1,由(1)可知△ABE≌△DFE,∴BE=EF,又∵CD⊥BC,∴BF=2CE=2.【点评】本题考查了全等三角形的判定与性质,平行线的判定与性质,勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握三角形全等的判定方法是解题的关键.21.(10分)(2017•瓯海区一模)如图,在△ACB中,AB=AC=5,BC=6,点D 在△ACB外接圆的上,AE⊥BC于点E,连结DA,DB.(1)求tan∠D.(2)作射线CD,过点A分别作AH⊥BD,AF⊥CD,垂足分别为H,F,求证:DH=DF.【考点】MA:三角形的外接圆与外心;KH:等腰三角形的性质;T7:解直角三角形.【分析】(1)根据等腰三角形的性质求出EC,根据勾股定理求出AE,根据圆周角定理得到∠D=∠C,根据正切的概念计算即可;(2)根据等腰三角形的性质、角平分线的性质定理证明即可.【解答】(1)解:∵AB=AC,AE⊥BC,∴EC=BC=3,∴AE==4,∴tan∠C==,由圆周角定理得,∠D=∠C,∴tan∠D=;(2)证明:∵AB=AC,∴∠ACB=∠ABC,又∠ACB=∠ADH,∠ADF=∠ABC,∴∠ADH=∠ADF,∴∠DAH=∠DAF,又AH⊥BD,AF⊥CD,∴DH=DF.【点评】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理、等腰三角形的性质、圆内接四边形的性质是解题的关键.22.(10分)(2017•瓯海区一模)浙江省这几年开展污水共治,为了增加污水处理能力,某污水处理厂决定购进A型与B型污水处理设备若干台,下表是A,B型号污水处理设备的每台售价与每日污水处理量的相关数据.型号每台售价(万元)每台每日污水处理量(吨)A型18160B型12150(1)现共花费了180万元购买A型与B型污水处理设备,若要使每日的污水处理量增加1730吨,那么A,B型号需要分别购进多少台?(2)在保持购买金额180万元不变的情况下,若要使购进A型台数不少于B型台数的一半,则如何分配购进A型与B型污水处理设备数量,使得增加的污水处理能力最大?此时增加的最大污水处理能力为多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到相应的不等式组和一次函数,从而可以解答本题.【解答】解:(1)设A,B型号需要分别购进x台、y台,,解得,,即A,B型号需要分别购进8台、5台;(2)设购进A型污水处理设备a台,增加的污水处理为w吨,,解得,,∵是整数,∴a是偶数,∵w=160a+150×(15﹣)=﹣65a+2250,∴当a=6时,w取得最大值,此时w=1860,∴15﹣=15﹣=6,即购进A型6台与B型6台时,使得增加的污水处理能力最大,此时增加的最大污水处理能力是1860吨.【点评】本题考查一次函数的应用,二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答.23.(12分)(2017•瓯海区一模)如图1,抛物线y=a(x﹣3)2(a>0)与x 轴相交于点M,与y轴相交于点A,过点A作AB∥x轴交抛物线于点B,交对称轴于点N,以AB为边向下作等边三角形ABC.(1)求CN的长度;(2)当a=3时,求直线BC的解析式;(3)点D是抛物线BM段上的一任意点,连结CD和BD,延长BD交对称轴于E 点.①如图2,若点A、C、D三点在一条直线上,当△CBD的面积是△CDE的面积的2倍时,求a的值;②如图3,若CD∥AB,当=时,请直接写出a的值.【考点】HF:二次函数综合题.【分析】(1)由题意可知抛物线的对称轴为x=3,故此可得到AB=6,然后依据NC=AC•sin60°求解即可;(2)当a=3时,y=3(x﹣3)2,然后可求得B、C两点的坐标,最后利用待定系数法求解即可;(3)①过点D作DF⊥MN,垂足为F,则DF∥NB.先证明△DEF∽△BEN,从而可得到=,则=,然后可求得DF的长为1,然后求得点N和点F的坐标,最后依据FC=FD列方程求解即可;②设CD=m,则点D的纵坐标为m2a,即CM=m2a,依据题意可得到ME=2m2a,最后依据=列出关于m的方程可求得m的值,依据MC=NM﹣NC=m2a列出关于a 的方程进行求解即可.【解答】解:(1)y=a(x﹣3)2,∴抛物线的对称轴为x=3,∵点A与点B关于x=3对称,∴AB=6.∵△ABC为等边三角形,AB=6,∴AC=6,∠NAC=60°.∴NC=AC•sin60°=6×=3.(2)当a=3时,y=3(x﹣3)2.把x=0代入得:y=27,∴点B的坐标为(6,27).∴点C的坐标为(3,27﹣3).设直线BC的解析式为y=kx+b,则,解得:k=,b=27﹣6,∴直线BC的解析式为y=x+27﹣6.(3)①过点D作DF⊥MN,垂足为F,则DF∥NB.∵DF∥BN,∴△DEF∽△BEN,∴=.=2S△CDE,∵S△CBD∴=即=.∴DF=1,即D的坐标为(4,a),∴F(3,a).将x=0代入抛物线的解析式得:y=9a,∴N(3,9a).∴CF=9a﹣a﹣3.∵∠CDF=60°.∴CF=DF,即9a﹣a﹣3=8a﹣3=,解得:a=.②设CD=m,则点D的纵坐标为m2a,即CM=m2a.∵=,∴ME=2m2a.∵CD∥AB,∴=即=.∵m≠0,a≠0,∴2m2﹣9m+9=0,解得m=或m=3(舍去).∴a=9a﹣3,解得:a=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的对称性、等边三角形的性质、特殊锐角三角函数、相似三角形的性质和判定,依据题意得出相关线段的比例关系,然后列出关于m或a的方程是解题的关键.24.(14分)(2017•瓯海区一模)如图,点C是线段AB的中点,过点C作CD ⊥AB,且CD=AB=8,点P是线段AB上一动点(不包括端点A,B),点Q是线段CD上的动点,CQ=2PC,过点P作PM⊥AD于M点,点N是点A关于直线PM 的对称点,连结NQ,设AP=x.(1)则AD=4,AM=x(AM用含x的代数式表示);(2)当点P在线段AC上时,请说明∠MPQ=90°的理由;(3)若以NQ为直径作⊙O,在点P的整个运动过程中,①当⊙O与线段CD相切时,求x的值;②连结PN交⊙O于I,若NI=1时,请直接写出....所有x的值.【考点】MR:圆的综合题.【分析】(1)在Rt△ACD中,利用勾股定理即可求出AD,根据cosA==,构建方程即可求出AM.(2)由tan∠D=tan∠PQC,推出∠D=∠PQC,推出PQ∥AD即可解决问题.(3)①分两种情形当P在线段AC上,即0<x≤4时.当P在线段BC上,即4<x<8时,分别构建方程即可解决问题.②分两种情形当P在AC上,当P在线段BC上,分别构建方程即可解决问题.【解答】解:(1)在Rt△ACD中,AC=BC=AB=4,CD=AB=8,∴AD====4.∵cosA==,∴=,∴AM=x.故答案为4,x;(2)如图1中,∵tan∠D==,tan∠PQC==,∴tan∠D=tan∠PQC,∴∠D=∠PQC,∴PQ∥AD,∵PM⊥AD,∴PM⊥PQ,∴∠MPQ=90°;(3)①当P在线段AC上,即0<x≤4时,∵⊙O与BC相切,∴NQ⊥CD,∵AP=x,∴CP=4﹣x,CQ=2PC=8﹣2x,DQ=8﹣(8﹣2x)=2x,DN=AD﹣2AM=4﹣x,∵cos∠D==,∴=,∴x=.当P在线段BC上,即4<x<8时,同理可得=,∵CP=AP﹣AC=x﹣4,CQ=2CP=2x﹣8,DQ=CD﹣CQ=16﹣2x,∴=,∴x=.综上所述,x=或时,⊙O与CD相切.②当P在AC上时,由题意PN=AP=x,易证△PQI≌△PQC,可得PI=PC=4﹣x,∵IN=1,∴PI+IN=PN,∴4﹣x+1=x,∴x=.当P在线段BC上,设PN与CD的交点为点E,作NF⊥AB于F,易知FN=x,PF=x,则CE=,PE=,∴EN=x﹣=,EQ=(2x﹣8)﹣=,EI=EN﹣IN=,在Rt△EQI中,cos∠IEQ==,∴=×,∴x=.【点评】本题考查圆综合题、切线的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用构建方程的思想思考问题,学会分类讨论不能漏解,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省温州市瓯海区2019年中考数学一模试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+3)+(﹣1)的结果是()A.2B.﹣4C.4D.﹣2【分析】根据有理数的加法计算即可.【解答】解:(+3)+(﹣1)=2,故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.2.如图,一个长方体上面放着一个圆柱体,则它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从物体正面看,下面是一个长比较长、宽比较短的矩形,它的中间是一个较小的矩形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.3.在开展“爱心捐助某灾区”的活动中,某团支部8名团员捐款的数额(单位:元)分别为:3,5,6,5,5,6,5,10,这组数据的众数是()A.3元B.5元C.6元D.10元【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:其中5出现的次数最多,所以众数是5.故选:B.【点评】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.4.不等式组的解是()A.x<1B.x≥3C.1≤x<3D.1<x≤3【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为1<x≤3,故选:D.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.5.一个多边形有5条边,则它的内角和是()A.540°B.720°C.900°D.1080°【分析】根据多边形的内角和公式即可得到结论.【解答】解:∵多边形有5条边,∴它的内角和=(5﹣2)×180°=540°,故选:A.【点评】本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.6.在一个不透明的袋中装有9个只有颜色不同的球,其中4个红球、3个黄球和2个白球.从袋中任意摸出一个球,不是白球的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有9个小球,其中不是白球的有7个,∴摸出一个球不是白球的概率是,故选:B.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵所用天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.【分析】设甲班每天植x棵,则乙班每天植(x﹣5)棵,根据甲班植80棵所用天数与乙班植70棵树所用的天数相等,即可得出关于x的分式方程,此题得解.【解答】解:设甲班每天植x棵,则乙班每天植(x﹣5)棵,依题意,得:=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8.已知(0,y1),(,y2),(3,y3)是抛物线y=ax2﹣4ax+1(a是常数,且a<0)上的点,则()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y3【分析】求出抛物线的对称轴为直线x=2,然后根据二次函数的增减性解答.【解答】解:抛物线的对称轴为直线x=﹣=2,∵a<0,∴抛物线开口方向向下,(3,y3)关于对称轴x=2的对称点为(1,y3),∵0<1<<2∴y1<y3<y2.故选:C.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出抛物线的对称轴解析式是解题的关键.9.如图,将△ABC绕点C按逆时针方向旋转得△A′B′C,且A′点在AB上,A′B′交CB于点D,若∠BCB′=α,则∠CA′B′的度数为()A.180°﹣αB.90°C.180°D.90°【分析】由旋转的性质可得AC=A'C,∠A=∠CA'B',∠ACA'=∠BCB'=α,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点C按逆时针方向旋转得△A′B′C,∴AC=A'C,∠A=∠CA'B',∠ACA'=∠BCB'=α,∴∠A=∠CA'B'==90°﹣故选:B.【点评】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.10.如图,已知AE=10,点D为AE上的一点,在AE同侧作正方形ABCD,正方形DEFH,G,M分别为对角线AC,HE的中点,连结GM.当点D沿着线段AE由点A向点E方向上移动时,四边形AGME的面积变化情况为()A.不变B.先减小后增大C.先增大后减小D.一直减小【分析】连接DG、DM,把四边形面积分成三个三角形面积,设AD=x,则DE=10﹣x,则这三个三角形的面积均可用x表示出来,根据所得的函数式分析其变化规律.【解答】解:连接DG、DM.设AD=x,则DE=10﹣x,∵四边形ABCD和四边形DEFH都是正方形,且G、M为对角线的中点,∴△ADG和△DME都是等腰直角三角形.∴DG=x,DM=(10﹣x).∴四边形AGME的面积=△ADG面积+△DME面积+△GDM面积==,(0<x<10)这是一个开口向上,对称轴是直线x=5的抛物线,所以其面积变化是先减小后增大,当x=5时,有最小值.故选:B.【点评】本题主要考查了正方形的性质、二次函数的性质,解题的关键是分割一般四边形成特殊三角形,构成与面积相关的函数式,利用函数式解释几何图形面积的变化规律.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣9=(a+3)(a﹣3).【分析】a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.解.【解答】解:该地这10天最低气温的平均数是=4(℃),故答案为:4.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式.13.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为(﹣1,﹣2).【分析】根据关于x轴对称点坐标性质,让横坐标不变,纵坐标互为相反数即可得到点P 关于x轴的对称点的坐标.【解答】解:∵两点关于x轴对称,∴对应点的横坐标为﹣1,纵坐标为﹣2.故答案为:(﹣1,﹣2).【点评】此题主要考查了关于x轴对称的点的特点;用到的知识点为:两点关于x轴对称,纵坐标互为相反数,横坐标不变.14.已知线段AB=6cm,P是线段AB的中点,C是直线AB上一点,且AC=AB,则CP=1或5cm【分析】此题分两种情况:①若点C是线段AB上一点,②若点C是线段BA延长线上一点,然后根据中点定义可得AP=AB,再根据AC=AB结合图形进行计算即可.【解答】解:∵AB=6cm,P是线段AB的中点,AC=AB,∴AP=AB=3cm,AC=AB=2cm,①若点C是线段AB上一点,如图1,CP=AP﹣AC=3﹣2=1(cm);②若点C是线段BA延长线上一点,如图2,CP=AP+AC=3+2=5(cm).故答案为:1或5.【点评】此题主要考查两点之间的距离,关键是正确画出图形,分类讨论.15.如图,等腰三角形ABC的三个顶点分别落在反比例函数y=与y=的图象上,并且底边AB经过原点O,则cos∠A=.【分析】根据反比例函数图象的对称性可得OA=OB,根据等腰三角形三线合一可证明△AOE∽△OCF,根据相似三角形面积比等于相似比的平方可得OC2=5OA2,由勾股定理得出AC=OA即可求得结果.【解答】解:∵函数y=﹣图象关于原点对称,∴OA=OB,连接OC,过A作AE⊥x轴于E,过C作CF⊥x轴于F,∵△ABC是底边为AB的等腰三角形,∴AO⊥OC,∴∠AOC=90°,∵AE⊥x轴,CF⊥x轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE,∴△AOE∽△OCF,∴=()2,∵顶点A在函数y=﹣图象的分支上,顶点C在函数y=图象的分支上∴S△AOE=,S△OCF=,∴=,即OC2=5OA2,在Rt△AOC中,AC==OA,∴cos∠A==.故答案为.【点评】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等腰三角形等知识点,难度不大,属于中档题.16.图甲是小明设计的花边图案作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).该矩形图案既是轴对称图形,又是中心对称图形.图乙中,上、下两个半圆的面积之和为4πcm2,中间阴影菱形的一组对边与EF平行,且菱形的面积比4个角上的阴影三角形的面积之和大12cm2,则AB的长度为cm.【分析】由面积求圆的半径,设AE=2k,AF=3k,由平行将菱形的对角线用比例表示,设MO=3m,OQ=2m,根据已知条件推导出m﹣k=,m+k=6,进而求值;【解答】解::作菱形对角线交于点O,MO,QO分别是对角线的一半,设左侧三角形与对角线的一个交点N,∵,设AE=2k,AF=3k,由上下两个半圆面积和4π,∴半径r=2,∵中间阴影菱形的一组对边与EF平行,∴,设MO=3m,OQ=2m,在△NPQ中,,∴AB=6m+4,NQ=2k+2﹣2m,∴NP=3k+3﹣3m,∴AB=6k+6﹣6m+6k,∴m﹣k=,菱形的面积比4个角上的阴影三角形的面积之和大12cm2,∴12k2+12=12m2,∴(m+k)(m﹣k)=1,∴m+k=6,∴m=,∴AB=;故答案;【点评】本题考查菱形,三角形的性质;利用比例关系,三角形的相似,得到边之间的关系是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:+|1|﹣20190(2)化简:(a﹣b)2﹣2a(a﹣b)【分析】(1)运用实数的运算即可得出结果;(2)运用整式的运算即可求得.【解答】解:(1)+|1|﹣20190=+1﹣1=(2)(a﹣b)2﹣2a(a﹣b)=a2﹣2ab+b2﹣2a2+2ab=﹣a2+b2【点评】本题考查实数的运算及整式的运算,计算题在过程中务必要细心,按照相应运算次序及法则进行计算.18.如图,点E,F分别在▱ABCD的边AD,CB的延长线上,且EF⊥AB,分别交AB,CD 于点G,H,满足EH=HG=GF.(1)证明:△DEH≌△BFG;(2)若AE=10,EH=4,求BG的长【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,由平行线的性质得出∠E=∠F,由ASA证明△DEH≌△BFG即可;(2)由(1)得:BG=DH,证明DH是△AGE的中位线,得出DH=AG,由勾股定理求出AG==6,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠E=∠F,∵EF⊥AB,∴EF⊥CD,∴∠EHD=∠FGB,在△DEH和△BFG中,,∴△DEH≌△BFG(ASA);(2)解:由(1)得:BG=DH,∵AB∥CD,EH=HG,∴DH是△AGE的中位线,∴DH=AG,∵AE=10,EH=4,∴EG=2EH=8,∴AG==6,∴DH=3,∴BG=3.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、三角形中位线定理、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.19.小红随机调查了若干市民某天租用公共自行车的骑车时间t(单位:分)的情况,将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)求这次被调查的总人数,并补全条形统计图(2)如果骑自行车的平均速度为12km/h,请估算,在该天租用公共自行车的市民中,骑车路程不超过4km的人数所占的百分比.【分析】(1)根据条形图得到B组人数,根据扇形图得到B组人数所占的百分比,计算即可;(2)根据各组市民骑车时间计算,得到答案.【解答】解:(1)由条形图可知,B组人数为18人,由扇形图可知,B组人数所占的百分比为36%,则这次被调查的总人数为:18÷36%=50,∴C组人数为:50﹣14﹣18﹣5=13(人),补全条形统计图如图所示:(2)12km/h=200m/分,则A组合B租市民骑车路程不超过4km,∴骑车路程不超过4km的人数所占的百分比为:18÷50×100%=36%.【点评】本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.如图,在方格纸中,点A,B在格点上,请按要求画出以AB为边的格点四边形.(1)在图1中画出一个面积为6的平行四边形ABCD.(2)在图2中画出一个面积为8的平行四边形ABCD.注:图1、图2在答题纸上【分析】(1)根据要求画出平行四边形即可;(2)根据要求画出平行四边形即可.【解答】解:(1)如图1所示:四边形ABCD即为所求:(2)如图2所示:四边形ABCD即为所求.【点评】本题考查作图﹣应用与设计作图,平行四边形的判定和性质,勾股定理,无理数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.如图,抛物线y=ax2+bx(a<0)交x轴正半轴于点A(4,0),顶点B到x轴的距离是4,CD∥x轴交抛物线于点C,D,连结BC,BD(1)求抛物线的解析式(2)若△BCD是等腰直角三角形,求CD的长【分析】(1)根据题意知顶点B(2,4),故设抛物线解析式是:y=a(x﹣2)2+4(a≠0),将点A的坐标代入求得a的值.(2)根据抛物线的对称性质得到BC=BD,所以∠CBD=90°.设C(x,x2﹣4x),则点D的坐标为(4﹣x,x2﹣4x),利用勾股定理求得列出关于x的方程,从而求得点C、D的坐标,易得CD的长度.【解答】解:(1)由题意知,顶点B的坐标是(2,4),故设抛物线解析式是:y=a(x ﹣2)2+4(a≠0),把A(4,0)代入,得a(4﹣2)2+4=0.解得a=﹣1.故抛物线的解析式为:y=﹣(x﹣2)2+4或y=﹣x2+4x.(2)∵CD∥x轴且点B是抛物线的顶点坐标,∴点C与点D关于直线x=2对称.∴BC=BD.又△BCD是等腰直角三角形,∴BC2+BD2=CD2,即2BC2=CD2.设C(x,﹣x2+4x),则D(4﹣x,﹣x2+4x),∵B(2,4),∴2[(2﹣x)2+(4+x2﹣4x)2]=(x+x﹣4)2.整理,得(x﹣2)4﹣(x﹣2)2=0.解得x﹣2=0或x﹣2=±1则x1=x2=2(舍去),x3=1,x4=3(舍去).∴CD=|2x﹣4|=2.综上所述,CD的长度为2.【点评】考查了二次函数综合题,需要熟练掌握待定系数法确定函数关系式,抛物线的对称性质,二次函数图象上点的坐标特征,两点间的距离公式以及勾股定理的应用,综合性比较强,但是难度不是很大.22.如图,在⊙O中,AB=AC,弦AB⊥CD于点E,BF⊥AB交AD的延长线于点F,连结BD.(1)证明:BD=BF.(2)连结CF,若tan∠ACD=,BF=5,求CF的长.【分析】(1)连接BC,根据圆内接四边形的性质得到∠BDF=∠ACB,根据平行线的性质得到∠F=∠ADC,根据等腰三角形的判定定理即可得到结论;(2)过F作FG⊥CD交CD的延长线于G,得到四边形BFGE是矩形,根据矩形的性质得到GF=BE,EG=BF=5,设DE=3k,BE=4k,得到BD=BF=5k=5,根据相似三角形的性质得到AE=6,根据勾股定理即可得到结论.【解答】解:(1)连接BC,∴∠BDF=∠ACB,∵AB⊥CD,BF⊥AB,∴CD∥BF,∴∠F=∠ADC,∵AB=AC,∴=,∴∠ADC=∠ACB,∴∠BDF=∠BFD,∴BD=BF;(2)过F作FG⊥CD交CD的延长线于G,则四边形BFGE是矩形,∴GF=BE,EG=BF=5,∵∠ACD=∠ABD,∴tan∠ACD=tan∠ABD=,∴设DE=3k,BE=4k,∴BD=BF=5k=5,∴k=1,∴DE=3,BE=4,∴FG=4,DG=2,∵∠G=∠AED=90°,∠GDF=∠ADE,∴△ADE∽△FDG,∴=,∴=,∴AE=6,∴CE=8,∴CG=CE+GE=13,∴CF===.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.23.(12分)春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍①求AB,BC的长;②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.【分析】(1)根据题意可得180S+(108﹣S)×40=16500,解方程即可;(2)①设区域Ⅱ四周宽度为a,则由题意(9﹣2a):(12﹣4a)=4:5,解得a=,由此即可解决问题;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,由GH∥AD,可得甲的面积=矩形ABCD的面积的一半,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解方程求得s=,结合s的实际意义解答.【解答】解:(1)由题意180S+(108﹣S)×40=16500,解得S=87.∴S的值为87;(2)①设区域Ⅱ上、下草坪环宽度为a,则左右两侧草坪环宽度为2a,由题意(9﹣2a):(12﹣4a)=4:5,解得a=,∴AB=9﹣2a=8,CB=12﹣4a=10;②设乙、丙瓷砖单价分别为13x元/m2和12x元/m2,则甲的单价为(360﹣12x)元/m2,∵GH∥AD,∴甲的面积=矩形ABCD的面积的一半=40,设乙的面积为s,则丙的面积为(40﹣s),由题意40(360﹣12x)+13x•s+12x•(40﹣s)=14520,解得s=,∵0<s<40,∴0<<40,又∵360﹣12x>0,综上所述,3<x<30,39<13x<390,∵三种花卉单价均为20的整数倍,∴乙花卉的总价为:1560元.【点评】本题考查一元二次方程的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)如图1,在矩形ABCD中,AD=2AB,延长DC至点E,使得CE=BC,过点B,D,E作⊙O,交线段AD于点F.设AB=x.(1)连结OB,OD,请求出∠BOD的度数和⊙O的半径(用x的代数式表示).(直接写出答案)(2)证明:点F是AD的中点;(3)如图2,延长AD至点G,使得FG=10,连结GE,交于点H.①连结BD,当DH与四边形BDHE其它三边中的一边相等时,请求出所有满足条件的x的值;②当点G关于直线DH对称点G′恰好落在⊙O上,连结BG′,EG′,记△BEG′和△DEH的面积分别为S1,S2,请直接写出的值.【分析】(1)利用圆心角与圆周角的关系可得到:∠BOD=2∠BED=2×45°=90°,再通过构造全等三角形求解;(2)作OM⊥DF,运用垂径定理易证;(3)①要分三种情况进行分类讨论:DH=BD或DH=BE或DH=EH;②利用对称性质,相似三角形性质求得BD、DC、DE、DH的值,作G′P⊥GE,DQ⊥GE,利用同底三角形面积之比等于高之比求得:S△G′EH:S△DEH=4:5,S△G′EH=S△BEG′进行转化.【解答】解:(1)如图1,过点O作OM⊥AD于M交BC于N,∵ABCD是矩形,AB=x,AD=2AB∴AB=CD=x,BC=AD=2x,∠A=∠ADC=∠BCD=∠ABC=∠BCE=90°BC∥AD∵CE=BC∴∠BED=∠CBE=45°∴∠BOD=2∠BED=2×45°=90°∴∠BON+∠DOM=90°∵OM⊥AD,BC∥AD∴OM⊥BC∴∠AMO=∠OMD=∠BNO=90°∴∠ODM+∠DOM=90°∴∠BON=∠DOM∵OB=OD∴△BON≌△ODM(AAS)∴BN=OM,ON=DM∵∠A=∠ABC=∠AMO=90°∴ABNM是矩形∴AM=BN,MN=AB=x∴AD=AM+DM=OM+DM=MN+2DM,即:2x=x+2DM,DM=x ∴OM=MN+ON=MN+DM=x∴OD===即⊙O的半径为.(2)∵OM⊥AD∴FM=DM=,DF=x∴AD=2DF即:F是AD的中点.(3)①若DH=BD∴∠DEG=∠DEB=45°∴∠DGE=90°﹣∠DEG=90°﹣45°=45°=∠DEG∴DG=DE=3x∴FG=DF+DG=4x=10∴x=.若DH=BE∴∠DEH=∠BDE又∵∠BCD=∠EDG=90°∴△BCD∽△GDE∴=2∴GD=2DE,即:10﹣x=2×3x,解得:x=;若DH=EH,如图3,连接EF,OH,∵DH=EH,∴∠DEG=∠EDH∵∠DEG+∠G=90°,∠EDH+∠GDH=90°∴∠G=∠GDH∴DH=HG∴EH=HG∵∠EDF=90°∴EF是⊙O的直径∴OE=OF∴OH=FG,即:=×10,解得x=.综上所述,满足条件的x值为:或或.②如图4,过D作DQ⊥GE于Q,过G′作G′P⊥GE延长线于P,连接GG′、G′B、G′E、G′H、G′D,GG′交DH于T,∵G,G′关于DH对称,∴GG′⊥DH,GG′=2GT,∠HG′D=∠HGD∵∠HG′D=∠HED∴∠HED=∠HGD=45°∴DG=DE,即:10﹣x=3x,解得:x=,由①知:此时,BD=DH=,直径BH=,DG=DG′=DE=,HS=ES =∵∠BDC+∠EDH=∠EDH+∠GDT=90°∴∠BDC=∠GDT∴△BDC∽△GDT∴∴DT=,TG=TG′=,TH=DH﹣DT=﹣=,GH===5∵G′P⊥GE∴∠P=∠GTH=90°,∠HGT=∠G′GP∴△GG′P∽△GHT∴,即:,解得:∵DQ•GH=GT•DH,即:DQ×5=3×,解得:DQ=∴∵,∴∴G′E∥BH∴S△BEG′=S△G′EH∴即:.【点评】本题考查了矩形的性质,圆的性质,圆周角的性质,轴对称性质,等腰直角三角形性质,相似三角形性质,三角形面积等知识点,解题关键是能够灵活的将这些知识运用于解题过程中.。