机械振动总结要点

合集下载

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。

b 、阻力足够小。

回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动概念:回复力与位移大小成正比且方向相反的振动 受力特征:kx F -= 运动性质为变加速运动 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动回复力:重力沿切线方向的分力 周期公式:glT π2= (T 与A 、m 、θ无关——等时性) 测定重力加速度g,g=224T Lπ 等效摆长L=L 线+r6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。

初中物理机械振动知识点详解

初中物理机械振动知识点详解

初中物理机械振动知识点详解1. 什么是机械振动机械振动指的是物体在受到外力作用后产生的周期性运动。

在机械振动中,物体会围绕某个平衡位置做往复运动。

2. 机械振动的基本特征机械振动具有以下基本特征:- 振动的物体有一个平衡位置,即物体在没有外力作用时所处的位置。

- 振动的物体围绕平衡位置做往复运动,即在两个极端位置之间来回运动。

- 振动是周期性的,即在一定的时间内重复发生。

- 振动的物体有一个振动的幅度,即离开平衡位置的最大距离。

3. 机械振动的分类机械振动可以分为以下几类:- 自由振动:物体在没有外力作用下的振动,例如摆钟。

- 强迫振动:物体在外力的作用下进行的振动,例如摩擦力使得弹簧振子振动。

- 受迫振动:物体在外力周期性作用下的振动,例如风吹树木摆动。

4. 机械振动的重要参数在机械振动中,有几个重要的参数需要了解:- 振动周期(T):振动完成一个往复运动所需的时间。

- 振动频率(f):振动完成一个往复运动所需的次数。

- 振动幅度(A):物体离开平衡位置的最大距离。

- 振动角频率(ω):振动频率与2π的乘积。

- 振动频率与周期的关系:f = 1 / T,频率和周期是倒数关系。

5. 机械振动的过程机械振动的过程包括以下几个阶段:- 起始阶段:物体受到外力的作用,开始从平衡位置偏离。

- 最大位移阶段:物体离开平衡位置,达到最大偏离距离。

- 回复阶段:物体开始回到平衡位置,速度逐渐减小。

- 平衡阶段:物体回到平衡位置,速度为零。

6. 机械振动的影响因素机械振动受以下几个因素影响:- 物体的质量:质量越大,振动的惯性越大。

- 物体的弹性恢复力:恢复力越大,振动的频率越高。

- 外力的大小和方向:外力的大小和方向会改变振动的幅度和方向。

- 空气阻尼:空气的阻力会减弱振动的幅度和周期。

7. 机械振动的应用机械振动在生活中有着广泛的应用,例如:- 摇篮摇晃:通过摇篮的周期性摆动,帮助婴儿入睡。

- 震动筛分:将颗粒品进行分离,根据颗粒的大小进行筛选。

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。

2.振幅:振动的最大偏离量,表示振动的幅度大小。

3.周期:振动完成一次往复运动所经历的时间。

4.频率:单位时间内振动的循环次数。

5.角频率:单位时间内振动的循环角度。

6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。

7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。

二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。

2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。

3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。

三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。

2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。

3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。

4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。

四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。

2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。

3.机械波分为横波和纵波。

横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。

五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。

2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。

3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。

六、机械波的特性1.超前传播:波的传播速度比振动速度快。

2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。

3.波的衍射:波通过孔隙或物体边缘时发生的现象。

4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结
机械振动是指物体在作无规则或规则周期性摆动时产生的现象。

以下是机械振动的一些知识点总结:
1. 振动的分类:机械振动可分为自由振动和受迫振动两种。

自由振动是指物体在没有外力作用下,由于初始条件引起的振动;受迫振动是指物体在外力作用下的振动。

2. 振动的标量与矢量表示:振动可以用标量表示,即描述物体在振动过程中的位置、速度和加速度等参数;也可以用矢量表示,即描述物体振动过程中的位移、速度和加速度等矢量量。

3. 振动的周期与频率:周期是指物体完成一次完整振动所需的时间;频率是指单位时间内振动次数的倒数。

两者之间满足 T = 1/f 的关系,其中 T 表示振动周期,f 表示振动频率。

4. 振动的幅度与相位:振动的幅度是指物体振动过程中,位移、速度或加速度的最大值;相位是指某一时刻物体振动状态相对于某一参考点的时间差。

5. 振动的简谐振动:简谐振动是指振动物体的加速度与其位移成正比,反向相反的振动。

在简谐振动中,振动物体的加速度与位移之间存在相位差的关系。

6. 振动的阻尼和共振:阻尼是指振动物体受到的摩擦力或阻尼力,使得振动过程中能量逐渐耗散的现象;共振是指外界周期性作用力与振动物体的固有频率相等或接近时,振动幅度会急
剧增大的现象。

7. 振动的能量:振动物体具有动能和势能两种能量形式。

在振动过程中,动能和势能会不断转换,总能量守恒。

8. 振动的叠加原理:当物体受到多个振动力的作用时,振动的总效果等于各个振动力分别作用时的效果之和。

这些是机械振动的一些基本知识点,深入研究机械振动还包括振动系统的建模与分析、振动的稳定性和控制等内容。

机械振动知识点总结.

机械振动知识点总结.

机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结机械振动是指机械系统在运动过程中由于受到外界激励或系统自身激励而产生的振动现象。

它是研究机械系统动态特性的重要内容之一,也是工程实践中常见的问题。

了解机械振动的知识点,有助于我们更好地设计、分析和改进机械系统,提高系统的稳定性和可靠性。

振动的基本概念。

振动是指物体围绕平衡位置作周期性的往复运动。

在机械系统中,振动可以分为自由振动和受迫振动两种。

自由振动是指系统在没有外界激励的情况下的振动现象,而受迫振动是指系统受到外界激励后的振动现象。

振动的基本参数包括振幅、频率、周期和相位等,这些参数描述了振动的特征和规律。

振动的分类。

根据振动的性质和特点,可以将机械振动分为线性振动和非线性振动。

线性振动是指系统的振动方程是线性的,振动的特性随时间不变;非线性振动是指系统的振动方程是非线性的,振动的特性随时间变化。

此外,振动还可以根据激励方式分为强迫振动和自激振动,根据系统的自身特性分为自由振动和阻尼振动等。

振动的原因。

机械系统产生振动的原因有很多,主要包括外界激励、系统失稳、系统结构设计缺陷、材料疲劳等。

外界激励是指系统受到外部力或扰动的作用,导致系统产生振动;系统失稳是指系统在特定条件下失去平衡,从而产生振动;系统结构设计缺陷和材料疲劳会导致系统在运行过程中出现振动问题。

振动的影响。

机械振动会对系统的性能和稳定性产生不利影响。

首先,振动会增加系统的能量损耗,降低系统的效率;其次,振动会导致系统的磨损加剧,缩短系统的使用寿命;最后,振动还会引起噪音和震动,影响设备的正常运行和人员的工作环境。

振动的控制。

为了减小振动对机械系统的影响,需要采取相应的振动控制措施。

常见的振动控制方法包括加阻尼、加质量、改变系统刚度、采用主动振动控制和半主动振动控制等。

这些方法可以有效地减小振动的幅值和频率,提高系统的稳定性和可靠性。

总结。

机械振动是机械系统中常见的动态现象,了解振动的基本概念、分类、原因、影响和控制方法对于工程实践具有重要意义。

机械振动总结

机械振动总结

机械振动总结机械振动总结(优秀3篇)机械振动总结要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的机械振动总结样本能让你事半功倍,下面分享【机械振动总结(优秀3篇)】相关方法经验,供你参考借鉴。

机械振动总结篇1机械振动概述机械振动是指物体在空气中或液体中由于物理力学原因导致的周期性振动。

这种振动可以产生噪音、震源,甚至可能导致机械部件的损坏。

因此,对机械振动的研究和控制是保证机械系统稳定运行的重要环节。

振动原因机械振动的主要原因包括:1.机械部件的松动:如螺丝钉的松动、螺帽的松动等。

2.机器的启动和停止:如马达的启动和停止、泵的启动和停止等。

3.气流的冲击:如风扇、鼓风机等在运行过程中产生的气流冲击。

4.电磁振动:如电机的运行、电磁阀的电磁力等。

振动测量对机械振动进行测量可以有效地掌握机械系统的振动状况,从而进行故障排查和修复。

常用的振动测量仪器包括:1.振动速度传感器:用于测量物体表面的振动速度。

2.频率分析仪:用于分析振动信号的频率。

3.振动记录仪:用于记录振动信号的波形和幅度。

振动控制对机械振动进行控制的主要方法包括:1.紧固件:如螺丝钉、螺帽等,用于紧固机械部件,防止松动引起的振动。

2.阻尼:通过增加阻尼材料或改变机械系统的结构,减少振动能量。

3.减震:通过改变机械系统的运动状态,减少振动产生。

4.滤波:通过滤波器过滤掉不需要的振动信号,减少对机械系统的影响。

总结机械振动是机械系统运行中常见的物理现象。

通过对机械振动的研究和控制,可以有效地减少机械部件的松动、磨损和损坏,提高机械系统的稳定性和使用寿命。

因此,对机械振动进行深入的了解和掌握,对于机械工程师和相关技术人员来说,具有重要的实践意义。

机械振动总结篇2机械振动是指物体或质点在某一特定平面上,周期性、规则地往复运动的过程。

这种运动可以是在弹性介质中的自由振动,也可以是在机械、电气、流体等非弹性介质中的弹性振动。

机械振动对于机械工程和设备设计具有重要意义,包括确定设备的设计、选择材料、优化结构、提高效率、减少噪声等方面。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

高中物理机械振动知识点总结

高中物理机械振动知识点总结

高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。

2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。

3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。

4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。

5. 振动的能量:机械振动存在动能和势能的相互转换。

在简谐振动中,能量以振幅的平方的形式表示。

6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。

简谐振动的特点包括周期性、频率、振幅、相位等。

7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。

8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。

阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。

9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。

10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。

以上是高中物理机械振动的主要知识点总结,希望对你有帮助。

机械振动公式总结

机械振动公式总结

机械振动公式总结机械振动是指物体在受到外力或其他作用下发生的周期性运动。

在研究机械振动时,我们可以利用一些振动公式来描述和分析振动现象。

本文将对机械振动的一些常用公式进行总结和介绍。

1. 振动的基本特征在研究机械振动时,我们常常关注以下几个基本特征:(1) 振动的周期(T):振动一个完整的往复运动所需要的时间。

(2) 振动的频率(f):单位时间内振动的次数,即频率的倒数为周期。

(3) 振幅(A):振动物体从平衡位置最大偏离的距离。

2. 简谐振动公式简谐振动是指振动物体在受到恢复力作用下,其加速度与位移成正比的振动。

简谐振动的公式如下:x(t) = A * sin(ωt + φ)其中,x(t)为时刻t时的位移,A为振幅,ω为角频率,φ为初相位。

3. 简谐振动的频率和周期简谐振动的频率和周期之间存在如下关系:f = 1 / T = ω / 2π其中,f为频率,T为周期,ω为角频率。

4. 简谐振动的角频率与弹性系数和质量的关系对于简谐振动的弹簧振子,角频率与弹性系数k和质量m之间存在如下关系:ω = √(k / m)其中,ω为角频率,k为弹性系数,m为质量。

5. 非简谐振动的公式非简谐振动是指振动物体在受到非线性恢复力作用下的振动。

非简谐振动的公式通常较复杂,常用的一种非简谐振动公式是Duffing 方程:m * x'' + c * x' + k * x + β * x^3 = F0 * cos(ωt)其中,m为质量,x为位移,c为阻尼系数,k为弹性系数,β为非线性系数,F0为驱动力的振幅,ω为驱动力的角频率。

6. 驱动力频率与振动响应在非简谐振动中,驱动力的频率与振动物体的响应存在关系。

当驱动力的频率接近振动系统的固有频率时,振动响应最大。

这个现象称为共振。

共振频率的计算公式如下:ωr = √(k / m)其中,ωr为共振频率,k为弹性系数,m为质量。

7. 多自由度振动的公式多自由度振动是指振动系统中存在多个自由度的振动。

机械振动知识点

机械振动知识点

机械振动知识点机械振动是指任何机械系统中由于外部或内部的激励产生的不规则运动或波动现象。

机械振动的发生会对机械系统的正常运行造成影响,从而导致机械系统的损坏甚至是失效。

因此,掌握机械振动的相关知识对于机械工程师来说非常重要。

1.机械振动的产生原因机械振动的产生原因有很多,其中一些常见的原因包括:1.1.强制激励:机械系统受到外部的激励,例如电机和泵等设备的运转会产生强制激励,从而引起机械振动。

1.2.自然频率:当机械系统的运动频率等于其自然频率时,会产生自由振动,这种振动是由系统自身的特性决定的。

1.3.非线性效应:当机械系统中存在非线性效应时,例如分段的弹簧和摩擦等,会引起机械振动。

2.机械振动的影响机械振动对机械系统的影响非常大,会导致许多问题,例如:2.1.噪音:机械振动会产生噪音,对于需要安静环境的生产或办公场所来说,这种噪音会带来不必要的干扰和影响。

2.2.机械损坏:当机械振动达到一定程度时,会导致机械系统的部件出现疲劳、断裂甚至是失效,严重时会造成设备损坏。

2.3.安全问题:机械振动会导致设备意外停机或部件松动等问题,这也会引起一定的安全问题。

3.机械振动的评价指标机械振动的评价指标主要有振动幅值、振动速度、振动加速度和频率等。

其中,振动幅值、振动速度和振动加速度是描述不同类型振动特性的量度。

3.1.振动幅值:振动幅值是指在某一时刻,振动系统的振动位移的最大值。

对于机械系统来说,振动幅值越大,系统的损坏和失效风险也就越高。

3.2.振动速度:振动速度是运动的速率,即在某一时刻机械系统的振动速度的值。

振动速度常常用于描述与轴承、齿轮等部件相关的振动。

3.4.频率:频率是指机械振动中振动周期的数量,通常以赫兹(Hz)为单位表示。

频率可以帮助我们分析机械振动的原因,例如分析自然频率和强制频率等。

4.机械振动的控制和减少掌握机械振动的控制和减少方法可以有效地保护机械系统,延长机器的寿命,节约成本。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结1. 振动的基本概念振动是物体围绕某一平衡位置做周期性的往复运动。

振动可以分为自由振动和受迫振动两种。

•自由振动指的是没有外界强制作用下的振动,物体的振动频率和振幅由其固有的性质决定。

•受迫振动指的是在外力的驱动下,物体做的振动。

2. 振动的参数在分析振动时,常用以下参数描述振动的特性:•振幅(Amplitude):振动物体从平衡位置偏离的最大距离。

•周期(Period):振动物体完成一个完整周期所需的时间。

•频率(Frequency):振动物体单位时间内完成的周期数。

频率的倒数称为周期。

•相位(Phase):描述振动物体在某一时刻的位置与特定参考点的关系。

3. 简谐振动简谐振动是一种特殊的振动,其运动方程可以用正弦函数或余弦函数表示。

简谐振动满足以下条件:•振动物体受到的恢复力与其偏离平衡位置的距离成正比。

•振动物体的加速度与其位移成正比,且加速度与位移的方向相反。

简谐振动的特点是振动频率恒定,振幅随时间变化。

4. 阻尼振动阻尼振动是考虑振动系统存在阻力的情况下的振动。

阻尼振动可以分为三种情况:•无阻尼振动:振动系统不存在阻力,振动将持续进行。

•临界阻尼振动:振动系统阻尼恰好等于临界阻尼,振动将在最短时间内回到平衡位置,不发生超调。

•过阻尼振动:振动系统的阻力大于临界阻尼,振动将缓慢回到平衡位置,没有超调。

5. 谐波振动谐波振动是指振动物体的位移与外力的驱动频率成正比的振动。

在受迫振动中,外力的频率与振动系统的固有频率相等时,将出现谐波振动。

谐波振动的特点是振动频率与外力频率相等。

6. 两个简谐振动的合成当两个简谐振动在时间和空间上同时发生时,将产生合成振动。

合成振动的特点与两个振动的振幅、频率和相位差相关。

•两个振幅相等、频率相同且相位差为0的简谐振动合成,得到幅值加倍的简谐振动。

•两个振幅相等、频率相同且相位差为π的简谐振动合成,得到幅值减小为0的简谐振动。

7. 能量和功率在振动中,能量和功率是重要的参数。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结机械振动的研究旨在分析和控制系统的振动特性,以提高系统的性能、减少系统的动态负荷、延长系统的使用寿命,并确保系统在工作过程中的稳定性和安全性。

本文将对机械振动的基本知识点进行总结,包括机械振动的分类、振动系统的建模分析、振动的控制和减振、以及振动的监测与诊断等内容。

一、机械振动的分类1. 根据振动形式的不同,机械振动可分为以下几类:(1)自由振动:系统在没有外部激励的情况下发生的振动,系统内部能量交换导致振幅逐渐减小直至停止,如钟摆的摆动。

(2)受迫振动:系统受到外部激励作用而发生的振动,外部激励可以是周期性的或非周期性的,如机械系统受到周期性力的作用而发生的振动。

(3)共振:当受迫振动的频率与系统的固有频率相近或一致时,系统的振幅将迅速增大,甚至造成系统破坏的现象。

2. 根据振动的传播方式,机械振动可分为以下几类:(1)固体振动:振动是在固体介质中传播的,如机械结构的振动。

(2)流体振动:振动是通过流体介质(如液体或气体)传播的,如管道中的水波振动。

(3)弹性振动:振动是由于材料的弹性变形而产生的,如弹簧振子的振动。

二、振动系统的建模分析1. 振动系统的建模方法(1)单自由度振动系统的建模:利用牛顿第二定律,可以建立单自由度振动系统的等效质点模型,然后通过能量方法或拉氏方程等方法,可以求解系统的振动特性。

(2)多自由度振动系统的建模:对于多自由度振动系统,可以利用连续系统的离散化方法,将系统离散化为多个质点的集合,并建立相应的动力学模型,然后求解系统的振动特性。

2. 振动系统的分析方法(1)频域分析:通过对系统的动力学方程进行傅里叶变换,可以将系统的运动响应转换到频域中进行分析,得到系统的频率响应特性。

(2)时域分析:通过对系统的动力学方程进行积分,可以得到系统的时域响应,包括系统的位移、速度、加速度等随时间的变化规律。

(3)模态分析:通过对系统的模态方程进行求解,可以得到系统的固有频率和振型,以及相应的阻尼比和阻尼比比例。

大一机械振动知识点总结归纳

大一机械振动知识点总结归纳

大一机械振动知识点总结归纳机械振动是机械工程中的一个重要概念,涉及到许多相关的知识点。

本文将对大一学习机械振动的知识点进行总结和归纳,帮助读者对该领域有个全面的了解。

以下是对机械振动的定义、分类、影响因素以及振动的控制方法等方面的概述。

一、定义机械振动是指机械系统中物体偏离平衡位置后发生的带有周期性的强迫运动。

它通常由外力或者机械系统自身的特性引起。

二、分类1.自由振动:机械系统在无外力作用下进行的振动。

其频率由机械系统的自身属性决定。

2.强迫振动:机械系统受到外界周期性作用力的影响而发生的振动。

其频率由外界作用力的特性决定。

3.阻尼振动:机械系统受到摩擦或媒质阻尼的影响而发生的振动。

阻尼可以分为无阻尼、欠阻尼和过阻尼三种情况。

三、影响因素1.质量:物体的质量对振动频率和振幅有很大影响。

质量越大,振动频率越低,振幅越大。

2.刚度:机械系统的刚度决定其固有频率,刚度越大,固有频率越高。

3.阻尼:阻尼对振幅和振动频率均有影响。

适当的阻尼可以减小振动幅度并维持稳定的频率。

四、振动的控制方法1.调整刚度:通过调整机械系统的刚度,可以改变其固有频率,从而控制振动的特性。

2.增加阻尼:适当增加系统的阻尼能够减小振动幅度,提高系统的稳定性。

3.加装隔振器:隔振器能够吸收振动能量,使得机械系统的振动不会对周围环境造成太大的干扰。

4.优化结构设计:合理设计机械结构,尽量避免共振发生,减小振动幅度和对机械系统的损伤。

五、结语以上是对大一机械振动知识点的总结和归纳。

机械振动在机械工程中具有重要的应用价值,因此对其进行深入了解和掌握是非常必要的。

希望本文对读者在学习和应用机械振动方面有所帮助。

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结

机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复力是指振动物体所受的总是指向平衡位置的合外力。

回复力是产生振动的条件,它使物体总是在平衡位置附近振动。

它属于效果力,其效果是使物体再次回到平衡位置。

回复力可以是某一个力,也可以是几个力的合力或某个力的分力。

平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。

例如弹簧振子、单摆。

注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念:
1.机械振动:物体(或物体的某部分)在某位置附近沿直线或圆弧作往复运动。

2.产生机械振动的条件:
(1)当物体离开平衡位置就受到回复力作用;
(2)物体在振动过程中所受到的阻力足够小。

3.简谐运动:物体在受到大小与位移成正比,方向总跟位移的方向相反的力的作用下,物体就作简谐运动。

F=-kx.
4.振幅(A):振动物体离形平衡位置的最大距离。

5.周期(T):物体完成一次全振动所需的时间。

6.频率(f):振动物体在单位时间内完成全振动的次数,单位:赫兹(1/秒)
7.单摆是简谐振动,其周期T=2πl。

g
知识详解:
1.简谐振动的图象:表示了做简谐运动的质点的位移随时间变化的规律。

简谐运动的图象是一条正弦(或余弦)曲线,从该图象上可看出,质点在振动过程中各个时刻的离平衡位置的位移。

在图象中还可看出振幅和周期。

2.简谐运动的能量:某时刻做简谐运动的系统总能量等于该时刻的动能与势能的和。

简谐运动的总能量是一个恒量,不随时间而改变,它等于最大位移处的势能,或在平衡位置时的动能。

单摆的总能量可用E = mgl(1-cosα)来计算。

一)机械振动
物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

一、关于回复力的问题。

1、回复力应满足: F=-kX (判断简谐振动的条件)
2、回复力可能由某个力提供、可能由合力提供、可能由某个力的分力提供。

例如:弹簧振子的回复力由弹力提供;单摆的回复力由重力的切向分力提供;竖直方向振动的:弹簧振子的回复力由弹力和重力的合力来提供。

(二)简谐振动
1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T跟频率f之间是倒数关系,即T=1/f。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。

单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。

单摆的周期公式是T=。

由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。

g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。

(五)振动图象。

简谐振动的图象是振子振动的位移随时间变化的函数图象。

所建坐标系中横轴表示时间,纵轴表示位移。

图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。

要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。

二、关于简谐振动的图象问题。

1、学会“四看”。

⑴看出振动的周期、振幅、频率(T、A、f)。

⑵看出振动的位移、回复力、加速度、速度的方向情况。

⑶看出振动的位移、回复力、加速度、速度、动能、势能的大小变化。

⑷看出振动的位移、回复力、加速度、速度的大小或方向相同的时刻。

2、学会“一比较”。

比较几个不同图象的周期、振幅、频率的关系。

六)阻尼振动、受迫振动、共振。

简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,
放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械
能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要
减小,其振幅也要逐渐减小,直到停下来。

振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然
振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。

振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到
稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。

物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者
相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,
受迫振动的振幅最大,叫共振。

相关文档
最新文档